Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Intracellular and Extracellular Zinc Detection by Organic Fluorescent Receptor

Author(s): Muhammad Hanif, Muhammad Rafiq, Muhammad Mustaqeem, Muhammad A. Shaheen, Kaneez F. I. Qadri, Ishtiaq Qadri* and Muhammad Saleem*

Volume 23, Issue 24, 2019

Page: [2664 - 2678] Pages: 15

DOI: 10.2174/1385272823666191029114111

Price: $65

Abstract

Keeping in view the ever growing demand and application of the organic small molecules based sensitive and selective fluorescence detection strategies for the trace metallic ions in the ecosystem, fluids and inside intracellular media, the present literature survey was focused on the recent development on the organic skeleton based fluorescence sensor for the zinc ion as Zn2+ is the second most abundant transition metal after iron in human body. The prominent organic based skeletons introduced during the past three years for zinc detection including azine, ((Z)-N´-(quinolin-2-ylmethylene)furan-2- carbohydrazide), nicotinohydrazide, hydrazone, phenolic cage, 4-methyl-2,6-bis[(E)-(2- (4-phenylthiazol-2-yl)hydrazono)methyl]phenol, bipyridine, N-(quinoline-8-yl)pyridine-2- carboxamide, anthracene, Schiff base, salen, helicene, Carbon Quantum Dots (CDs) functionalized with Calix[4]arene, coumarin, diaminomaleonitrile, peptide, hydroxypyrazole, salicylhydrazide were discussed in detail with particular focus on ligand-zinc complexation mechanism, UV-visible and fluorescence investigation, spectral variation, isosbestic emergence, limit of detection, ligand-zinc binding stoichiometry, association/binding constant and applications for intracellular tracing of metallic contamination via confocal fluorescence microscopic studies. Among the several discussed optical probes, rhodamine and fluorescein based material offer appreciable sensitivity, exhibiting drawback of pH sensitivity. Probes based on these ligands triggered “turn-on” signal even in the absence of metals upon fluctuation in pH e.g., acidic in former case and basic in the latter case. Hydroxypyrazole-based ligands also showed detection signal variation by switching the pH of the solution. Schiff base and bipyridyl scaffold were found to possess good ligation toward the several transition metals. Azole, oxazole, thiazole, thiadiazole, hydrazine carboxamide and hydrazine carbothiomide are the bioactive molecules exhibiting good cell viability and probes designed by using these central nucleus might be better to invest for intracellular imaging. Symmetrical heterocyclic cage like probe showed better chelation toward several transition metals and it is a good choice for the design and development of sensor for simultaneous detection of several transition metals.

Keywords: Zinc sensor, organic skeletons, fluorescence, bioimaging, optical parameters, pH sensitivity, symmetrical heterocycles, hydrazine derivatives.

Graphical Abstract

[1]
Wang, Y.; Chang, H.Q.; Wu, W.N.; Mao, X.J.; Zhao, X.L.; Yang, Y.; Xu, Z.Q.; Xu, Z.H.; Jia, L. J. Photochem. Photobiol. Chem., 2017, 335, 10-16.
[http://dx.doi.org/10.1016/j.jphotochem.2016.11.003]
[2]
Ozdemir, M. A rhodamine-based colorimetric and fluorescent probe for dual sensing of Cu2+ and Hg2+ ions. J. Photochem. Photobiol. Chem., 2016, 318, 7-13.
[http://dx.doi.org/10.1016/j.jphotochem.2015.10.027]
[3]
Li, L.; Li, H.; Liu, G.; Pu, S. A novel fluorescent sensor for Al3+ based on a new diarylethene with a naphthalimide unit. J. Photochem. Photobiol. Chem., 2017, 338, 192-200.
[http://dx.doi.org/10.1016/j.jphotochem.2017.02.011]
[4]
Huang, Q.; Zhang, Q.; Wang, E.; Zhou, Y.; Qiao, H.; Pang, L.; Yu, F. A new “off-on” fluorescent probe for Al3+ in aqueous solution based on rhodamine B and its application to bioimaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 152, 70-76.
[http://dx.doi.org/10.1016/j.saa.2015.07.062] [PMID: 26196932]
[5]
Wang, E.; Zhou, Y.; Huang, Q.; Pang, L.; Qiao, H.; Yu, F.; Gao, B.; Zhang, J.; Min, Y.; Ma, T. 5-Hydroxymethylfurfural modified rhodamine B dual-function derivative: highly sensitive and selective optical detection of pH and Cu2+. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 152, 327-335.
[http://dx.doi.org/10.1016/j.saa.2015.07.090] [PMID: 26232576]
[6]
Saleem, M.; Khang, C.H.; Kim, M.H.; Lee, K.H. Chromo/fluorogenic detection of Co2+, Hg2+ and Cu2+ by the simple Schiff base sensor. J. Fluoresc., 2016, 26(1), 11-22.
[http://dx.doi.org/10.1007/s10895-015-1723-x] [PMID: 26585349]
[7]
Ksenofontov, A.A.; Guseva, G.B.; Antina, E.V.; Nuraneeva, E.N. «On-off» fluorescent sensors for aromatic analytes based on zinc(II) bis(dipyrromethenate)s. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 173, 222-227.
[http://dx.doi.org/10.1016/j.saa.2016.09.014] [PMID: 27665189]
[8]
Saleem, M.; Kang, S.K.; Lee, K.H. Microwave assisted synthesis of a novel optical chemosensor for selective Fe3+ detection. J. Lumin., 2015, 162, 14-24.
[http://dx.doi.org/10.1016/j.jlumin.2015.02.004]
[9]
Saha, J.; Roy, A.D.; Dey, D.; Bhattacharjee, D.; Paul, P.K.; Das, R.; Hussain, S.A. Effect of Zinc oxide nanoparticle on fluorescence resonance energy transfer between fluorescein and Rhodamine 6G. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 175, 110-116.
[http://dx.doi.org/10.1016/j.saa.2016.12.002] [PMID: 28024244]
[10]
Han, T.T.; Yang, J.; Liu, Y.Y.; Ma, J.F. Rhodamine 6G loaded zeolitic imidazolate framework-8 (ZIF-8) nanocomposites for highly selective luminescent sensing of Fe3+, Cr6+ and aniline. Microporous Mesoporous Mater., 2016, 228, 275-288.
[http://dx.doi.org/10.1016/j.micromeso.2016.04.005]
[11]
Geng, T.M.; Zhang, W.Y.; Li, D.K.; Xia, H.Y.; Wang, Y.; Wang, Z.Q.; Zhu, Z.M.; Zheng, Q. The chromogenic and fluorescent sensing properties for a water soluble polymeric chemosensor bearing rhodamine ethanediamine moieties with oxethyl (OCH2CH2) as a spacer. J. Environ. Chem. Eng., 2017, 5, 906-914.
[http://dx.doi.org/10.1016/j.jece.2017.01.017]
[12]
Huo, J.; Liu, K.; Zhao, X.; Zhang, X.; Wang, Y. Simple and sensitive colorimetric sensors for the selective detection of Cu2+ in aqueous buffer. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 117, 789-792.
[http://dx.doi.org/10.1016/j.saa.2013.09.104] [PMID: 24161519]
[13]
Na, Y.J.; Choi, Y.W.; Yun, J.Y.; Park, K.M.; Chang, P.S.; Kim, C. Dual-channel detection of Cu2+ and F- with a simple Schiff-based colorimetric and fluorescent sensor. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(PtC), 1649-1657.
[http://dx.doi.org/10.1016/j.saa.2014.10.060] [PMID: 25459728]
[14]
Wu, S.P.; Huang, Z.M.; Liu, S.R.; Chung, P.K. A pyrene-based highly selective turn-on fluorescent sensor for copper(II) ion and its application in live cell imaging. J. Fluoresc., 2012, 22(1), 253-259.
[http://dx.doi.org/10.1007/s10895-011-0955-7] [PMID: 21870075]
[15]
Yadav, U.N.; Pant, P.; Sahoo, S.K.; Shankarling, G.S. A novel colorimetric and fluorogenic chemosensor for selective detection of Cu2+ ions in mixed aqueous media. RSC Advances, 2014, 4, 42647-42653.
[http://dx.doi.org/10.1039/C4RA07552H]
[16]
Basa, P.N.; Sykes, A.G. Differential sensing of Zn(II) and Cu(II) via two independent mechanisms. J. Org. Chem., 2012, 77(19), 8428-8434.
[http://dx.doi.org/10.1021/jo301193n] [PMID: 22924706]
[17]
Narayanaswamy, N.; Govindaraju, T. Aldazine-based colorimetric sensors for Cu2+ and Fe3+. Sens. Actuators B Chem., 2012, 161, 304-310.
[http://dx.doi.org/10.1016/j.snb.2011.10.036]
[18]
Martins, A.B.; Dasilva, A.M.; Schein, M.F.; Galan, C.G.; Ayub, M.A.Z.; Lafuente, R.F.; Rodrigues, R.C. Comparison of the performance of commercial immobilized lipases in the synthesis of different flavor esters. J. Mol. Catal., B Enzym., 2014, 105, 18-25.
[http://dx.doi.org/10.1016/j.molcatb.2014.03.021]
[19]
Barbosa, O.; Torres, R.; Ortiz, C.; Berenguer-Murcia, A.; Rodrigues, R.C.; Fernandez-Lafuente, R. Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules, 2013, 14(8), 2433-2462.
[http://dx.doi.org/10.1021/bm400762h] [PMID: 23822160]
[20]
Deschamps, P.; Kulkarni, P.P.; Sarkar, B. The crystal structure of a novel copper(II) complex with asymmetric ligand derived from l-histidine. Inorg. Chem., 2003, 42(23), 7366-7368.
[http://dx.doi.org/10.1021/ic034760x] [PMID: 14606827]
[21]
Yang, H.; Ge, Y.Q.K.; Jia, J.; Wang, J.W. Synthesis and optical properties of novel pyrido[1,2-a]benzimidazole-containing 1,3,4-oxadiazole derivatives. J. Lumin., 2011, 131, 749-755.
[http://dx.doi.org/10.1016/j.jlumin.2010.11.030]
[22]
Ge, Y.Q.; Hao, B.Q.; Duan, G.Y.; Wang, J.W. The synthesis, characterization and optical properties of novel 1,3,4-oxadiazole-containing imidazo[1,5-a]pyridine derivatives. J. Lumin., 2011, 131, 1070-1076.
[http://dx.doi.org/10.1016/j.jlumin.2011.01.024]
[23]
Lv, H.S.; Zhao, B.X.; Li, J.K.; Xia, Y.; Lian, S.; Liu, W.Y.; Gong, Z.L. The synthesis, characterization and optical properties of novel, substituted, pyrazoly 1,3,4-oxadiazole derivatives. Dyes Pigm., 2010, 86, 25-31.
[http://dx.doi.org/10.1016/j.dyepig.2009.11.003]
[24]
Wu, T.Y.; Tsao, M.H.; Chen, F.L.; Su, S.G.K.; Chang, C.W.; Wang, H.P.; Lin, Y.C.; Ou-Yang, W.C.; Sun, I.W. Synthesis and characterization of organic dyes containing various donors and acceptors. Int. J. Mol. Sci., 2010, 11(1), 329-353.
[http://dx.doi.org/10.3390/ijms11010329] [PMID: 20162019]
[25]
Santhanalakshmi, J.; Komalavalli, R. Nano TiO2 Assisted degradation of textile dyes in H2O2 aqueous solution: kinetic studies with pH and mass effects. Chem. Sci. Trans., 2012, 1, 522-529.
[http://dx.doi.org/10.7598/cst2012.158]
[26]
Zucca, P.; Rescigno, A.; Pintus, M.; Rinaldi, A.C.; Sanjust, E. Degradation of textile dyes using immobilized lignin peroxidase-like metalloporphines under mild experimental conditions. Chem. Cent. J., 2012, 6(1), 161-168.
[http://dx.doi.org/10.1186/1752-153X-6-161] [PMID: 23256784]
[27]
Saleem, M.; Rafiq, M.; Seo, S.Y.; Lee, K.H. Acetylcholinesterase immobilization and characterization, and comparison of the activity of the porous silicon-immobilized enzyme with its free counterpart. Biosci. Rep., 2016, 36(2)e00311
[http://dx.doi.org/10.1042/BSR20150154] [PMID: 26839417]
[28]
Saleem, M.; Lee, L.P.; Lee, K.H. Photoluminescent sensor for acetylcholinesterase inhibitor determination. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 6802-6808.
[http://dx.doi.org/10.1039/C4TB01239A]
[29]
Saleem, M.; Rafiq, M.; Seo, S.Y.; Lee, K.H. Influence of acetylcholinesterase immobilization on the photoluminescence properties of mesoporous silicon surface. Appl. Surf. Sci., 2014, 308, 148-154.
[http://dx.doi.org/10.1016/j.apsusc.2014.04.122]
[30]
Aragay, G.; Pons, J.; Merkoçi, A. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev., 2011, 111(5), 3433-3458.
[http://dx.doi.org/10.1021/cr100383r] [PMID: 21395328]
[31]
Nolan, E.M.; Lippard, S.J. Tools and tactics for the optical detection of mercuric ion. Chem. Rev., 2008, 108(9), 3443-3480.
[http://dx.doi.org/10.1021/cr068000q] [PMID: 18652512]
[32]
Duong, T.Q.; Kim, J.S. Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem. Rev., 2010, 110(10), 6280-6301.
[http://dx.doi.org/10.1021/cr100154p] [PMID: 20726526]
[33]
Santos-Figueroa, L.E.; Moragues, M.E.; Climent, E.; Agostini, A.; Martínez-Máñez, R.; Sancenón, F. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011. Chem. Soc. Rev., 2013, 42(8), 3489-3613.
[http://dx.doi.org/10.1039/c3cs35429f] [PMID: 23400370]
[34]
Sahoo, S.K.; Sharma, D.; Bera, R.K.; Crisponi, G.; Callan, J.F. Iron(III) selective molecular and supramolecular fluorescent probes. Chem. Soc. Rev., 2012, 41(21), 7195-7227.
[http://dx.doi.org/10.1039/c2cs35152h] [PMID: 22885471]
[35]
Wu, J.; Liu, W.; Ge, J.; Zhang, H.; Wang, P. New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem. Soc. Rev., 2011, 40(7), 3483-3495.
[http://dx.doi.org/10.1039/c0cs00224k] [PMID: 21445455]
[36]
Kim, H.N.; Lee, M.H.; Kim, H.J.; Kim, J.S.; Yoon, J. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev., 2008, 37(8), 1465-1472.
[http://dx.doi.org/10.1039/b802497a] [PMID: 18648672]
[37]
Kim, H.N.; Ren, W.X.; Kim, J.S.; Yoon, J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev., 2012, 41(8), 3210-3244.
[http://dx.doi.org/10.1039/C1CS15245A] [PMID: 22184584]
[38]
Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Luminescent chemodosimeters for bioimaging. Chem. Rev., 2013, 113(1), 192-270.
[http://dx.doi.org/10.1021/cr2004103] [PMID: 22702347]
[39]
Formica, M.; Fusi, V.; Giorgi, L.; Micheloni, M. New fluorescent chemosensors for metal ions in solution. Coord. Chem. Rev., 2012, 256, 170-192.
[http://dx.doi.org/10.1016/j.ccr.2011.09.010]
[40]
Azadbakht, R.; Parviz, M.; Tamari, E.; Keypour, H.; Golbedaghi, R. Highly selective fluorescent recognition of Zn2+ based on naphthalene macrocyclic derivative. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 82(1), 200-204.
[http://dx.doi.org/10.1016/j.saa.2011.07.032] [PMID: 21855400]
[41]
Hen, A.; Mondal, P.; Rajak, K.K. Selective H2PO4 anion sensing by two neutral Zn2+ complexes and combined theoretical and experimental studies of their structural and spectral properties. Polyhedron, 2015, 85, 255-266.
[http://dx.doi.org/10.1016/j.poly.2014.08.024]
[42]
Chen, Y.; Han, K.Y.; Liu, Y. Effective switch-on fluorescence sensing of zinc(II) ion by 8-aminoquinolino-beta-cyclodextrin/adamantaneacetic acid system in water. Bioorg. Med. Chem., 2007, 15(13), 4537-4542.
[http://dx.doi.org/10.1016/j.bmc.2007.04.016] [PMID: 17467997]
[43]
Vahid, B.; Hassanzadeh, J.; Abolhasani, J.; Khodakarami, B. Inhibition of rhodamine B-ferricyanide chemiluminescence by Au nanoparticles toward the sensitive determination of mercury (II) ion. Microchem. J., 2016, 126, 326-331.
[http://dx.doi.org/10.1016/j.microc.2015.12.028]
[44]
Rao, H.H.; Xue, Z.H.; Zhao, G.H.; Li, S.Y.; Du, X. Fluorescence emission properties of rhodamine B encapsulated organic-inorganic hybrid mesoporous silica host. J. Non-Cryst. Solids, 2016, 450, 32-37.
[http://dx.doi.org/10.1016/j.jnoncrysol.2016.07.037]
[45]
Liu, Y.; Zhao, Z.M.; Miao, J.Y.; Zhao, B.X. A ratiometric fluorescent probe based on boron dipyrromethene and rhodamine Förster resonance energy transfer platform for hypochlorous acid and its application in living cells. Anal. Chim. Acta, 2016, 921, 77-83.
[http://dx.doi.org/10.1016/j.aca.2016.03.045] [PMID: 27126792]
[46]
Kuchlyan, J.; Basak, S.; Dutta, D.; Das, A.K.; Mal, D.; Sarkar, N. A new rhodamine derived fluorescent sensor: detection of Hg2+ at cellular level. Chem. Phys. Lett., 2017, 673, 84-88.
[http://dx.doi.org/10.1016/j.cplett.2017.02.003]
[47]
Liu, J.; Qian, Y. A novel naphthalimide-rhodamine dye: intramolecular fluorescence resonance energy transfer and ratiometric chemodosimeter for Hg2+ and Fe3+. Dyes Pigm, 2017, 136, 782-790.
[http://dx.doi.org/10.1016/j.dyepig.2016.09.041]
[48]
Vomáčka, P.; Štengl, V.; Henych, J.; Kormunda, M. Shape-controlled synthesis of Sn-doped CuO nanoparticles for catalytic degradation of Rhodamine B. J. Colloid Interface Sci., 2016, 481, 28-38.
[http://dx.doi.org/10.1016/j.jcis.2016.07.026] [PMID: 27450889]
[49]
Dutta, K.; Deka, R.C.; Das, D.K. A new fluorescent and electrochemical Zn2+ ion sensor based on Schiff base derived from benzil and L-tryptophan. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 124, 124-129.
[http://dx.doi.org/10.1016/j.saa.2013.12.090] [PMID: 24468984]
[50]
Chen, M.; Lv, X.; Liu, Y.; Zhao, Y.; Liu, J.; Wang, P.; Guo, W. An 2-(2′-aminophenyl)benzoxazole-based off-on fluorescent chemosensor for Zn2+ in aqueous solution. Org. Biomol. Chem., 2011, 9(7), 2345-2349.
[http://dx.doi.org/10.1039/c0ob00983k] [PMID: 21311797]
[51]
Li, Y.; Yang, Z.; Liu, Z.; Wang, B.; Li, S. Highly selective and sensitive fluorescent nanosensor for zinc ions. Sens. Actuators B Chem., 2011, 160, 1504-1507.
[http://dx.doi.org/10.1016/j.snb.2011.08.037]
[52]
Kim, H.; Kang, J.; Kim, K.B.; Song, E.J.; Kim, C. A highly selective quinoline-based fluorescent sensor for Zn(II). Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 118, 883-887.
[http://dx.doi.org/10.1016/j.saa.2013.09.118] [PMID: 24161851]
[53]
Azadbakht, R.; Keypour, H.; Rudbari, H.A.; Zaheri, A.H.M.; Menati, S. Synthesis and characterization of two new fluorescent macrocycles: a novel fluorescent chemosensor for zinc ion. J. Lumin., 2012, 132, 1860-1866.
[http://dx.doi.org/10.1016/j.jlumin.2012.02.035]
[54]
Zhang, G.Q.; Yang, G.Q.; Zhu, L.N.; Chen, Q.Q.; Ma, J.S. A potential fluorescent sensor for Zn2+ based on a selective bis-9-anthryldiamine ligand operating in buffer. Sens. Actuators B Chem., 2006, 114, 995-1000.
[http://dx.doi.org/10.1016/j.snb.2005.08.014]
[55]
Sahana, S.; Bose, S.; Mukhopadhyay, S.; Bharadwaj, P. A highly selective and sensitive turn-on fluorescence chemosensor based on a rhodamine-adenine conjugate for Al3+ in aqueous medium: bioimaging and DFT studies. J. Lumin., 2016, 169, 334-341.
[http://dx.doi.org/10.1016/j.jlumin.2015.09.009]
[56]
Zhang, X.F.; Su, N.; Lu, X.; Jia, W. Benzoate-modified rhodamine dyes: large change in fluorescence properties due to photo induced electron transfer. J. Lumin., 2016, 179, 511-517.
[http://dx.doi.org/10.1016/j.jlumin.2016.07.031]
[57]
Bumagin, N.A.; Antina, E.V.; Sozonov, D. Off-on fluorescent sensor based on the bis (2,4,7,8,9- pentamethyl dipyrrolylmethene-3-yl)methane for detection of Cd2+ and Hg2+ cations. J. Lumin., 2017, 183, 315-321.
[http://dx.doi.org/10.1016/j.jlumin.2016.11.057]
[58]
Wu, W.N.; Mao, P.D.; Wang, Y.; Zhao, X.L.; Jia, L.; Xu, Z.Q. Rhodamine 6G hydrazone bearing thiophene unit: a highly sensitive and selective off-on fluorescent chemosensor for Al3+. J. Mol. Struct., 2016, 1122, 24-28.
[http://dx.doi.org/10.1016/j.molstruc.2016.05.074]
[59]
Zhang, L.; Cui, X.; Sun, J.; Wang, Y.; Li, W.; Fang, J. 8-Aminoquinoline-based ratiometric zinc probe: unexpected binding mode and its application in living cells. Bioorg. Med. Chem. Lett., 2013, 23(12), 3511-3514.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.042] [PMID: 23668987]
[60]
Guo, P.; Liu, L.; Shi, Q.; Yin, C.; Shi, X. A rhodamine 6G derived Schiff base as a fluorescent and colorimetric probe for pH detection and its crystal structure. J. Mol. Struct., 2017, 1130, 150-155.
[http://dx.doi.org/10.1016/j.molstruc.2016.10.027]
[61]
Jiao, Y.; Zhang, L.; Zhou, P. A rhodamineB-based fluorescent sensor toward highly selective mercury(II) ions detection. Talanta1, 2016, 50, 14-19.
[62]
Jiang, Y.; Shen, R.; Wei, G.; Cheng, Y.; Wang, B. New fluorescent probe based on rhodamine derivative for detection of both Cu2+ and L-Methionine and living cells imaging. Tetrahedron, 2016, 72, 2354-2358.
[http://dx.doi.org/10.1016/j.tet.2016.03.052]
[63]
Lin, Y.L.; Sung, R.; Sung, K. Bis(rhodamine)-based polyether type of turn-on fluorescent sensors: selectively sensing Fe(III). Tetrahedron, 2016, 72, 5744-5748.
[http://dx.doi.org/10.1016/j.tet.2016.07.077]
[64]
Hu, C.J.; Zheng, H.; Zhang, K.; Xin, M.; Gao, J.R.; Li, Y.J. A novel turn off fluorescent sensor for Fe(III) and pH environment based on coumarin derivatives: the fluorescence characteristics and theoretical study. Tetrahedron, 2016, 72, 8365-8372.
[http://dx.doi.org/10.1016/j.tet.2016.08.023]
[65]
Qin, J.C.; Yan, J.; Wang, B.D.; Yang, Z.Y. Rhodamine-naphthalene conjugate as a novel ratiometric fluorescent probe for recognition of Al3+. Tetrahedron Lett., 2016, 57, 1935-1939.
[http://dx.doi.org/10.1016/j.tetlet.2016.03.074]
[66]
Thirupathi, P.; Lee, K.H. A ratiometric fluorescent detection of Zn(II) in aqueous solutions using pyrene-appended histidine. Bioorg. Med. Chem. Lett., 2013, 23(24), 6811-6815.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.015] [PMID: 24200807]
[67]
Kaur, K.; Chaudhary, S.; Singh, S.; Mehta, S.K. Highlyselectiveprobebasedoniminelinkage for Zn2+ and HSO3- in mixed aqueous media. J. Lumin., 2015, 160, 282-288.
[http://dx.doi.org/10.1016/j.jlumin.2014.12.035]
[68]
Hou, S.; Qu, Z.; Zhong, K.; Bian, Y.; Tang, L. A new rhodamine-based visual and fluorometric probe for selective detection of trivalent cations. Tetrahedron Lett., 2016, 57, 2616-2619.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.106]
[69]
Mizukami, S. Targetable fluorescent sensors for advanced cell function analysis. J. Photochem. Photobiol C. Phytochem. Rev., 2017, 30, 24-35.
[http://dx.doi.org/10.1016/j.jphotochemrev.2017.01.003]
[70]
Yu, M.; Yuan, R.; Shi, C.; Zhou, W.; Wei, L.; Li, Z. 1,8-Naphthyridine and 8-hydroxyquinoline modified rhodamine B derivatives: “turn-on” fluorescent and colorimetric sensors for Al3+ and Cu2+. Dyes Pigm, 2013, 99, 887-894.
[http://dx.doi.org/10.1016/j.dyepig.2013.07.030]
[71]
Pires, S.M.G.; Núnez, C.; Serra, V.V. Sanchez-Coronilla, Faustino, M.A.F.; Simoes, M.M.Q.; Silva, A.M.S.; Neves, M.G.P.M.S.; Capelo, J.L.; Lodeiro, C. Porphyrin-rhodamine conjugates as new materials with sensing ability. Dyes Pigm., 2016, 135, 113-126.
[http://dx.doi.org/10.1016/j.dyepig.2016.04.003]
[72]
Shu, H.; Wu, X.; Zhou, B.; Han, Y.; Jin, M.; Zhu, J.; Bao, X. Synthesis and evaluation of a novel fluorescent chemosensor for glutathione based on a rhodamine B and N-[4-(carbonyl) phenyl] maleimide conjugate and its application in living cell imaging. Dyes Pigm., 2017, 136, 535-542.
[http://dx.doi.org/10.1016/j.dyepig.2016.08.063]
[73]
Kothavale, S.; Jadhav, A.G.; Sekar, N. Deep red emitting triphenylamine based coumarin-rhodamine hybrids with large Stokes shift and viscosity sensing: synthesis, photophysical properties and DFT studies of their spirocyclic and open forms. Dyes Pigm., 2017, 137, 329-341.
[http://dx.doi.org/10.1016/j.dyepig.2016.11.010]
[74]
Choi, J.H.; Ryu, J.Y.; Park, Y.J.; Begum, H.; Park, H.R.; Cho, H.J.; Kim, Y.; Lee, J. Fluorescent chemosensor based on pyrrole-aminoindanol for selective zinc detection. Inorg. Chem. Commun., 2014, 50, 24-27.
[http://dx.doi.org/10.1016/j.inoche.2014.10.007]
[75]
Shamsipur, M.; Poursaberi, T.; Hassanisadi, M.; Rezapour, M.; Nourmohammadian, F.; Alizadeh, K. A new chelation induced enhanced fluorescence-type optical sensor based on parared immobilized in a plasticized PVC membrane for selective determination of Zn(II) ions. Sens. Actuators B Chem., 2012, 161, 1080-1087.
[http://dx.doi.org/10.1016/j.snb.2011.12.021]
[76]
Saleem, M.; Rafiq, M.; Hanif, M.; Shaheen, M.A.; Seo, S.Y. A brief review on fluorescent copper sensor based on conjugated organic dyes. J. Fluoresc., 2018, 28(1), 97-165.
[http://dx.doi.org/10.1007/s10895-017-2178-z] [PMID: 29064051]
[77]
Saleem, M.; Rafiq, M.; Hanif, M. Organic material based fluorescent sensor for Hg2+: a brief review on recent development. J. Fluoresc., 2017, 27(1), 31-58.
[http://dx.doi.org/10.1007/s10895-016-1933-x] [PMID: 27646651]
[78]
Saleem, M.; Lee, K.H. Optical sensor: a promising strategy for environmental and biomedical monitoring of ionic species. RSC Advances, 2015, 5, 72150-72287.
[http://dx.doi.org/10.1039/C5RA11388A]
[79]
Kaewtong, C.; Kampaengsri, S.; Singhana, B.; Pulpok, B. Highly selective detection of Au3+ using rhodamine-based modified polyacrylic acid (PAA)-coated ITO. Dyes Pigm, 2017, 141, 277-285.
[http://dx.doi.org/10.1016/j.dyepig.2017.02.033]
[80]
Huang, L.; Hou, F.P.; Xi, P.; Bai, D.; Xu, M.; Li, Z.; Xie, G.; Shi, Y.; Liu, H.; Zeng, Z. A rhodamine-based “turn-on” fluorescent chemodosimeter for Cu2+ and its application in living cell imaging. J. Inorg. Biochem., 2011, 105(6), 800-805.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.02.012] [PMID: 21497578]
[81]
Sas, S.; Danko, M.; Bizovská, V.; Lang, K.; Bujdá, J. Highly luminescent hybrid materials based on smectites with polyethylene glycol modified with rhodamine fluorophore. Appl. Clay Sci., 2017, 138, 25-33.
[http://dx.doi.org/10.1016/j.clay.2016.12.034]]
[82]
Peng, D.; Hu, B.; Kang, M.; Wang, M.; He, L.; Zhang, Z.; Fang, X. Electrochemical sensors based on gold nanoparticles modified withrhodamine B hydrazide to sensitively detect Cu(II). Appl. Surf. Sci., 2016, 390, 422-429.
[http://dx.doi.org/10.1016/j.apsusc.2016.08.104]
[83]
Liu, l.; Guo, P.; Chai, LU.; Shia, Q.; Xua, B.; Yuana, J.; Wang, X.; Shi, X.; Zhang, W. Fluorescent and colorimetric detection of pH by a rhodamine-based probe. Sens. Actuators B Chem., 2014, 194, 498-502.
[http://dx.doi.org/10.1016/j.snb.2013.12.023]
[84]
Saleem, M.; Lee, K.H. Synthesis, characterization and photophysical properties of novel azole derivatives. J. Fluoresc., 2015, 25(2), 217-226.
[http://dx.doi.org/10.1007/s10895-015-1505-5] [PMID: 25595058]
[85]
Purkait, R.; Mahapatra, A.D.; Chattopadhyay, D.; Sinha, C. An azine-based carbothioamide chemosensor for selective and sensitive turn-on-off sequential detection of Zn(II) and H2PO4-, live cell imaging and INHIBIT logic gate. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 207, 164-172.
[http://dx.doi.org/10.1016/j.saa.2018.09.019] [PMID: 30227347]
[86]
Kim, A.; Kang, J.H.; Jang, H.J.; Kim, C. Fluorescent detection of Zn(II) and In(III) and colorimetric detection of Cu(II) and Co(II) by a versatile chemosensor. J. Ind. Eng. Chem., 2018, 65, 290-299.
[http://dx.doi.org/10.1016/j.jiec.2018.04.040]
[87]
Patil, M.; Bothr, S.; Sahoo, S.K.; Rather, H.A.; Vasit, R.; Bendr, R.; Kuwar, A. Highly selective nicotinohydrazide based ‘turn-on’ chemosensor forthe detection of bioactive zinc(II): its biocompitability and bioimaging application in cancer cells. Sens. Actuators B Chem., 2018, 270, 200-206.
[http://dx.doi.org/10.1016/j.snb.2018.05.022]
[88]
Tripathi, K.; Singh, A.K.; Sonkar, A.K.; Prakash, A.; Roy, J.K.; Mishra, L. A multifunctional V-shape bis-hydrazone: characterization, supramolecular architechtures, AIEE, recognition of cations (Cu2+, Zn2+) and anions (HPO42- and CN-), mechanochromism, computational and cell imaging studies. Sens. Actuators B Chem., 2018, 275, 116-126.
[http://dx.doi.org/10.1016/j.snb.2018.08.026]]
[89]
Das, A.; Jana, S.; Ghosh, A. Modulation of nuclearity by Zn(II) and Cd(II) in their complexes with a polytopic mannich base ligand: a turn-on luminescence sensor for Zn(II) and detection of nitroaromatic explosives by Zn(II). Complexes Cryst. Growth Des., 2018, 18, 2335-2348.
[http://dx.doi.org/10.1021/acs.cgd.7b01752]
[90]
Khan, T.A.; Sheoran, M.; Nikhil Raj, M. V.; Jain, S.; Gupta, D.; Naik, S.G. Screening of biologically important Zn2+ by a chemosensor with fluorescent turn on-off mechanism. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 189, 176-182.
[http://dx.doi.org/10.1016/j.saa.2017.08.017] [PMID: 28818764]
[91]
Kumar, R.S.; Kumar, S.K.A.; Vijayakrishn, K.; Sivaramakrishn, A.; Pair, P.; Rao, C.V.S.B. Sivaraman, Sahoo, S.K. Bipyridine bisphosphonate-based fluorescent optical sensor and optode for selective detection of Zn2+ ions and its applications. New J. Chem., 2018, 42, 8494-8502.
[http://dx.doi.org/10.1039/C8NJ00158H]
[92]
Zhang, Y.Y.; Chen, Z.Z.; Liu, Z.Z.; Wang, M.; Liu, J.J.; Gao, G.; Zhang, X.Y.; Sun, R.Z.; Hou, S.C.; Wang, H.M. A highly sensitive multifunctional sensor based on phenylene-acetylene for colorimetric detection of Fe2+ and ratiometric fluorescent detection of Cd2+ and Zn2+. Sens. Actuators B Chem., 2018, 273, 1077-1084.
[http://dx.doi.org/10.1016/j.snb.2018.07.012]
[93]
Sohrabi, M.; Amirnasr, M.; Meghdadi, S.; Lutz, M.; Torbati, M.B.; Farrokhpour, H. A highly selective fluorescence turn-on chemosensor for Zn2+, and its application in live cell imaging, and as a colorimetric sensor for Co2+: experimental and TD-DFT calculations. New J. Chem., 2018, 42, 12595-12606.
[http://dx.doi.org/10.1039/C8NJ01580E]
[94]
Erdemir, S.; Kocyigit, O. Dual recognition of Zn2+ and Al3+ ions by a novel probe containing two fluorophores through different signaling mechanisms. Sens. Actuators B Chem., 2018, 273, 56-61.
[http://dx.doi.org/10.1016/j.snb.2018.06.019]
[95]
Zhu, W.; Du, L.; Li, W.; Zuo, J.; Shan, J. The salen based chemosensors for highly selective recognition of Zn2+ ion. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 203, 501-509.
[http://dx.doi.org/10.1016/j.saa.2018.06.008] [PMID: 29902756]
[96]
Zhang, J.; She, M.; Li, J.; Wang, C.; Wang, S.; Liu, P.; Zhang, S.; Li, J. Substituent effect on fluorescence signaling of the naphthalene carbohydrazone based chemosensor: its implication in the detection of Zn(II) ions and secondary sensing PPi. Sens. Actuators B Chem., 2018, 270, 362-370.
[http://dx.doi.org/10.1016/j.snb.2018.05.049]]
[97]
Rezaeian, K.; Khanmohammadi, H.; Dogaheh, S.G. Studies on a multifunctional chromo-fluorogenic sensor for dual channel recognition of Zn2+ and CN- ions in aqueous media: mimicking multiple molecular logic gates and memory devices. New J. Chem., 2018, 42, 2158-2166.
[http://dx.doi.org/10.1039/C7NJ04216G]
[98]
Sakunkaewkasem, S.; Petdum, A.; Panchan, W.; Sirirak, J.; Charoenpanich, A.; Sooksimuang, T.; Wanichacheva, N. Dual-analyte fluorescent sensor based on [5] helicene derivative with super large stokes shift for the selective determinations of Cu2+ or Zn2+ in buffer solutions and its application in a living cell. ACS Sens., 2018, 3(5), 1016-1023.
[http://dx.doi.org/10.1021/acssensors.8b00158] [PMID: 29733581]
[99]
Kaur, H.; Raj, P.; Sharma, H.; Verma, M.; Singh, N.; Kaur, N. Highly selective and sensitive fluorescence sensing of nanomolar Zn2+ ions in aqueous medium using calix [4] arene passivated carbon quantum dots based on fluorescence enhancement: real-time monitoring and intracellular investigation. Anal. Chim. Acta, 2018, 1009, 1-11.
[http://dx.doi.org/10.1016/j.aca.2017.12.048] [PMID: 29422126]
[100]
Wang, L.; Li, W.; Zhi, W.; Huang, Y.; Han, J.; Wang, Y.; Ren, Y.; Ni, L. A new coumarin schiff based fluorescent-colorimetric chemosensorfor dual monitoring of Zn2+ and Fe3+ in different solutions: anapplication to bio-imaging. Sens. Actuators B Chem., 2018, 260, 243-254.
[http://dx.doi.org/10.1016/j.snb.2017.12.200]
[101]
Swami, S.; Agarwala, A.; Behera, D.; Shrivastava, R. Diaminomaleonitrile based chromo-fluorescent receptor molecule forselective sensing of Mn(II) and Zn(II) ions. Sens. Actuators B Chem., 2018, 260, 1012-1017.
[http://dx.doi.org/10.1016/j.snb.2018.01.106]
[102]
Wan, J.; Duan, W.; Chen, K.; Tao, Y.; Dang, J.; Zeng, K.; Ge, Y.; Wu, J.; Liu, Z. Selective and sensitive detection of Zn(II) ion using a simplepeptide-based sensor. Sens. Actuators B Chem., 2018, 255, 49-56.
[http://dx.doi.org/10.1016/j.snb.2017.08.038]
[103]
Formica, M.; Favi, G.; Fusi, V.; Giorgi, L.; Mantellini, F.; Micheloni, M. Synthesis and study of three hydroxypyrazole-based ligands: a ratiometric fluorescent sensor for Zn(II). J. Lumin., 2018, 195, 193-200.
[http://dx.doi.org/10.1016/j.jlumin.2017.11.018]
[104]
Shi, Z.; Tu, Y.; Pu, S. An efficient and sensitive chemosensor based on salicylhydrazide for naked-eye and fluorescent detection of Zn2+. RSC Advances, 2018, 8, 6727-6732.
[http://dx.doi.org/10.1039/C7RA13592K]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy