Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Identification of Potential Dual Negative Allosteric Modulators of Group I mGluR Family: A Shape Based Screening, ADME Prediction, Induced Fit Docking and Molecular Dynamics Approach Against Neurodegenerative Diseases

Author(s): Sitrarasu Vijaya Prabhu and Sanjeev Kumar Singh*

Volume 19, Issue 29, 2019

Page: [2687 - 2707] Pages: 21

DOI: 10.2174/1568026619666191105112800

Price: $65

Abstract

Background: Glutamate is the principal neurotransmitter in the human brain that exerts its effects through ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The mGluRs are a class of C GPCRs that play a vital role in various neurobiological functions, mGluR1 and mGluR5 are the two receptors distributed throughout the brain involved in cognition, learning, memory, and other important neurological processes. Dysfunction of these receptors can cause neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, X-fragile syndrome, anxiety, depression, etc., hence these receptors are high profile targets for pharmaceutical industries.

Objective: The objective of our study is to find the novel dual negative allosteric modulators to regulate both mGluR1 and mGluR5.

Methods: In this study, shape screening protocol was used to find the dual negative allosteric modulators for both mGluR1 and mGluR5 followed by ADME prediction, induced-fit docking (IFD) and molecular dynamics simulations. Further, DFT analysis and MESP studies were carried out for the selected compounds.

Results: Around 247 compounds were obtained from the eMolecules database and clustered through the CANVAS module and filtered with ADME properties. Furthermore, IFD revealed that the top four compounds (16059796, 25004252, 4667236 and 11670690) having good protein-ligand interactions and binding free energies. The molecular electrostatic potential of the top compounds shows interactions in the amine group and the oxygen atom in the negative potential regions. Finally, molecular dynamics simulations were performed with all the selected as well as the reported compound 29 indicates that the screened hits have better stability of protein ligand complex.

Conclusion: Hence, from the results, it is evident that top hits 16059796, 25004252, 4667236 and 11670690 could be a novel and potent dual negative allosteric modulators for mGluR1 and mGluR5.

Keywords: Central nervous system, GPCR, IFD, mGluRs, Molecular dynamics simulations, Allosteric modulators.

Graphical Abstract

[1]
Featherstone, D.E. Intercellular glutamate signaling in the nervous system and beyond. ACS Chem. Neurosci., 2010, 1(1), 4-12.
[http://dx.doi.org/10.1021/cn900006n] [PMID: 22778802]
[2]
Chang, K.; Roche, K.W. Structural and molecular determinants regulating mGluR5 surface expression. Neuropharmacology, 2017, 115, 10-19.
[http://dx.doi.org/10.1016/j.neuropharm.2016.04.037] [PMID: 27211252]
[3]
Niswender, C.M.; Conn, P.J. Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol., 2010, 50, 295-322.
[http://dx.doi.org/10.1146/annurev.pharmtox.011008.145533] [PMID: 20055706]
[4]
Piers, T.M.; Kim, D.H.; Kim, B.C.; Regan, P.; Whitcomb, D.J.; Cho, K. Translational concepts of mGluR5 in synaptic diseases of the brain. Front Pharmacol., 2012. 3(199), eCollection-2012.
[http://dx.doi.org/10.3389/fphar.2012.00199]
[5]
Enz, R. Structure of metabotropic glutamate receptor C-terminal domains in contact with interacting proteins. Front Mol Neurosci, 2012. 5(52), eCollection-2012.
[http://dx.doi.org/10.3389/fnmol.2012.00052]
[6]
Hammond, A.S.; Rodriguez, A.L.; Townsend, S.D.; Niswender, C.M.; Gregory, K.J.; Lindsley, C.W.; Conn, P.J. Discovery of a novel chemical class of mGlu(5) allosteric ligands with distinct modes of pharmacology. ACS Chem. Neurosci., 2010, 1(10), 702-716.
[http://dx.doi.org/10.1021/cn100051m] [PMID: 20981342]
[7]
Boer, K.; Encha-Razavi, F.; Sinico, M.; Aronica, E. Differential distribution of group I metabotropic glutamate receptors in developing human cortex. Brain Res., 2010, 1324, 24-33.
[http://dx.doi.org/10.1016/j.brainres.2010.02.005] [PMID: 20149785]
[8]
Muly, E.C.; Maddox, M.; Smith, Y. Distribution of mGluR1alpha and mGluR5 immunolabeling in primate prefrontal cortex. J. Comp. Neurol., 2003, 467(4), 521-535.
[http://dx.doi.org/10.1002/cne.10937] [PMID: 14624486]
[9]
López-Bendito, G.; Shigemoto, R.; Fairén, A.; Luján, R. Differential distribution of group I metabotropic glutamate receptors during rat cortical development. Cereb. Cortex, 2002, 12(6), 625-638.
[http://dx.doi.org/10.1093/cercor/12.6.625] [PMID: 12003862]
[10]
Um, J.W.; Kaufman, A.C.; Kostylev, M.; Heiss, J.K.; Stagi, M.; Takahashi, H.; Kerrisk, M.E.; Vortmeyer, A.; Wisniewski, T.; Koleske, A.J.; Gunther, E.C.; Nygaard, H.B.; Strittmatter, S.M. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer aβ oligomer bound to cellular prion protein. Neuron, 2013, 79(5), 887-902.
[http://dx.doi.org/10.1016/j.neuron.2013.06.036] [PMID: 24012003]
[11]
Chung, W.; Choi, S.Y.; Lee, E.; Park, H.; Kang, J.; Park, H.; Choi, Y.; Lee, D.; Park, S.G.; Kim, R.; Cho, Y.S.; Choi, J.; Kim, M.H.; Lee, J.W.; Lee, S.; Rhim, I.; Jung, M.W.; Kim, D.; Bae, Y.C.; Kim, E. Social deficits in IRSp53 mutant mice improved by NMDAR and mGluR5 suppression. Nat. Neurosci., 2015, 18(3), 435-443.
[http://dx.doi.org/10.1038/nn.3927] [PMID: 25622145]
[12]
Li, S.; Huang, Y. In vivo imaging of the metabotropic glutamate receptor 1 (mGluR1) with positron emission tomography: Recent advance and perspective. Curr. Med. Chem., 2014, 21(1), 113-123.
[http://dx.doi.org/10.2174/09298673113209990217] [PMID: 23992339]
[13]
Kniazeff, J.; Prézeau, L.; Rondard, P.; Pin, J.P.; Goudet, C. Dimers and beyond: The functional puzzles of class C GPCRs. Pharmacol. Ther., 2011, 130(1), 9-25.
[http://dx.doi.org/10.1016/j.pharmthera.2011.01.006] [PMID: 21256155]
[14]
Bräuner-Osborne, H.; Wellendorph, P.; Jensen, A.A. Structure, pharmacology and therapeutic prospects of family C G-protein coupled receptors. Curr. Drug Targets, 2007, 8(1), 169-184.
[http://dx.doi.org/10.2174/138945007779315614] [PMID: 17266540]
[15]
Kucharski, R.; Mitri, C.; Grau, Y.; Maleszka, R. Characterization of a metabotropic glutamate receptor in the honeybee (Apis mellifera): Implications for memory formation. Invert. Neurosci., 2007, 7(2), 99-108.
[http://dx.doi.org/10.1007/s10158-007-0045-3] [PMID: 17372777]
[16]
Mølck, C.; Harpsøe, K.; Gloriam, D.E.; Mathiesen, J.M.; Nielsen, S.M.; Bräuner-Osborne, H. mGluR5: exploration of orthosteric and allosteric ligand binding pockets and their applications to drug discovery. Neurochem. Res., 2014, 39(10), 1862-1875.
[http://dx.doi.org/10.1007/s11064-014-1248-8] [PMID: 24493625]
[17]
Wootten, D.; Christopoulos, A.; Sexton, P.M. Emerging paradigms in GPCR allostery: Implications for drug discovery. Nat. Rev. Drug Discov., 2013, 12(8), 630-644.
[http://dx.doi.org/10.1038/nrd4052] [PMID: 23903222]
[18]
Conn, P.J.; Christopoulos, A.; Lindsley, C.W. Allosteric modulators of GPCRs: A novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov., 2009, 8(1), 41-54.
[http://dx.doi.org/10.1038/nrd2760] [PMID: 19116626]
[19]
Dalton, J.A.R.; Gómez-Santacana, X.; Llebaria, A.; Giraldo, J. Computational analysis of negative and positive allosteric modulator binding and function in metabotropic glutamate receptor 5 (in)activation. J. Chem. Inf. Model., 2014, 54(5), 1476-1487.
[http://dx.doi.org/10.1021/ci500127c] [PMID: 24793143]
[20]
Nickols, H.H.; Conn, P.J. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol. Dis., 2014, 61, 55-71.
[http://dx.doi.org/10.1016/j.nbd.2013.09.013] [PMID: 24076101]
[21]
Doré, A.S.; Okrasa, K.; Patel, J.C.; Serrano-Vega, M.; Bennett, K.; Cooke, R.M.; Errey, J.C.; Jazayeri, A.; Khan, S.; Tehan, B.; Weir, M.; Wiggin, G.R.; Marshall, F.H. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature, 2014, 511(7511), 557-562.
[http://dx.doi.org/10.1038/nature13396] [PMID: 25042998]
[22]
Wu, H.; Wang, C.; Gregory, K.J.; Han, G.W.; Cho, H.P.; Xia, Y.; Niswender, C.M.; Katritch, V.; Meiler, J.; Cherezov, V.; Conn, P.J.; Stevens, R.C. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science, 2014, 344(6179), 58-64.
[http://dx.doi.org/10.1126/science.1249489] [PMID: 24603153]
[23]
Felts, A.S.; Rodriguez, A.L.; Morrison, R.D.; Venable, D.F.; Blobaum, A.L.; Byers, F.W.; Daniels, J.S.; Niswender, C.M.; Jones, C.K.; Conn, P.J.; Lindsley, C.W.; Emmitte, K.A. N-Alkylpyrido[1′,2′:1,5]pyrazolo-[4,3-d]pyrimidin-4-amines: A new series of negative allosteric modulators of mGlu1/5 with CNS exposure in rodents. Bioorg. Med. Chem. Lett., 2016, 26(8), 1894-1900.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.026] [PMID: 26988308]
[24]
Ligprep, NY, LLC: Schrodinger: New York. 2017.
[25]
Reddy, K.K.; Singh, S.K.; Dessalew, N.; Tripathi, S.K.; Selvaraj, C. Pharmacophore modelling and atom-based 3D-QSAR studies on N-methyl pyrimidones as HIV-1 integrase inhibitors. J. Enzyme Inhib. Med. Chem., 2012, 27(3), 339-347.
[http://dx.doi.org/10.3109/14756366.2011.590803] [PMID: 21699459]
[26]
Phase, NY, LLC: Schrodinger: New York. 2017.
[27]
Reddy, K.K.; Singh, S.K.; Tripathi, S.K.; Selvaraj, C.; Suryanarayanan, V. Shape and pharmacophore-based virtual screening to identify potential cytochrome P450 sterol 14α-demethylase inhibitors. J. Recept. Signal Transduct. Res., 2013, 33(4), 234-243.
[http://dx.doi.org/10.3109/10799893.2013.789912] [PMID: 23638723]
[28]
Duan, J.; Dixon, S.L.; Lowrie, J.F.; Sherman, W. Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods. J. Mol. Graph. Model., 2010, 29(2), 157-170.
[http://dx.doi.org/10.1016/j.jmgm.2010.05.008] [PMID: 20579912]
[29]
Canvas, NY, LLC: Schrodinger: New York. 2017.
[30]
Pandey, R.K.; Prajapati, P.; Goyal, S.; Grover, A.; Prajapati, V.K. Molecular modeling and virtual screening approach to discover potential antileishmanial inhibitors against ornithine decarboxylase. Comb. Chem. High Throughput Screen., 2016, 19(10), 813-823.
[http://dx.doi.org/10.2174/1386207319666160907100134] [PMID: 27604958]
[31]
Qikprop, NY, LLC: Schrodinger, New York. 2017.
[32]
Protein Preparation Wizard, Schrodinger, LLC: New York. 2017.
[33]
Reddy, K.K.; Singh, P.; Singh, S.K. Blocking the interaction between HIV-1 integrase and human LEDGF/p75: Mutational studies, virtual screening and molecular dynamics simulations. Mol. Biosyst., 2014, 10(3), 526-536.
[http://dx.doi.org/10.1039/c3mb70418a] [PMID: 24389668]
[34]
Singh, S.; Vijaya Prabhu, S.; Suryanarayanan, V.; Bhardwaj, R.; Singh, S.K.; Dubey, V.K. Molecular docking and structure-based virtual screening studies of potential drug target, CAAX prenyl proteases, of Leishmania donovani. J. Biomol. Struct. Dyn., 2016, 34(11), 2367-2386.
[http://dx.doi.org/10.1080/07391102.2015.1116411] [PMID: 26551589]
[35]
Induced Fit Docking, NY, LLC: Schrodinger, New York. 2017. NY, LLC: Schrodinger, New York, 2017.
[36]
Suryanarayanan, V.; Singh, S.K. Assessment of dual inhibition property of newly discovered inhibitors against PCAF and GCN5 through in silico screening, molecular dynamics simulation and DFT approach. J. Recept. Signal Transduct. Res., 2015, 35(5), 370-380.
[http://dx.doi.org/10.3109/10799893.2014.956756] [PMID: 25404235]
[37]
Prime; Schrödinger, LLC: New York, NY, 2017.
[38]
Tripathi, S.K.; Singh, S.K. Insights into the structural basis of 3,5-diaminoindazoles as CDK2 inhibitors: prediction of binding modes and potency by QM-MM interaction, MESP and MD simulation. Mol. Biosyst., 2014, 10(8), 2189-2201.
[http://dx.doi.org/10.1039/C4MB00077C] [PMID: 24909777]
[39]
Jaguar; Schrödinger, LLC: New York, NY, 2017.
[40]
Vijaya Prabhu, S.; Singh, S.K. E-pharmacophore-based screening of mGluR5 negative allosteric modulators for central nervous system disorder. Comput. Biol. Chem., 2019, 78, 414-423.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.12.016] [PMID: 30621985]
[41]
Desmond; Schrödinger, LLC: New York, NY, 2017.
[42]
Wang, Q.; Zheng, M.; Huang, Z.; Liu, X.; Zhou, H.; Chen, Y.; Shi, T.; Zhang, J. Toward understanding the molecular basis for chemical allosteric modulator design. J. Mol. Graph. Model., 2012, 38, 324-333.
[http://dx.doi.org/10.1016/j.jmgm.2012.07.006] [PMID: 23085171]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy