Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Butyrylcholinesterase: A Multifaceted Pharmacological Target and Tool

Author(s): Zhe Ying Ha, Shintu Mathew and Keng Yoon Yeong*

Volume 21, Issue 1, 2020

Page: [99 - 109] Pages: 11

DOI: 10.2174/1389203720666191107094949

Price: $65

Abstract

Butyrylcholinesterase is a serine hydrolase that catalyzes the hydrolysis of esters in the body. Unlike its sister enzyme acetylcholinesterase, butyrylcholinesterase has a broad substrate scope and lower acetylcholine catalytic efficiency. The difference in tissue distribution and inhibitor sensitivity also points to its involvement external to cholinergic neurotransmission. Initial studies on butyrylcholinesterase showed that the inhibition of the enzyme led to the increment of brain acetylcholine levels. Further gene knockout studies suggested its involvement in the regulation of amyloid-beta, a brain pathogenic protein. Thus, it is an interesting target for neurological disorders such as Alzheimer’s disease. The substrate scope of butyrylcholinesterase was recently found to include cocaine, as well as ghrelin, the “hunger hormone”. These findings led to the development of recombinant butyrylcholinesterase mutants and viral gene therapy to combat cocaine addiction, along with in-depth studies on the significance of butyrylcholinesterase in obesity. It is observed that the pharmacological impact of butyrylcholinesterase increased in tandem with each reported finding. Not only is the enzyme now considered an important pharmacological target, it is also becoming an important tool to study the biological pathways in various diseases. Here, we review and summarize the biochemical properties of butyrylcholinesterase and its roles, as a cholinergic neurotransmitter, in various diseases, particularly neurodegenerative disorders.

Keywords: Butyrylcholinesterase, Alzheimer's disease, Parkinson’s disease, obesity, cocaine addiction, inflammation.

Graphical Abstract

[1]
Chatonnet, A.; Lockridge, O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem. J., 1989, 260(3), 625-634.
[http://dx.doi.org/10.1042/bj2600625] [PMID: 2669736]
[2]
Dale, H.H.; Dudley, H.W. The presence of histamine and acetylcholine in the spleen of the ox and the horse. J. Physiol., 1929, 68(2), 97-123.
[http://dx.doi.org/10.1113/jphysiol.1929.sp002598] [PMID: 16994063]
[3]
Wilson, I.B.; Harrison, M.A. Turnover number of acetyl-cholinesterase. J. Biol. Chem., 1961, 236(8), 2292-2295.
[PMID: 13785664]
[4]
Mendel, B.; Rudney, H. Studies on cholinesterase: 1. Cholinesterase and pseudo-cholinesterase. Biochem. J., 1943, 37(1), 59-63.
[http://dx.doi.org/10.1042/bj0370059] [PMID: 16747599]
[5]
Bourne, J.G.; Collier, H.O.; Somers, G.F. Succinylcholine (succinoylcholine), muscle-relaxant of short action. Lancet, 1952, 1(6721), 1225-1229.
[http://dx.doi.org/10.1016/S0140-6736(52)92058-8] [PMID: 14939768]
[6]
Scholler, K.L.; Goedde, H.W.; Benkmann, H.G. The use of serum cholinesterase in succinylcholine apnoea. Can. Anaesth. Soc. J., 1977, 24(3), 396-400.
[http://dx.doi.org/10.1007/BF03005113] [PMID: 871943]
[7]
Broomfield, C.A.; Maxwell, D.M.; Solana, R.P.; Castro, C.A.; Finger, A.V.; Lenz, D.E. Protection by butyrylcholinesterase against organophosphorus poisoning in nonhuman primates. J. Pharmacol. Exp. Ther., 1991, 259(2), 633-638.
[PMID: 1941611]
[8]
Raveh, L.; Grunwald, J.; Marcus, D.; Papier, Y.; Cohen, E.; Ashani, Y. Human butyrylcholinesterase as a general prophylactic antidote for nerve agent toxicity. In vitro and in vivo quantitative characterization. Biochem. Pharmacol., 1993, 45(12), 2465-2474.
[http://dx.doi.org/10.1016/0006-2952(93)90228-O] [PMID: 8328984]
[9]
Ahmed, M.; Rocha, J.B.; Mazzanti, C.M.; Morsch, A.L.; Cargnelutti, D.; Corrêa, M.; Loro, V.; Morsch, V.M.; Schetinger, M.R. Malathion, carbofuran and paraquat inhibit Bungarus sindanus (krait) venom acetylcholinesterase and human serum butyrylcholinesterase in vitro. Ecotoxicology, 2007, 16(4), 363-369.
[http://dx.doi.org/10.1007/s10646-007-0137-1] [PMID: 17364237]
[10]
Gómez-Ramos, P.; Morán, M. Ultrastructural localization of butyrylcholinesterase in senile plaques in the brains of aged and Alzheimer disease patients. Mo. Chem. Neuropathol., 1996, 30(3), 161-173.
[11]
Ruberg, M.; Rieger, F.; Villageois, A.; Bonnet, A.M.; Agid, Y. Acetylcholinesterase and butyrylcholinesterase in frontal cortex and cerebrospinal fluid of demented and non-demented patients with Parkinson’s disease. Brain Res., 1986, 362(1), 83-91.
[http://dx.doi.org/10.1016/0006-8993(86)91401-0] [PMID: 3942870]
[12]
Cohen-Barak, O.; Wildeman, J.; van de Wetering, J.; Hettinga, J.; Schuilenga-Hut, P.; Gross, A.; Clark, S.; Bassan, M.; Gilgun-Sherki, Y.; Mendzelevski, B.; Spiegelstein, O. Safety, pharmacokinetics, and pharmacodynamics of TV-1380, a novel mutated butyrylcholinesterase treatment for cocaine addiction, after single and multiple intramuscular injections in healthy subjects. J. Clin. Pharmacol., 2015, 55(5), 573-583.
[http://dx.doi.org/10.1002/jcph.450] [PMID: 25524052]
[13]
Chen, V.P.; Gao, Y.; Geng, L.; Stout, M.B.; Jensen, M.D.; Brimijoin, S. Butyrylcholinesterase deficiency promotes adipose tissue growth and hepatic lipid accumulation in male mice on high-fat diet. Endocrinology, 2016, 157(8), 3086-3095.
[http://dx.doi.org/10.1210/en.2016-1166] [PMID: 27300766]
[14]
Çokuğraş, A. Butyrylcholinesterase: Structure and physiological importance. Turk. J. Biochem., 2003, 28(2), 54-61.
[15]
Sussman, J.L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science, 1991, 253(5022), 872-879.
[http://dx.doi.org/10.1126/science.1678899] [PMID: 1678899]
[16]
Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J.C.; Nachon, F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem., 2003, 278(42), 41141-41147.
[http://dx.doi.org/10.1074/jbc.M210241200] [PMID: 12869558]
[17]
Saxena, A.; Redman, A.M.; Jiang, X.; Lockridge, O.; Doctor, B.P. Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Biochemistry, 1997, 36(48), 14642-14651.
[http://dx.doi.org/10.1021/bi971425+] [PMID: 9398183]
[18]
Radić, Z.; Pickering, N.A.; Vellom, D.C.; Camp, S.; Taylor, P. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry, 1993, 32(45), 12074-12084.
[http://dx.doi.org/10.1021/bi00096a018] [PMID: 8218285]
[19]
Harel, M.; Quinn, D.; Nair, H.; Silman, I.; Sussman, J. The X-ray structure of a transition state analog complex reveals the molecular origins of the catalytic power and substrate specificity of acetylcholinesterase. J. Am. Chem. Soc., 1996, 118(10), 2340-2346.
[http://dx.doi.org/10.1021/ja952232h]
[20]
Masson, P.; Xie, W.; Froment, M.T.; Levitsky, V.; Fortier, P.L.; Albaret, C.; Lockridge, O. Interaction between the peripheral site residues of human butyrylcholinesterase, D70 and Y332, in binding and hydrolysis of substrates. Biochim. Biophys. Acta, 1999, 1433(1-2), 281-293.
[http://dx.doi.org/10.1016/S0167-4838(99)00115-6] [PMID: 10446378]
[21]
Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem., 2012, 55(22), 10282-10286.
[http://dx.doi.org/10.1021/jm300871x] [PMID: 23035744]
[22]
Koelle, G.B.; Wagner, H. The histochemical identification of acetylcholinesterase in cholinergic, adrenergic and sensory neurons. J. Pharmacol. Exp. Ther., 1955, 114(2), 167-184.
[PMID: 14392585]
[23]
Jbilo, O.; Bartels, C.F.; Chatonnet, A.; Toutant, J.P.; Lockridge, O. Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger RNA. Toxicon, 1994, 32(11), 1445-1457.
[http://dx.doi.org/10.1016/0041-0101(94)90416-2] [PMID: 7886701]
[24]
Linhares, A.G.; Assis, C.R.; Siqueira, M.T.; Bezerra, R.S.; Carvalho, L.B., Jr Development of a method for extraction and assay of human erythrocyte acetylcholinesterase and pesticide inhibition. Hum. Exp. Toxicol., 2013, 32(8), 837-845.
[http://dx.doi.org/10.1177/0960327112468906] [PMID: 23632007]
[25]
Freitas Leal, J.K.; Adjobo-Hermans, M.J.W.; Brock, R.; Bosman, G.J.C.G.M. Acetylcholinesterase provides new insights into red blood cell ageing in vivo and in vitro. Blood Transfus., 2017, 15(3), 232-238.
[PMID: 28518050]
[26]
Saldanha, C. Human erythrocyte acetylcholinesterase in health and disease. Molecules, 2017, 22(9), 1-10.
[http://dx.doi.org/10.3390/molecules22091499] [PMID: 28885588]
[27]
Li, B.; Stribley, J.A.; Ticu, A.; Xie, W.; Schopfer, L.M.; Hammond, P.; Brimijoin, S.; Hinrichs, S.H.; Lockridge, O. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J. Neurochem., 2000, 75(3), 1320-1331.
[http://dx.doi.org/10.1046/j.1471-4159.2000.751320.x] [PMID: 10936216]
[28]
Bartus, R.T. Evidence for a direct cholinergic involvement in the scopolamine-induced amnesia in monkeys: effects of concurrent administration of physostigmine and methylphenidate with scopolamine. Pharmacol. Biochem. Behav., 1978, 9(6), 833-836.
[http://dx.doi.org/10.1016/0091-3057(78)90364-7] [PMID: 106402]
[29]
Aigner, T.G.; Mishkin, M. The effects of physostigmine and scopolamine on recognition memory in monkeys. Behav. Neural Biol., 1986, 45(1), 81-87.
[http://dx.doi.org/10.1016/S0163-1047(86)80008-5] [PMID: 3954717]
[30]
Czura, C.J.; Friedman, S.G.; Tracey, K.J. Neural inhibition of inflammation: the cholinergic anti-inflammatory pathway. J. Endotoxin Res., 2003, 9(6), 409-413.
[http://dx.doi.org/10.1177/09680519030090060401] [PMID: 14733730]
[31]
Liang, X.; Wang, Q.; Hand, T.; Wu, L.; Breyer, R.M.; Montine, T.J.; Andreasson, K. Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. J. Neurosci., 2005, 25(44), 10180-10187.
[http://dx.doi.org/10.1523/JNEUROSCI.3591-05.2005] [PMID: 16267225]
[32]
Patel, N.S.; Paris, D.; Mathura, V.; Quadros, A.N.; Crawford, F.C.; Mullan, M.J. Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J. Neuroinflammation, 2005, 2(1), 9-19.
[http://dx.doi.org/10.1186/1742-2094-2-9] [PMID: 15762998]
[33]
Ramos, E.M.; Lin, M.T.; Larson, E.B.; Maezawa, I.; Tseng, L.H.; Edwards, K.L.; Schellenberg, G.D.; Hansen, J.A.; Kukull, W.A.; Jin, L.W. Tumor necrosis factor alpha and interleukin 10 promoter region polymorphisms and risk of late-onset alzheimer disease. Arch. Neurol., 2006, 63(8), 1165-1169.
[http://dx.doi.org/10.1001/archneur.63.8.1165] [PMID: 16908746]
[34]
Tobinick, E.; Gross, H.; Weinberger, A.; Cohen, H. TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. MedGenMed, 2006, 8(2), 25.
[PMID: 16926764]
[35]
Belkhelfa, M.; Rafa, H.; Medjeber, O.; Arroul-Lammali, A.; Behairi, N.; Abada-Bendib, M.; Makrelouf, M.; Belarbi, S.; Masmoudi, A.N.; Tazir, M.; Touil-Boukoffa, C. IFN-γ and TNF-α are involved during Alzheimer disease progression and correlate with nitric oxide production: a study in Algerian patients. J. Interferon Cytokine Res., 2014, 34(11), 839-847.
[http://dx.doi.org/10.1089/jir.2013.0085] [PMID: 24831467]
[36]
Rossi, S.; Motta, C.; Studer, V.; Macchiarulo, G.; Volpe, E.; Barbieri, F.; Ruocco, G.; Buttari, F.; Finardi, A.; Mancino, R.; Weiss, S.; Battistini, L.; Martino, G.; Furlan, R.; Drulovic, J.; Centonze, D. Interleukin-1β causes excitotoxic neurodegeneration and multiple sclerosis disease progression by activating the apoptotic protein p53. Mol. Neurodegener., 2014, 9(1), 56-67.
[http://dx.doi.org/10.1186/1750-1326-9-56] [PMID: 25495224]
[37]
Tracey, K.J. Understanding immunity requires more than immunology. Nat. Immunol., 2010, 11(7), 561-564.
[http://dx.doi.org/10.1038/ni0710-561] [PMID: 20562838]
[38]
Shapira, M.; Tur-Kaspa, I.; Bosgraaf, L.; Livni, N.; Grant, A.D.; Grisaru, D.; Korner, M.; Ebstein, R.P.; Soreq, H. A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum. Mol. Genet., 2000, 9(9), 1273-1281.
[http://dx.doi.org/10.1093/hmg/9.9.1273] [PMID: 10814709]
[39]
Das, N.U. Acetylcholinestrase and butyrylcholinesterase as possible markers of low- grade systemic inflammation. Med. Sci. Monit., 2017, 13(12), 214-221.
[40]
Donnelly, R.J.; Friedhoff, A.J.; Beer, B.; Blume, A.J.; Vitek, M.P. Interleukin-1 stimulates the beta-amyloid precursor protein promoter. Cell. Mol. Neurobiol., 1990, 10(4), 485-495.
[http://dx.doi.org/10.1007/BF00712843] [PMID: 2091832]
[41]
Blume, A.J.; Vitek, M.P. Focusing on IL-1-promotion of β-amyloid precursor protein synthesis as an early event in Alzheimer’s disease. Neurobiol. Aging, 1989, 10(5), 406-408.
[http://dx.doi.org/10.1016/0197-4580(89)90077-8] [PMID: 2510037]
[42]
Lanctôt, K.L.; Herrmann, N.; Yau, K.K.; Khan, L.R.; Liu, B.A. LouLou, M.M.; Einarson, T.R. Efficacy and safety of cholinesterase inhibitors in Alzheimer’s disease: a meta-analysis. CMAJ, 2003, 169(6), 557-564.
[PMID: 12975222]
[43]
Sugimoto, H. Structure-activity relationships of acetylcholinesterase inhibitors: Donepezil hydrochloride for the treatment of Alzheimer’s disease. Pure Appl. Chem., 1999, 71(11), 2031-2037.
[http://dx.doi.org/10.1351/pac199971112031]
[44]
Polinsky, R.J. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin. Ther., 1998, 20(4), 634-647.
[http://dx.doi.org/10.1016/S0149-2918(98)80127-6] [PMID: 9737824]
[45]
Coyle, J.; Kershaw, P. Galantamine, a cholinesterase inhibitor that allosterically modulates nicotinic receptors: effects on the course of Alzheimer’s disease. Biol. Psychiatry, 2001, 49(3), 289-299.
[http://dx.doi.org/10.1016/S0006-3223(00)01101-X] [PMID: 11230880]
[46]
Trinh, N.H.; Hoblyn, J.; Mohanty, S.; Yaffe, K. Efficacy of cholinesterase inhibitors in the treatment of neuropsychiatric symptoms and functional impairment in Alzheimer disease: a meta-analysis. JAMA, 2003, 289(2), 210-216.
[http://dx.doi.org/10.1001/jama.289.2.210] [PMID: 12517232]
[47]
Tan, C.C.; Yu, J.T.; Wang, H.F.; Tan, M.S.; Meng, X.F.; Wang, C.; Jiang, T.; Zhu, X.C.; Tan, L. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. J. Alzheimers Dis., 2014, 41(2), 615-631.
[http://dx.doi.org/10.3233/JAD-132690] [PMID: 24662102]
[48]
Giacobini, E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol. Res., 2004, 50(4), 433-440.
[http://dx.doi.org/10.1016/j.phrs.2003.11.017] [PMID: 15304240]
[49]
Furukawa-Hibi, Y.; Alkam, T.; Nitta, A.; Matsuyama, A.; Mizoguchi, H.; Suzuki, K.; Moussaoui, S.; Yu, Q.S.; Greig, N.H.; Nagai, T.; Yamada, K. Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-β peptide in mice. Behav. Brain Res., 2011, 225(1), 222-229.
[http://dx.doi.org/10.1016/j.bbr.2011.07.035] [PMID: 21820013]
[50]
Hartmann, J.; Kiewert, C.; Duysen, E.G.; Lockridge, O.; Greig, N.H.; Klein, J. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J. Neurochem., 2007, 100(5), 1421-1429.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04347.x] [PMID: 17212694]
[51]
Reid, G.A.; Darvesh, S. Butyrylcholinesterase-knockout reduces brain deposition of fibrillar β-amyloid in an Alzheimer mouse model. Neuroscience, 2015, 298(1), 424-435.
[http://dx.doi.org/10.1016/j.neuroscience.2015.04.039] [PMID: 25931333]
[52]
Yu, Q.; Holloway, H.W.; Utsuki, T.; Brossi, A.; Greig, N.H. Synthesis of novel phenserine-based-selective inhibitors of butyrylcholinesterase for Alzheimer’s disease. J. Med. Chem., 1999, 42(10), 1855-1861.
[http://dx.doi.org/10.1021/jm980459s] [PMID: 10346939]
[53]
Kamal, M.A.; Qu, X.; Yu, Q.S.; Tweedie, D.; Holloway, H.W.; Li, Y.; Tan, Y.; Greig, N.H. Tetrahydrofurobenzofuran cymserine, a potent butyrylcholinesterase inhibitor and experimental Alzheimer drug candidate, enzyme kinetic analysis. J. Neural Transm. (Vienna), 2008, 115(6), 889-898.
[http://dx.doi.org/10.1007/s00702-008-0022-y] [PMID: 18235987]
[54]
Sugimoto, H.; Takahashi, J.; Takahashi, T.; Hijikuro, I. Indoline derivatives. US20110294850 2010.
[55]
Chierrito, T.P.C.; Pedersoli-Mantoani, S.; Roca, C.; Sebastian-Pérez, V.; Martínez-Gonzalez, L.; Pérez, D.I.; Perez, C.; Canales, A.; Cañada, F.J.; Campillo, N.E.; Carvalho, I.; Martinez, A. Chameleon-like behavior of indolylpiperidines in complex with cholinesterases targets: Potent butyrylcholinesterase inhibitors. Eur. J. Med. Chem., 2018, 145(1), 431-444.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.007] [PMID: 29335209]
[56]
Košak, U.; Brus, B.; Knez, D.; Žakelj, S.; Trontelj, J.; Pišlar, A.; Šink, R.; Jukič, M.; Živin, M.; Podkowa, A.; Nachon, F.; Brazzolotto, X.; Stojan, J.; Kos, J.; Coquelle, N.; Sałat, K.; Colletier, J.P.; Gobec, S. The magic of crystal structure-based inhibitor optimization: development of a butyrylcholinesterase inhibitor with picomolar affinity and in vivo activity. J. Med. Chem., 2018, 61(1), 119-139.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01086] [PMID: 29227101]
[57]
de Andrade, P.; Mantoani, S.P.; Gonçalves Nunes, P.S.; Magadán, C.R.; Pérez, C.; Xavier, D.J.; Hojo, E.T.S.; Campillo, N.E.; Martínez, A.; Carvalho, I. Highly potent and selective aryl-1,2,3-triazolyl benzylpiperidine inhibitors toward butyrylcholinesterase in Alzheimer’s disease. Bioorg. Med. Chem., 2019, 27(6), 931-943.
[http://dx.doi.org/10.1016/j.bmc.2018.12.030] [PMID: 30765302]
[58]
Brus, B.; Košak, U.; Turk, S.; Pišlar, A.; Coquelle, N.; Kos, J.; Stojan, J.; Colletier, J.P.; Gobec, S. Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor. J. Med. Chem., 2014, 57(19), 8167-8179.
[http://dx.doi.org/10.1021/jm501195e] [PMID: 25226236]
[59]
Yoon, Y.K.; Ali, M.A.; Wei, A.C.; Choon, T.S.; Khaw, K.Y.; Murugaiyah, V.; Osman, H.; Masand, V.H. Synthesis, characterization, and molecular docking analysis of novel benzimidazole derivatives as cholinesterase inhibitors. Bioorg. Chem., 2013, 49(1), 33-39.
[http://dx.doi.org/10.1016/j.bioorg.2013.06.008] [PMID: 23886696]
[60]
Coban, G.; Carlino, L.; Tarikogullari, A.H.; Parlar, S.; Sarıkaya, G.; Alptüzün, V.; Alpan, A.S.; Güneş, H.S.; Erciyas, E. 1H-benzimidazole derivatives as butyrylcholinesterase inhibitors: synthesis and molecular modeling studies. Med. Chem. Res., 2016, 25(9), 2005-2014.
[http://dx.doi.org/10.1007/s00044-016-1648-1]
[61]
Aslam, S.; Zaib, S.; Ahmad, M.; Gardiner, J.M.; Ahmad, A.; Hameed, A.; Furtmann, N.; Gütschow, M.; Bajorath, J.; Iqbal, J. Novel structural hybrids of pyrazolobenzothiazines with benzimidazoles as cholinesterase inhibitors. Eur. J. Med. Chem., 2014, 78(1), 106-117.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.035] [PMID: 24681070]
[62]
Dolles, D.; Hoffmann, M.; Gunesch, S.; Marinelli, O.; Möller, J.; Santoni, G.; Chatonnet, A.; Lohse, M.J.; Wittmann, H.J.; Strasser, A.; Nabissi, M.; Maurice, T.; Decker, M. Structure-activity relationships and computational investigations into the development of potent and balanced dual-acting butyrylcholinesterase inhibitors and human cannabinoid receptor 2 ligands with pro-cognitive in vivo profiles. J. Med. Chem., 2018, 61(4), 1646-1663.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01760] [PMID: 29400965]
[63]
Macdonald, I.R.; Maxwell, S.P.; Reid, G.A.; Cash, M.K.; DeBay, D.R.; Darvesh, S. Quantification of butyrylcholinesterase activity as a sensitive and specific biomarker of Alzheimer’s disease. J. Alzheimers Dis., 2017, 58(2), 491-505.
[http://dx.doi.org/10.3233/JAD-170164] [PMID: 28453492]
[64]
DeBay, D.R.; Reid, G.A.; Pottie, I.R.; Martin, E.; Bowen, C.V.; Darvesh, S. Targeting butyrylcholinesterase for preclinical single photon emission computed tomography (SPECT) imaging of Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2017, 3(2), 166-176.
[http://dx.doi.org/10.1016/j.trci.2017.01.005] [PMID: 29067326]
[65]
Maurice, T.; Strehaiano, M.; Siméon, N.; Bertrand, C.; Chatonnet, A. Learning performances and vulnerability to amyloid toxicity in the butyrylcholinesterase knockout mouse. Behav. Brain Res., 2016, 296(1), 351-360.
[http://dx.doi.org/10.1016/j.bbr.2015.08.026] [PMID: 26306824]
[66]
Podoly, E.; Bruck, T.; Diamant, S.; Melamed-Book, N.; Weiss, A.; Huang, Y.; Livnah, O.; Langermann, S.; Wilgus, H.; Soreq, H. Human recombinant butyrylcholinesterase purified from the milk of transgenic goats interacts with beta-amyloid fibrils and suppresses their formation in vitro. Neurodegener. Dis., 2008, 5(3-4), 232-236.
[http://dx.doi.org/10.1159/000113711] [PMID: 18322399]
[67]
Diamant, S.; Podoly, E.; Friedler, A.; Ligumsky, H.; Livnah, O.; Soreq, H. Butyrylcholinesterase attenuates amyloid fibril formation in vitro. Proc. Natl. Acad. Sci. USA, 2006, 103(23), 8628-8633.
[http://dx.doi.org/10.1073/pnas.0602922103] [PMID: 16731619]
[68]
McIlroy, S.P.; Crawford, V.L.; Dynan, K.B.; McGleenon, B.M.; Vahidassr, M.D.; Lawson, J.T.; Passmore, A.P. Butyrylcholinesterase K variant is genetically associated with late onset alzheimer’s disease in Northern Ireland. J. Med. Genet., 2000, 37(3), 182-185.
[http://dx.doi.org/10.1136/jmg.37.3.182] [PMID: 10699053]
[69]
De Beaumont, L.; Pelleieux, S.; Lamarre-Théroux, L.; Dea, D.; Poirier, J. Alzheimer’s Disease Cooperative Study. Butyrylcholinesterase K and apolipoprotein E-ɛ4 reduce the age of onset of Alzheimer’s disease, accelerate cognitive decline, and modulate donepezil response in mild cognitively impaired subjects. J. Alzheimers Dis., 2016, 54(3), 913-922.
[http://dx.doi.org/10.3233/JAD-160373] [PMID: 27567841]
[70]
Darvesh, S.; Cash, M.K.; Reid, G.A.; Martin, E.; Mitnitski, A.; Geula, C. Butyrylcholinesterase is associated with β-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. J. Neuropathol. Exp. Neurol., 2012, 71(1), 2-14.
[http://dx.doi.org/10.1097/NEN.0b013e31823cc7a6] [PMID: 22157615]
[71]
Altmann, A.; Tian, L.; Henderson, V.W.; Greicius, M.D. Alzheimer’s Disease Neuroimaging Initiative Investigators. Sex modifies the APOE-related risk of developing Alzheimer disease. Ann. Neurol., 2014, 75(4), 563-573.
[http://dx.doi.org/10.1002/ana.24135] [PMID: 24623176]
[72]
Lin, K.A.; Choudhury, K.R.; Rathakrishnan, B.G.; Marks, D.M.; Petrella, J.R.; Doraiswamy, P.M. Alzheimer’s Disease Neuroimaging Initiative. Marked gender differences in progression of mild cognitive impairment over 8 years. Alzheimers Dement. (N. Y.), 2015, 1(2), 103-110.
[http://dx.doi.org/10.1016/j.trci.2015.07.001] [PMID: 26451386]
[73]
Bartels, C.F.; Jensen, F.S.; Lockridge, O.; van der Spek, A.F.; Rubinstein, H.M.; Lubrano, T.; La Du, B.N. DNA mutation associated with the human butyrylcholinesterase K-variant and its linkage to the atypical variant mutation and other polymorphic sites. Am. J. Hum. Genet., 1992, 50(5), 1086-1103.
[PMID: 1570838]
[74]
Pongthanaracht, N.; Yanarojana, S.; Pinthong, D.; Unchern, S.; Thithapandha, A.; Assantachai, P.; Supavilai, P. Association between butyrylcholinesterase K variant and mild cognitive impairment in the Thai community-dwelling patients. Clin. Interv. Aging, 2017, 12(1), 897-901.
[http://dx.doi.org/10.2147/CIA.S137264] [PMID: 28603409]
[75]
Gabriel, A.J.; Almeida, M.R.; Ribeiro, M.H.; Durães, J.; Tábuas-Pereira, M.; Pinheiro, A.C.; Pascoal, R.; Santana, I.; Baldeiras, I. Association between butyrylcholinesterase and cerebrospinal fluid biomarkers in Alzheimer’s disease patients. Neurosci. Lett., 2017, 641(1), 101-106.
[http://dx.doi.org/10.1016/j.neulet.2017.01.036] [PMID: 28108398]
[76]
Sokolow, S.; Li, X.; Chen, L.; Taylor, K.D.; Rotter, J.I.; Rissman, R.A.; Aisen, P.S.; Apostolova, L.G. Deleterious Effect of Butyrylcholinesterase K-variant in donepezil treatment of mild cognitive impairment. J. Alzheimers Dis., 2017, 56(1), 229-237.
[http://dx.doi.org/10.3233/JAD-160562] [PMID: 27911294]
[77]
Caballol, N.; Martí, M.J.; Tolosa, E. Cognitive dysfunction and dementia in Parkinson disease. Mov. Disord., 2007, 22(17)(Suppl. 17), S358-S366.
[http://dx.doi.org/10.1002/mds.21677] [PMID: 18175397]
[78]
Josviak, N.D.; Batistela, M.S.; Souza, R.K.M.; Wegner, N.R.; Bono, G.F.; Sulzbach, C.D.; Simão-Silva, D.P.; Piovezan, M.R.; Souza, R.L.R.; Furtado-Alle, L. Plasma butyrylcholinesterase activity: a possible biomarker for differential diagnosis between Alzheimer’s disease and dementia with Lewy bodies? Int. J. Neurosci., 2017, 127(12), 1082-1086.
[http://dx.doi.org/10.1080/00207454.2017.1329203] [PMID: 28504037]
[79]
Dong, M.X.; Xu, X.M.; Hu, L.; Liu, Y.; Huang, Y.J.; Wei, Y.D. Serum butyrylcholinesterase activity: A biomarker for Parkinson’s disease and related dementia. BioMed Res. Int., 2017, 2017(1)1524107
[http://dx.doi.org/10.1155/2017/1524107] [PMID: 28840123]
[80]
Kamendulis, L.M.; Brzezinski, M.R.; Pindel, E.V.; Bosron, W.F.; Dean, R.A. Metabolism of cocaine and heroin is catalyzed by the same human liver carboxylesterases. J. Pharmacol. Exp. Ther., 1996, 279(2), 713-717.
[PMID: 8930175]
[81]
Mattes, C.E.; Lynch, T.J.; Singh, A.; Bradley, R.M.; Kellaris, P.A.; Brady, R.O.; Dretchen, K.L. Therapeutic use of butyrylcholinesterase for cocaine intoxication. Toxicol. Appl. Pharmacol., 1997, 145(2), 372-380.
[http://dx.doi.org/10.1006/taap.1997.8188] [PMID: 9266811]
[82]
Yang, W.; Xue, L.; Fang, L.; Chen, X.; Zhan, C.G. Characterization of a high-activity mutant of human butyrylcholinesterase against (-)-cocaine. Chem. Biol. Interact., 2010, 187(1-3), 148-152.
[http://dx.doi.org/10.1016/j.cbi.2010.01.004] [PMID: 20060817]
[83]
Brimijoin, S.; Gao, Y.; Anker, J.J.; Gliddon, L.A.; Lafleur, D.; Shah, R.; Zhao, Q.; Singh, M.; Carroll, M.E. A cocaine hydrolase engineered from human butyrylcholinesterase selectively blocks cocaine toxicity and reinstatement of drug seeking in rats. Neuropsychopharmacology, 2008, 33(11), 2715-2725.
[http://dx.doi.org/10.1038/sj.npp.1301666] [PMID: 18199998]
[84]
Schindler, C.W.; Justinova, Z.; Lafleur, D.; Woods, D.; Roschke, V.; Hallak, H.; Sklair-Tavron, L.; Redhi, G.H.; Yasar, S.; Bergman, J.; Goldberg, S.R. Modification of pharmacokinetic and abuse-related effects of cocaine by human-derived cocaine hydrolase in monkeys. Addict. Biol., 2013, 18(1), 30-39.
[http://dx.doi.org/10.1111/j.1369-1600.2011.00424.x] [PMID: 22264200]
[85]
Shram, M.J.; Cohen-Barak, O.; Chakraborty, B.; Bassan, M.; Schoedel, K.A.; Hallak, H.; Eyal, E.; Weiss, S.; Gilgun-Serki, Y.; Sellers, E.M.; Faulknor, J.; Spiegelstein, O. Assessment of pharmacokinetic and pharmacodynamic interactions between albumin-fused mutated butyrylcholinesterase and intravenously administered cocaine in recreational cocaine users. J. Clin. Psychopharmacol., 2015, 35(4), 396-405.
[http://dx.doi.org/10.1097/JCP.0000000000000347] [PMID: 26082975]
[86]
Gilgun-Sherki, Y.; Eliaz, R.E.; McCann, D.J.; Loupe, P.S.; Eyal, E.; Blatt, K.; Cohen-Barak, O.; Hallak, H.; Chiang, N.; Gyaw, S. Placebo-controlled evaluation of a bioengineered, cocaine-metabolizing fusion protein, TV-1380 (AlbuBChE), in the treatment of cocaine dependence. Drug Alcohol Depend., 2016, 166(1), 13-20.
[http://dx.doi.org/10.1016/j.drugalcdep.2016.05.019] [PMID: 27394932]
[87]
Murthy, V.; Reyes, S.; Geng, L.; Gao, Y.; Brimijoin, S. Cocaine hydrolase gene transfer demonstrates crdiac safety and efficacy against cocaine-induced QT prolongation in mice. J. Pharmacol. Exp. Ther., 2016, 356(3), 720-725.
[http://dx.doi.org/10.1124/jpet.115.228825] [PMID: 26669428]
[88]
Taylor, D.; Parish, D.; Thompson, L.; Cavaliere, M. Cocaine induced prolongation of the QT interval. Emerg. Med. J., 2004, 21(2), 252-253.
[http://dx.doi.org/10.1136/emj.2002.003251] [PMID: 14988369]
[89]
Chen, X.; Deng, J.; Cui, W.; Hou, S.; Zhang, J.; Zheng, X.; Ding, X.; Wei, H.; Zhou, Z.; Kim, K.; Zhan, C.G.; Zheng, F. Development of Fc-fused cocaine hydrolase for cocaine addiction treatment: Catalytic and pharmacokinetic properties. AAPS J., 2018, 20(3), 53.
[http://dx.doi.org/10.1208/s12248-018-0214-9] [PMID: 29556863]
[90]
McKeigue, P.M.; Shah, B.; Marmot, M.G. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet, 1991, 337(8738), 382-386.
[http://dx.doi.org/10.1016/0140-6736(91)91164-P] [PMID: 1671422]
[91]
Ludwig, D.S. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA, 2002, 287(18), 2414-2423.
[http://dx.doi.org/10.1001/jama.287.18.2414] [PMID: 11988062]
[92]
Kojima, M.; Kangawa, K. Ghrelin: structure and function. Physiol. Rev., 2005, 85(2), 495-522.
[http://dx.doi.org/10.1152/physrev.00012.2004] [PMID: 15788704]
[93]
Brimijoin, S.; Tye, S. Favourable impact on stress-related behaviors by modulating plasma butyrylcholinesterase. Cell. Mol. Neurobiol., 2018, 38(1), 7-12.
[http://dx.doi.org/10.1007/s10571-017-0523-z] [PMID: 28712092]
[94]
Schopfer, L.M.; Lockridge, O.; Brimijoin, S. Pure human butyrylcholinesterase hydrolyzes octanoyl ghrelin to desacyl ghrelin. Gen. Comp. Endocrinol., 2015, 224(1), 61-68.
[http://dx.doi.org/10.1016/j.ygcen.2015.05.017] [PMID: 26073531]
[95]
Li, B.; Duysen, E.G.; Lockridge, O. The butyrylcholinesterase knockout mouse is obese on a high-fat diet. Chem. Biol. Interact., 2008, 175(1-3), 88-91.
[http://dx.doi.org/10.1016/j.cbi.2008.03.009] [PMID: 18452903]
[96]
Tangvarasittichai, S.; Pongthaisong, S.; Meemark, S.; Tangvarasittichai, O. Abdominal obesity associated with elevated serum butyrylcholinesterase activity, insulin resistance and reduced high density lipoprotein-cholesterol levels. Indian J. Clin. Biochem., 2015, 30(3), 275-280.
[http://dx.doi.org/10.1007/s12291-014-0443-3] [PMID: 26089612]
[97]
Nuzzo, D.; Picone, P.; Baldassano, S.; Caruana, L.; Messina, E.; Marino Gammazza, A.; Cappello, F.; Mulè, F.; Di Carlo, M. Insulin resistance as common molecular denominator linking obesity to Alzheimer’s disease. Curr. Alzheimer Res., 2015, 12(8), 723-735.
[http://dx.doi.org/10.2174/1567205012666150710115506] [PMID: 26159189]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy