Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Protective Effect of Paeoniflorin on Acute Cerebral Infarction in Rats

Author(s): Weilin Wu, Chenfeng Qiu, Xuewen Feng, Xiaoxiao Tao, Qian Zhu, Zhengjun Chen, Xiaomin Ma, Jinwei Yang and Xianjun Bao*

Volume 21, Issue 8, 2020

Page: [702 - 709] Pages: 8

DOI: 10.2174/1389201021666191224151634

Price: $65

Abstract

Objective: The purpose of this paper was to study the protective effect of paeoniflorin on acute cerebral ischemia. The animal model of cerebral infarction induced by Middle Cerebral Artery Occlusion (MCAO) was blocked by the suture method. Sixty SD rats were randomly divided into the shame group, MCAO group, paeoniflorin (60, 120, 240 mg/kg, respectively) and Nimodipine (NMDP) group (n = 10 per group).

Methods: The rats were intragastrically administered immediately after the operation. After 7 days of gavage, the brains were decapitated at 24 h. Hematoxylin and Eosin (HE) staining was used to observe the degree of cell damage in the cerebral cortex of rats. Immunohistochemistry was used to detect silver plating and to observe changes in nerve cells. Rats in the model group showed obvious symptoms of neurological deficits, such as the ischemic morphological changed, the Malondialdehyde (MDA), Lactate Dehydrogenase (LD) content and lactate dehydrogenase (LDH) activity were significantly increased in the ischemic brain tissue, while the Superoxide Dismutase (SOD) activity was decreased.

Results: The decrease in Na+-K+-ATPase activity was significantly lower than that in the sham group. The neurological symptoms and signs of MCAO in the different doses of paeoniflorin group were improved, and the neuronal edema in the cortical area was alleviated. The activities of SOD, LDH and Na+-K+-ATPase were significantly increased, and the contents of MDA and LD were decreased.

Conclusion: Therefore, paeoniflorin could alleviate the degree of tissue damage in rats with acute cerebral infarction, inhabit the formation of free radicals in the brain tissue after ischemia, and reduce the degree of lipid peroxidation. Thus, the degree of cell damage was reduced greatly and a protective effect was showed on cerebral ischemia.

Keywords: Acute cerebral infarction, energy metabolism, free radicals, paeoniflorin, SOD, MCAO.

Graphical Abstract

[1]
Zhen, X.; Zheng, Y.; Hong, X.; Chen, Y.; Gu, P.; Tang, J.; Cheng, H.; Yuan, T.F.; Lu, X. Physiological ischemic training promotes brain collateral formation and improves functions in patients with acute cerebral infarction. Front. Neurol., 2016, 7(6), 235-242.
[http://dx.doi.org/10.3389/fneur.2016.00235] [PMID: 28066319]
[2]
Zhang, J.; Wu, Y.; Weng, Z.; Zhou, T.; Feng, T.; Lin, Y. Glycyrrhizin protects brain against ischemia-reperfusion injury in mice through HMGB1-TLR4-IL-17A signaling pathway. Brain Res., 2014, 1582, 176-186.
[http://dx.doi.org/10.1016/j.brainres.2014.07.002] [PMID: 25111887]
[3]
Okamura, K.; Tsubokawa, T.; Johshita, H.; Miyazaki, H.; Shiokawa, Y. Edaravone, a free radical scavenger, attenuates cerebral infarction and hemorrhagic infarction in rats with hyperglycemia. Neurol. Res., 2014, 36(1), 65-69.
[http://dx.doi.org/10.1179/1743132813Y.0000000259] [PMID: 24074041]
[4]
Jeong, B.O.; Kwon, S.W.; Kim, T.J.; Lee, E.H.; Jeong, S.H.; Jung, Y. Effect of carbon black materials on the electrochemical properties of sulfur-based composite cathode for lithium-sulfur cells. J. Nanosci. Nanotechnol., 2013, 13(12), 7870-7874.
[http://dx.doi.org/10.1166/jnn.2013.8111] [PMID: 24266155]
[5]
Kim, E.M.; Palmer, P.; Howard, V.; Elsaesser, A.; Taylor, A.; Staats, G.; O’Hare, E. Effect of intracerebroventricular injection of TiO2 nanoparticles on complex behaviour in the rat. J. Nanosci. Nanotechnol., 2013, 13(12), 8325-8330.
[http://dx.doi.org/10.1166/jnn.2013.8217] [PMID: 24266231]
[6]
Xu, Y.; Ming, S.; Ying, S.; Pei, G.; Duan, Y. Nano composite thermo-sensitive gel for paclitaxel and temozolomide co-delivery to glioblastoma cells. J. Nanosci. Nanotechnol., 2016, 16(12), 12288-12298.
[http://dx.doi.org/10.1166/jnn.2016.12958]
[7]
Gong, G.; Xiang, L.; Yuan, L.; Hu, L.; Wu, W.; Cai, L.; Yin, L.; Dong, H. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on focal cerebral ischemia/reperfusion-induced inflammation, oxidative stress, and apoptosis in rats. PLoS One, 2014, 9(3)e89450
[http://dx.doi.org/10.1371/journal.pone.0089450] [PMID: 24594628]
[8]
Liu, Y.; Zhang, L.; Liang, J. Activation of the Nrf2 defense pathway contributes to neuroprotective effects of phloretin on oxidative stress injury after cerebral ischemia/reperfusion in rats. J. Neurol. Sci., 2015, 351(1-2), 88-92.
[http://dx.doi.org/10.1016/j.jns.2015.02.045] [PMID: 25770876]
[9]
Yang, Z.; Weian, C.; Susu, H.; Hanmin, W. Protective effects of mangiferin on cerebral ischemia-reperfusion injury and its mechanisms. Eur. J. Pharmacol., 2016, 771, 145-151.
[http://dx.doi.org/10.1016/j.ejphar.2015.12.003] [PMID: 26656757]
[10]
Zhan, C.; Yang, J. Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Pharmacol. Res., 2006, 53(3), 303-309.
[http://dx.doi.org/10.1016/j.phrs.2005.12.008] [PMID: 16459097]
[11]
Tian, J.; Li, G.; Liu, Z.; Zhang, S.; Qu, G.; Jiang, W.; Fu, F. ND-309, a novel compound, ameliorates cerebral infarction in rats by antioxidant action. Neurosci. Lett., 2008, 442(3), 279-283.
[http://dx.doi.org/10.1016/j.neulet.2008.07.033] [PMID: 18652875]
[12]
Tu, Q.; Wang, R.; Ding, B.; Zhong, W.; Cao, H. Protective and antioxidant effect of Danshen polysaccharides on cerebral ischemia/reperfusion injury in rats. Int. J. Biol. Macromol., 2013, 60(9), 268-271.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.05.035] [PMID: 23748011]
[13]
Ding, Y.; Li, J.; Luan, X.; Ding, Y.H.; Lai, Q.; Rafols, J.A.; Phillis, J.W.; Clark, J.C.; Diaz, F.G. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience, 2004, 124(3), 583-591.
[http://dx.doi.org/10.1016/j.neuroscience.2003.12.029] [PMID: 14980729]
[14]
Gao, Y.; Mengana, Y.; Cruz, Y.R.; Muñoz, A.; Testé, I.S.; García, J.D.; Wu, Y.; Rodríguez, J.C.; Zhang, C. Different expression patterns of Ngb and EPOR in the cerebral cortex and hippocampus revealed distinctive therapeutic effects of intranasal delivery of Neuro-EPO for ischemic insults to the gerbil brain. J. Histochem. Cytochem., 2011, 59(2), 214-227.
[http://dx.doi.org/10.1369/0022155410390323] [PMID: 21339183]
[15]
Tsuboi, H.; Hossain, K.; Akhand, A.A.; Takeda, K.; Du, J.; Rifa’i, M.; Dai, Y.; Hayakawa, A.; Suzuki, H.; Nakashima, I. Paeoniflorin induces apoptosis of lymphocytes through a redox-linked mechanism. J. Cell. Biochem., 2004, 93(1), 162-172.
[http://dx.doi.org/10.1002/jcb.20134] [PMID: 15352173]
[16]
He, X.; Xing, D.; Ding, Y.; Li, Y.; Xiang, L.; Wang, W.; Du, L. Determination of paeoniflorin in rat hippocampus by high-performance liquid chromatography after intravenous administration of Paeoniae Radix extract. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 802(2), 277-281.
[http://dx.doi.org/10.1016/j.jchromb.2003.11.040] [PMID: 15018788]
[17]
Yang, H.O.; Ko, W.K.; Kim, J.Y.; Ro, H.S. Paeoniflorin: an antihyperlipidemic agent from Paeonia lactiflora. Fitoterapia, 2004, 75(1), 45-49.
[http://dx.doi.org/10.1016/j.fitote.2003.08.016] [PMID: 14693219]
[18]
Liu, Y.; Cui, G.; Zhang, Y.; Gao, X.; Gao, Y. [Prophylactic protective effects of paeoniflorin on corticosterone-induced primary cultures of rat cortical neurons damages]. Zhongguo Zhongyao Zazhi, 2010, 35(2), 208-210.
[PMID: 20394296]
[19]
Ohta, H.; Matsumoto, K.; Watanabe, H.; Shimizu, M. Involvement of alpha 1- but not alpha 2-adrenergic systems in the antagonizing effect of paeoniflorin on scopolamine-induced deficit in radial maze performance in rats. Jpn. J. Pharmacol., 1993, 62(2), 199-202.
[http://dx.doi.org/10.1254/jjp.62.199] [PMID: 8396692]
[20]
Ohta, H.; Ni, J.W.; Matsumoto, K.; Watanabe, H.; Shimizu, M. Peony and its major constituent, paeoniflorin, improve radial maze performance impaired by scopolamine in rats. Pharmacol. Biochem. Behav., 1993, 45(3), 719-723.
[http://dx.doi.org/10.1016/0091-3057(93)90530-7] [PMID: 8332629]
[21]
Ohta, H.; Matsumoto, K.; Shimizu, M.; Watanabe, H. Paeoniflorin attenuates learning impairment of aged rats in operant brightness discrimination task. Pharmacol. Biochem. Behav., 1994, 49(1), 213-217.
[http://dx.doi.org/10.1016/0091-3057(94)90478-2] [PMID: 7816876]
[22]
Duan, X.; Wang, W.; Liu, X.; Yan, H.; Dai, R.; Lin, Q. Neuroprotective effect of ethyl acetate extract from gastrodia elata against transient focal cerebral ischemia in rats induced by middle cerebral artery occlusion. J. Tradit. Chin. Med., 2015, 35(6), 671-678.
[http://dx.doi.org/10.1016/S0254-6272(15)30158-8] [PMID: 26742313]
[23]
Lin, X.; Yu, S.; Chen, Y.; Wu, J.; Zhao, J.; Zhao, Y. Neuroprotective effects of diallyl sulfide against transient focal cerebral ischemia via anti-apoptosis in rats. Neurol. Res., 2012, 34(1), 32-37.
[http://dx.doi.org/10.1179/1743132811Y.0000000054] [PMID: 22196859]
[24]
Reinecke, S.; Lutzenburg, M.; Hagemann, G.; Bruehl, C.; Neumann-Haefelin, T.; Witte, O.W. Electrophysiological transcortical diaschisis after middle cerebral artery occlusion (MCAO) in rats. Neurosci. Lett., 1999, 261(1-2), 85-88.
[http://dx.doi.org/10.1016/S0304-3940(99)00014-2] [PMID: 10081933]
[25]
Vogel, H.G.; Vogel, W.H.; Schölkens, B.A.; Sandow, J.; Müller, P.G.; Vogel, W.F. Guidelines for the care and use of laboratory animals. Thromb. Haemost., 1987, 58(4), 1078-1084.
[http://dx.doi.org/10.1055/s-0038-1646066] [PMID: 3328319]
[26]
Biala, G.; Kruk-Slomka, M.; Jozwiak, K. Influence of acute or chronic calcium channel antagonists on the acquisition and consolidation of memory and nicotine-induced cognitive effects in mice. Naunyn Schmiedebergs Arch. Pharmacol., 2013, 386(7), 651-664.
[http://dx.doi.org/10.1007/s00210-013-0866-z] [PMID: 23579386]
[27]
Haile, M.; Limson, F.; Gingrich, K.; Li, Y.S.; Quartermain, D.; Blanck, T.; Bekker, A. Nimodipine prevents transient cognitive dysfunction after moderate hypoxia in adult mice. J. Neurosurg. Anesthesiol., 2009, 21(2), 140-144.
[http://dx.doi.org/10.1097/ANA.0b013e3181920d28] [PMID: 19295393]
[28]
Taya, K.; Watanabe, Y.; Kobayashi, H.; Fujiwara, M. Nimodipine improves the disruption of spatial cognition induced by cerebral ischemia. Physiol. Behav., 2000, 70(1-2), 19-25.
[http://dx.doi.org/10.1016/S0031-9384(00)00221-3] [PMID: 10978473]
[29]
Longa, E.Z.; Weinstein, P.R.; Carlson, S.; Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20(1), 84-91.
[http://dx.doi.org/10.1161/01.STR.20.1.84] [PMID: 2643202]
[30]
Merril, C.R.; Goldman, D.; Sedman, S.A.; Ebert, M.H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science, 1981, 211(4489), 1437-1438.
[http://dx.doi.org/10.1126/science.6162199] [PMID: 6162199]
[31]
Vakili, A.; Einali, M.R.; Bandegi, A.R. Protective effect of crocin against cerebral ischemia in a dose-dependent manner in a rat model of ischemic stroke. J. Stroke Cerebrovasc. Dis., 2014, 23(1), 106-113.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2012.10.008] [PMID: 23182363]
[32]
Chen, Y.H.; Du, G.H.; Zhang, J.T. Salvianolic acid B protects brain against injuries caused by ischemia-reperfusion in rats. Acta Pharmacol. Sin., 2000, 21(5), 463-466.
[PMID: 11324448]
[33]
Michalakeas, C.A.; Parissis, J.T.; Douzenis, A.; Nikolaou, M.; Varounis, C.; Andreadou, I.; Antonellos, N.; Markantonis-Kiroudis, S.; Paraskevaidis, I.; Ikonomidis, I.; Lykouras, E.; Kremastinos, D. Effects of sertraline on circulating markers of oxidative stress in depressed patients with chronic heart failure: a pilot study. J. Card. Fail., 2011, 17(9), 748-754.
[http://dx.doi.org/10.1016/j.cardfail.2011.05.004] [PMID: 21872145]
[34]
Janota, T. Biochemical markers in the diagnosis of myocardial infarction. Cor Vasa, 2014, 56(4), e304-e310.
[http://dx.doi.org/10.1016/j.crvasa.2014.06.007]
[35]
Ghormade, P.S.; Kumar, N.B.; Tingne, C.V.; Keoliya, A.N. Distribution & diagnostic efficacy of cardiac markers CK-MB & LDH in pericardial fluid for postmortem diagnosis of ischemic heart disease. J. Forensic Leg. Med., 2014, 28, 42-46.
[http://dx.doi.org/10.1016/j.jflm.2014.09.011] [PMID: 25440147]
[36]
Long, J.; Liu, C.; Sun, L.; Gao, H.; Liu, J. Neuronal mitochondrial toxicity of malondialdehyde: inhibitory effects on respiratory function and enzyme activities in rat brain mitochondria. Neurochem. Res., 2009, 34(4), 786-794.
[http://dx.doi.org/10.1007/s11064-008-9882-7] [PMID: 19023656]
[37]
Zhang, W.P.; Zong, Q.F.; Gao, Q.; Yu, Y.; Gu, X.Y.; Wang, Y.; Li, Z.H.; Ge, M. Effects of endomorphin-1 postconditioning on myocardial ischemia/reperfusion injury and myocardial cell apoptosis in a rat model. Mol. Med. Rep., 2016, 14(4), 3992-3998.
[http://dx.doi.org/10.3892/mmr.2016.5695] [PMID: 27600942]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy