Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Electrochemical-Based Biosensors: New Diagnosis Platforms for Cardiovascular Disease

Author(s): Fatemeh Yousefi, Ahmad Movahedpour, Zahra Shabaninejad, Younes Ghasemi, Shahram Rabbani, Ali Sobnani-Nasab, Soheila Mohammadi, Behzad Hajimoradi, Samaneh Rezaei, Amir Savardashtaki*, Majid Mazoochi* and Hamed Mirzaei*

Volume 27, Issue 15, 2020

Page: [2550 - 2575] Pages: 26

DOI: 10.2174/0929867326666191024114207

Price: $65

Abstract

One of the major reasons for mortality throughout the world is cardiovascular diseases. Therefore, bio-markers of cardiovascular disease are of high importance to diagnose and manage procedure. Detecting biomarkers provided a promising procedure in developing bio-sensors. Fast, selective, portable, accurate, inexpensive, and sensitive biomarker sensing instruments will be necessary for detecting and predicting diseases. One of the cardiac biomarkers may be ordered as C-reactive proteins, lipoprotein-linked phospho-lipase, troponin I or T, myoglobin, interleukin-6, interleukin-1, tumor necrosis factor alpha, LDL and myeloperoxidase. The biomarkers are applied to anticipate cardio-vascular illnesses. Initial diagnoses of these diseases are possible by several techniques; however, they are laborious and need costly apparatus. Current researches designed various bio-sensors for resolving the respective issues. Electrochemical instruments and the proposed bio-sensors are preferred over other methods due to its inexpensiveness, mobility, reliability, repeatability. The present review comprehensively dealt with detecting biomarkers of cardiovascular disease through electro-chemical techniques.

Keywords: Cardiovascular disease, electrochemical biosensors, diagnosis, mortality, C reactive proteins, myeloperoxidase.

[1]
Pagidipati, N.J.; Gaziano, T.A. Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation, 2013, 127(6), 749-756.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.128413] [PMID: 23401116]
[2]
Altintas, Z.; Fakanya, W.M.; Tothill, I.E. Cardiovascular disease detection using bio-sensing techniques. Talanta, 2014, 128, 177-186.
[http://dx.doi.org/10.1016/j.talanta.2014.04.060] [PMID: 25059146]
[3]
Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; Delling, F.N.; Djousse, L.; Elkind, M.S.V.; Ferguson, J.F.; Fornage, M.; Jordan, L.C.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Kwan, T.W.; Lackland, D.T.; Lewis, T.T.; Lichtman, J.H.; Longenecker, C.T.; Loop, M.S.; Lutsey, P.L.; Martin, S.S.; Matsushita, K.; Moran, A.E.; Mussolino, M.E.; O’Flaherty, M.; Pandey, A.; Perak, A.M.; Rosamond, W.D.; Roth, G.A.; Sampson, U.K.A.; Satou, G.M.; Schroeder, E.B.; Shah, S.H.; Spartano, N.L.; Stokes, A.; Tirschwell, D.L.; Tsao, C.W.; Turakhia, M.P.; VanWagner, L.B.; Wilkins, J.T.; Wong, S.S.; Virani, S.S. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation, 2019, 139(10), e56-e528.
[http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID: 30700139]
[4]
Qureshi, A.; Gurbuz, Y.; Niazi, J.H. Biosensors for cardiac biomarkers detection: A review. Sens. Actuators B Chem., 2012, 171, 62-76.
[http://dx.doi.org/10.1016/j.snb.2012.05.077]
[5]
Rezaei, B.; Ghani, M.; Shoushtari, A.M.; Rabiee, M. Electrochemical biosensors based on nanofibres for cardiac biomarker detection: A comprehensive review. Biosens. Bioelectron., 2016, 78, 513-523.
[http://dx.doi.org/10.1016/j.bios.2015.11.083] [PMID: 26657595]
[6]
Dadu, R.T.; Nambi, V.; Ballantyne, C.M. Developing and assessing cardiovascular biomarkers. Transl. Res., 2012, 159(4), 265-276.
[http://dx.doi.org/10.1016/j.trsl.2012.01.003] [PMID: 22424430]
[7]
Aydin, S.; Ugur, K.; Aydin, S.; Sahin, İ.; Yardim, M. Biomarkers in acute myocardial infarction: current perspectives. Vasc. Health Risk Manag., 2019, 15, 1-10.
[http://dx.doi.org/10.2147/VHRM.S166157] [PMID: 30697054]
[8]
Ray, S.; Reddy, P.J.; Choudhary, S.; Raghu, D.; Srivastava, S. Emerging nanoproteomics approaches for disease biomarker detection: a current perspective. J. Proteomics, 2011, 74(12), 2660-2681.
[http://dx.doi.org/10.1016/j.jprot.2011.04.027] [PMID: 21596164]
[9]
Justino, C.I.; Duarte, A.C.; Rocha-Santos, T.A. Critical overview on the application of sensors and biosensors for clinical analysis. Trends Analyt. Chem., 2016, 85, 36-60.
[http://dx.doi.org/10.1016/j.trac.2016.04.004]
[10]
Burcu Bahadır, E.; Kemal Sezgintürk, M. Applications of electrochemical immunosensors for early clinical diagnostics. Talanta, 2015, 132, 162-174.
[http://dx.doi.org/10.1016/j.talanta.2014.08.063] [PMID: 25476294]
[11]
Hahn, S.; Mergenthaler, S.; Zimmermann, B.; Holzgreve, W. Nucleic acid based biosensors: the desires of the user. Bioelectrochemistry, 2005, 67(2), 151-154.
[http://dx.doi.org/10.1016/j.bioelechem.2004.07.006] [PMID: 16019267]
[12]
Katagiri, F.; Glazebrook, J. Overview of mRNA expression profiling using DNA microarrays, 2009.
[http://dx.doi.org/10.1002/0471142727.mb2204s85]
[13]
Fathil, M.F.; Md Arshad, M.K.; Gopinath, S.C.; Hashim, U.; Adzhri, R.; Ayub, R.M.; Ruslinda, A.R.; Nuzaihan, M.N. M.; Azman, A.H.; Zaki, M.; Tang, T.H. Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers. Biosens. Bioelectron., 2015, 70, 209-220.
[http://dx.doi.org/10.1016/j.bios.2015.03.037] [PMID: 25841117]
[14]
Szunerits, S.; Mishyn, V.; Grabowska, I.; Boukherroub, R. Electrochemical cardiovascular platforms: Current state of the art and beyond. Biosens. Bioelectron., 2019, 131, 287-298.
[http://dx.doi.org/10.1016/j.bios.2019.02.010] [PMID: 30851492]
[15]
Hu, X.; Guiseppi-Elie, A.; Dinu, C.Z. Biomolecular interfaces based on self-assembly and self-recognition form biosensors capable of recording molecular binding and release. Nanoscale, 2019, 11(11), 4987-4998.
[http://dx.doi.org/10.1039/C8NR10090J] [PMID: 30839012]
[16]
de Ávila, B.E.F. Multiplexed Determination of Amino‐Terminal Pro‐B‐Type Natriuretic Peptide and C‐Reactive Protein Cardiac Biomarkers in Human Serum at a Disposable Electrochemical Magnetoimmunosensor. Electroanalysis, 2014, 26(2), 254-261.
[http://dx.doi.org/10.1002/elan.201300479]
[17]
Hasanzadeh, M.; Shadjou, N. Electrochemical nanobiosensing in whole blood: Recent advances. Trends Analyt. Chem., 2016, 80, 167-176.
[http://dx.doi.org/10.1016/j.trac.2015.07.018]
[18]
Justino, C.I. Strategies for enhancing the analytical performance of nanomaterial-based sensors. Trends Analyt. Chem., 2013, 47, 27-36.
[http://dx.doi.org/10.1016/j.trac.2013.02.004]
[19]
Ronkainen, N.J.; Okon, S.L. Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers. Materials (Basel), 2014, 7(6), 4669-4709.
[http://dx.doi.org/10.3390/ma7064669] [PMID: 28788700]
[20]
Mozalev, A.; Baccar, H.; Abdelghani, A. Preparation and biosensing performance of porous-alumina-assisted gold nanostructures on substrates. Procedia Eng., 2016, 168, 1188-1191.
[http://dx.doi.org/10.1016/j.proeng.2016.11.404]
[21]
Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Barker-Collo, S.; Bartels, D.H.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bhalla, K.; Bikbov, B.; Bin Abdulhak, A.; Birbeck, G.; Blyth, F.; Bolliger, I.; Boufous, S.; Bucello, C.; Burch, M.; Burney, P.; Carapetis, J.; Chen, H.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahodwala, N.; De Leo, D.; Degenhardt, L.; Delossantos, A.; Denenberg, J.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Erwin, P.J.; Espindola, P.; Ezzati, M.; Feigin, V.; Flaxman, A.D.; Forouzanfar, M.H.; Fowkes, F.G.; Franklin, R.; Fransen, M.; Freeman, M.K.; Gabriel, S.E.; Gakidou, E.; Gaspari, F.; Gillum, R.F.; Gonzalez-Medina, D.; Halasa, Y.A.; Haring, D.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Hoen, B.; Hotez, P.J.; Hoy, D.; Jacobsen, K.H.; James, S.L.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Karthikeyan, G.; Kassebaum, N.; Keren, A.; Khoo, J.P.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Lipnick, M.; Lipshultz, S.E.; Ohno, S.L.; Mabweijano, J.; MacIntyre, M.F.; Mallinger, L.; March, L.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGrath, J.; Mensah, G.A.; Merriman, T.R.; Michaud, C.; Miller, M.; Miller, T.R.; Mock, C.; Mocumbi, A.O.; Mokdad, A.A.; Moran, A.; Mulholland, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.; Nasseri, K.; Norman, P.; O’Donnell, M.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Phillips, D.; Pierce, K.; Pope, C.A., III; Porrini, E.; Pourmalek, F.; Raju, M.; Ranganathan, D.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Rivara, F.P.; Roberts, T.; De León, F.R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Salomon, J.A.; Sampson, U.; Sanman, E.; Schwebel, D.C.; Segui-Gomez, M.; Shepard, D.S.; Singh, D.; Singleton, J.; Sliwa, K.; Smith, E.; Steer, A.; Taylor, J.A.; Thomas, B.; Tleyjeh, I.M.; Towbin, J.A.; Truelsen, T.; Undurraga, E.A.; Venketasubramanian, N.; Vijayakumar, L.; Vos, T.; Wagner, G.R.; Wang, M.; Wang, W.; Watt, K.; Weinstock, M.A.; Weintraub, R.; Wilkinson, J.D.; Woolf, A.D.; Wulf, S.; Yeh, P.H.; Yip, P.; Zabetian, A.; Zheng, Z.J.; Lopez, A.D.; Murray, C.J.; AlMazroa, M.A.; Memish, Z.A. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859), 2095-2128.
[http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID: 23245604]
[22]
Nichols, M.; Townsend, N.; Scarborough, P.; Rayner, M. Cardiovascular disease in Europe: epidemiological update. Eur. Heart J., 2013, 34(39), 3028-3034.
[http://dx.doi.org/10.1093/eurheartj/eht356] [PMID: 24014390]
[23]
Nichols, M.; Townsend, N.; Scarborough, P.; Rayner, M. Cardiovascular disease in Europe 2014: epidemiological update. Eur. Heart J., 2014, 35(42), 2950-2959.
[http://dx.doi.org/10.1093/eurheartj/ehu299] [PMID: 25139896]
[24]
Casas, J.P.; Shah, T.; Hingorani, A.D.; Danesh, J.; Pepys, M.B. C-reactive protein and coronary heart disease: a critical review. J. Intern. Med., 2008, 264(4), 295-314.
[http://dx.doi.org/10.1111/j.1365-2796.2008.02015.x] [PMID: 18823504]
[25]
Januzzi, J.L.; van Kimmenade, R.; Lainchbury, J.; Bayes-Genis, A.; Ordonez-Llanos, J.; Santalo-Bel, M.; Pinto, Y.M.; Richards, M. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International Collaborative of NT-proBNP Study. Eur. Heart J., 2006, 27(3), 330-337.
[http://dx.doi.org/10.1093/eurheartj/ehi631] [PMID: 16293638]
[26]
Maisel, A.S.; Krishnaswamy, P.; Nowak, R.M.; McCord, J.; Hollander, J.E.; Duc, P.; Omland, T.; Storrow, A.B.; Abraham, W.T.; Wu, A.H.; Clopton, P.; Steg, P.G.; Westheim, A.; Knudsen, C.W.; Perez, A.; Kazanegra, R.; Herrmann, H.C.; McCullough, P.A. Breathing Not Properly Multinational Study Investigators. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N. Engl. J. Med., 2002, 347(3), 161-167.
[http://dx.doi.org/10.1056/NEJMoa020233] [PMID: 12124404]
[27]
Melman, Y.F.; Shah, R.; Das, S. MicroRNAs in heart failure: is the picture becoming less miRky? Circ Heart Fail, 2014, 7(1), 203-214.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.113.000266] [PMID: 24449811]
[28]
Nagai, T.; Anzai, T.; Kaneko, H.; Mano, Y.; Anzai, A.; Maekawa, Y.; Takahashi, T.; Meguro, T.; Yoshikawa, T.; Fukuda, K. C-reactive protein overexpression exacerbates pressure overload-induced cardiac remodeling through enhanced inflammatory response. Hypertension, 2011, 57(2), 208-215.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.158915] [PMID: 21220701]
[29]
Thielmann, M.; Massoudy, P.; Marggraf, G.; Knipp, S.; Schmermund, A.; Piotrowski, J.; Erbel, R.; Jakob, H. Role of troponin I, myoglobin, and creatine kinase for the detection of early graft failure following coronary artery bypass grafting. Eur. J. Cardiothorac. Surg., 2004, 26(1), 102-109.
[http://dx.doi.org/10.1016/j.ejcts.2004.03.015] [PMID: 15200987]
[30]
van Rooij, E.; Sutherland, L.B.; Thatcher, J.E.; DiMaio, J.M.; Naseem, R.H.; Marshall, W.S.; Hill, J.A.; Olson, E.N. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. USA, 2008, 105(35), 13027-13032.
[http://dx.doi.org/10.1073/pnas.0805038105] [PMID: 18723672]
[31]
Carè, A.; Catalucci, D.; Felicetti, F.; Bonci, D.; Addario, A.; Gallo, P.; Bang, M.L.; Segnalini, P.; Gu, Y.; Dalton, N.D.; Elia, L.; Latronico, M.V.; Høydal, M.; Autore, C.; Russo, M.A.; Dorn, G.W., II; Ellingsen, O.; Ruiz-Lozano, P.; Peterson, K.L.; Croce, C.M.; Peschle, C.; Condorelli, G. MicroRNA-133 controls cardiac hypertrophy. Nat. Med., 2007, 13(5), 613-618.
[http://dx.doi.org/10.1038/nm1582] [PMID: 17468766]
[32]
Thum, T.; Gross, C.; Fiedler, J.; Fischer, T.; Kissler, S.; Bussen, M.; Galuppo, P.; Just, S.; Rottbauer, W.; Frantz, S.; Castoldi, M.; Soutschek, J.; Koteliansky, V.; Rosenwald, A.; Basson, M.A.; Licht, J.D.; Pena, J.T.; Rouhanifard, S.H.; Muckenthaler, M.U.; Tuschl, T.; Martin, G.R.; Bauersachs, J.; Engelhardt, S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008, 456(7224), 980-984.
[http://dx.doi.org/10.1038/nature07511] [PMID: 19043405]
[33]
Tijsen, A.J.; Pinto, Y.M.; Creemers, E.E. Non-cardiomyocyte microRNAs in heart failure. Cardiovasc. Res., 2012, 93(4), 573-582.
[http://dx.doi.org/10.1093/cvr/cvr344] [PMID: 22180601]
[34]
Kumarswamy, R.; Bauters, C.; Volkmann, I.; Maury, F.; Fetisch, J.; Holzmann, A.; Lemesle, G.; de Groote, P.; Pinet, F.; Thum, T. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ. Res., 2014, 114(10), 1569-1575.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303915] [PMID: 24663402]
[35]
Bini, A.; Centi, S.; Tombelli, S.; Minunni, M.; Mascini, M. Development of an optical RNA-based aptasensor for C-reactive protein. Anal. Bioanal. Chem., 2008, 390(4), 1077-1086.
[http://dx.doi.org/10.1007/s00216-007-1736-7] [PMID: 18066708]
[36]
Centi, S. Detection of C Reactive Protein (CRP) in Serum by an Electrochemical Aptamer‐Based Sandwich Assay. Electroanalysis. An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2009, 21(11), 1309-1315.
[37]
Lin, S.; Lee, C.K.; Lin, Y.H.; Lee, S.Y.; Sheu, B.C.; Tsai, J.C.; Hsu, S.M. Homopolyvalent antibody-antigen interaction kinetic studies with use of a dual-polarization interferometric biosensor. Biosens. Bioelectron., 2006, 22(5), 715-721.
[http://dx.doi.org/10.1016/j.bios.2006.02.011] [PMID: 16569500]
[38]
Piccoli, J.; Hein, R.; El-Sagheer, A.H.; Brown, T.; Cilli, E.M.; Bueno, P.R.; Davis, J.J. Redox capacitive assaying of C-reactive protein at a peptide supported aptamer interface. Anal. Chem., 2018, 90(5), 3005-3008.
[http://dx.doi.org/10.1021/acs.analchem.7b05374] [PMID: 29411973]
[39]
Adams, J.E., III; Abendschein, D.R.; Jaffe, A.S. Biochemical markers of myocardial injury. Is MB creatine kinase the choice for the 1990s? Circulation, 1993, 88(2), 750-763.
[http://dx.doi.org/10.1161/01.CIR.88.2.750] [PMID: 8339435]
[40]
Sallach, S.M.; Nowak, R.; Hudson, M.P.; Tokarski, G.; Khoury, N.; Tomlanovich, M.C.; Jacobsen, G.; de Lemos, J.A.; McCord, J. A change in serum myoglobin to detect acute myocardial infarction in patients with normal troponin I levels. Am. J. Cardiol., 2004, 94(7), 864-867.
[http://dx.doi.org/10.1016/j.amjcard.2004.06.019] [PMID: 15464666]
[41]
Freeman, A.P.; Fatches, K.R.; Carter, I.W.; Cloonan, M.J.; Wilcken, D.E. Comparison of serum myoglobin and creatine kinase MB isoenzyme in early diagnosis of acute myocardial infarction. Br. Heart J., 1981, 45(4), 389-392.
[http://dx.doi.org/10.1136/hrt.45.4.389] [PMID: 7225253]
[42]
Kushner, I.; Broder, M.L.; Karp, D. Control of the acute phase response. Serum C-reactive protein kinetics after acute myocardial infarction. J. Clin. Invest., 1978, 61(2), 235-242.
[http://dx.doi.org/10.1172/JCI108932] [PMID: 621273]
[43]
Luchner, A.; Hengstenberg, C.; Löwel, H.; Trawinski, J.; Baumann, M.; Riegger, G.A.; Schunkert, H.; Holmer, S. N-terminal pro-brain natriuretic peptide after myocardial infarction: a marker of cardio-renal function. Hypertension, 2002, 39(1), 99-104.
[http://dx.doi.org/10.1161/hy0102.100537] [PMID: 11799086]
[44]
Dorobantu, M.; Fruntelata, A.G.; Scafa-Udriste, A.; Tautu, O.F. B-type natriuretic peptide (BNP) and left ventricular (LV) function in patients with ST-segment elevation myocardial infarction (STEMI). Maedica (Buchar.), 2010, 5(4), 243-249.
[PMID: 21977165]
[45]
Kleine, A.H. Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man.Lipid Metabolism in the Healthy and Disease Heart; Springer, 1992, pp. 155-162.
[46]
Patterson, C.C.; Smith, A.E.; Yarnell, J.W.; Rumley, A.; Ben-Shlomo, Y.; Lowe, G.D. The associations of interleukin-6 (IL-6) and downstream inflammatory markers with risk of cardiovascular disease: the Caerphilly Study. Atherosclerosis, 2010, 209(2), 551-557.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.09.030] [PMID: 19836021]
[47]
Subirana, I.; Fitó, M.; Diaz, O.; Vila, J.; Francés, A.; Delpon, E.; Sanchis, J.; Elosua, R.; Muñoz-Aguayo, D.; Dégano, I.R.; Marrugat, J. Prediction of coronary disease incidence by biomarkers of inflammation, oxidation, and metabolism. Sci. Rep., 2018, 8(1), 3191.
[http://dx.doi.org/10.1038/s41598-018-21482-y] [PMID: 29453342]
[48]
Wang, G-K.; Zhu, J.Q.; Zhang, J.T.; Li, Q.; Li, Y.; He, J.; Qin, Y.W.; Jing, Q. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur. Heart J., 2010, 31(6), 659-666.
[http://dx.doi.org/10.1093/eurheartj/ehq013] [PMID: 20159880]
[49]
Gidlöf, O.; Andersson, P.; van der Pals, J.; Götberg, M.; Erlinge, D. Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology, 2011, 118(4), 217-226.
[http://dx.doi.org/10.1159/000328869] [PMID: 21701171]
[50]
Goldraich, L.A.; Martinelli, N.C.; Matte, U.; Cohen, C.; Andrades, M.; Pimentel, M.; Biolo, A.; Clausell, N.; Rohde, L.E. Transcoronary gradient of plasma microRNA 423-5p in heart failure: evidence of altered myocardial expression. Biomarkers, 2014, 19(2), 135-141.
[http://dx.doi.org/10.3109/1354750X.2013.870605] [PMID: 24506564]
[51]
Corsten, M.F.; Dennert, R.; Jochems, S.; Kuznetsova, T.; Devaux, Y.; Hofstra, L.; Wagner, D.R.; Staessen, J.A.; Heymans, S.; Schroen, B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet, 2010, 3(6), 499-506.
[http://dx.doi.org/10.1161/CIRCGENETICS.110.957415] [PMID: 20921333]
[52]
Yin, Q.; Wu, A.; Liu, M. Plasma long non-coding RNA (lncRNA) GAS5 is a new biomarker for coronary artery disease. Med. Sci. Monit., 2017, 23, 6042-6048.
[http://dx.doi.org/10.12659/MSM.907118] [PMID: 29267258]
[53]
Zhang, Z.; Gao, W.; Long, Q.Q.; Zhang, J.; Li, Y.F.; Liu, D.C.; Yan, J.J.; Yang, Z.J.; Wang, L.S. Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Sci. Rep., 2017, 7(1), 7491.
[http://dx.doi.org/10.1038/s41598-017-07611-z] [PMID: 28790415]
[54]
Park, S.K. The Usefulness of Cardiac Biomarker in Patients with Acute Ischemic Stroke. J. Korean Neurol. Assoc., 2015, 33(3), 173-177.
[http://dx.doi.org/10.17340/jkna.2015.3.6]
[55]
Adamson, P.D.; Hunter, A.; Madsen, D.M.; Shah, A.S.V.; McAllister, D.A.; Pawade, T.A.; Williams, M.C.; Berry, C.; Boon, N.A.; Flather, M.; Forbes, J.; McLean, S.; Roditi, G.; Timmis, A.D.; van Beek, E.J.R.; Dweck, M.R.; Mickley, H.; Mills, N.L.; Newby, D.E. High-sensitivity cardiac troponin I and the diagnosis of coronary artery disease in patients with suspected angina pectoris. Circ. Cardiovasc. Qual. Outcomes, 2018, 11(2), e004227
[http://dx.doi.org/10.1161/CIRCOUTCOMES.117.004227] [PMID: 29444926]
[56]
Olatidoye, A.G.; Wu, A.H.; Feng, Y.J.; Waters, D. Prognostic role of troponin T versus troponin I in unstable angina pectoris for cardiac events with meta-analysis comparing published studies. Am. J. Cardiol., 1998, 81(12), 1405-1410.
[http://dx.doi.org/10.1016/S0002-9149(98)00200-8] [PMID: 9645888]
[57]
Blankenberg, S.; Salomaa, V.; Makarova, N.; Ojeda, F.; Wild, P.; Lackner, K.J.; Jørgensen, T.; Thorand, B.; Peters, A.; Nauck, M.; Petersmann, A.; Vartiainen, E.; Veronesi, G.; Brambilla, P.; Costanzo, S.; Iacoviello, L.; Linden, G.; Yarnell, J.; Patterson, C.C.; Everett, B.M.; Ridker, P.M.; Kontto, J.; Schnabel, R.B.; Koenig, W.; Kee, F.; Zeller, T.; Kuulasmaa, K. BiomarCaRE Investigators. Troponin I and cardiovascular risk prediction in the general population: the BiomarCaRE consortium. Eur. Heart J., 2016, 37(30), 2428-2437.
[http://dx.doi.org/10.1093/eurheartj/ehw172] [PMID: 27174290]
[58]
Welsh, P.; Preiss, D.; Hayward, C.; Shah, A.S.V.; McAllister, D.; Briggs, A.; Boachie, C.; McConnachie, A.; Padmanabhan, S.; Welsh, C.; Woodward, M.; Campbell, A.; Porteous, D.; Mills, N.L.; Sattar, N. Cardiac Troponin T and Troponin I in the General Population. Circulation, 2019, 139(24), 2754-2764.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038529] [PMID: 31014085]
[59]
Jaffery, Z.; Nowak, R.; Khoury, N.; Tokarski, G.; Lanfear, D.E.; Jacobsen, G.; McCord, J. Myoglobin and troponin I elevation predict 5-year mortality in patients with undifferentiated chest pain in the emergency department. Am. Heart J., 2008, 156(5), 939-945.
[http://dx.doi.org/10.1016/j.ahj.2008.06.020] [PMID: 19061710]
[60]
Ryu, D-R.; Park, J.T.; Chung, J.H.; Song, E.M.; Roh, S.H.; Lee, J.M.; An, H.R.; Yu, M.; Pyun, W.B.; Shin, G.J.; Kim, S.J.; Kang, D.H.; Choi, K.B. A more appropriate cardiac troponin T level that can predict outcomes in end-stage renal disease patients with acute coronary syndrome. Yonsei Med. J., 2011, 52(4), 595-602.
[http://dx.doi.org/10.3349/ymj.2011.52.4.595] [PMID: 21623601]
[61]
Gidlöf, O.; Smith, J.G.; Miyazu, K.; Gilje, P.; Spencer, A.; Blomquist, S.; Erlinge, D. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc. Disord., 2013, 13(1), 12.
[http://dx.doi.org/10.1186/1471-2261-13-12] [PMID: 23448306]
[62]
Keating, S.M.; Deng, X.; Fernandes, F.; Cunha-Neto, E.; Ribeiro, A.L.; Adesina, B.; Beyer, A.I.; Contestable, P.; Custer, B.; Busch, M.P.; Sabino, E.C. NHLBI Retrovirus Epidemiology Donor Study-II (REDS-II), International Component. Inflammatory and cardiac biomarkers are differentially expressed in clinical stages of Chagas disease. Int. J. Cardiol., 2015, 199, 451-459.
[http://dx.doi.org/10.1016/j.ijcard.2015.07.040] [PMID: 26277551]
[63]
Srinivas, V.S.; Cannon, C.P.; Gibson, C.M.; Antman, E.M.; Greenberg, M.A.; Tanasijevic, M.J.; Murphy, S.; de Lemos, J.A.; Sokol, S.; Braunwald, E.; Mueller, H.S. Myoglobin levels at 12 hours identify patients at low risk for 30-day mortality after thrombolysis in acute myocardial infarction: a Thrombolysis in Myocardial Infarction 10B substudy. Am. Heart J., 2001, 142(1), 29-36.
[http://dx.doi.org/10.1067/mhj.2001.116068] [PMID: 11431653]
[64]
Landesberg, G.; Shatz, V.; Akopnik, I.; Wolf, Y.G.; Mayer, M.; Berlatzky, Y.; Weissman, C.; Mosseri, M. Association of cardiac troponin, CK-MB, and postoperative myocardial ischemia with long-term survival after major vascular surgery. J. Am. Coll. Cardiol., 2003, 42(9), 1547-1554.
[http://dx.doi.org/10.1016/j.jacc.2003.05.001] [PMID: 14607436]
[65]
Abdelmeguid, A.E.; Topol, E.J.; Whitlow, P.L.; Sapp, S.K.; Ellis, S.G. Significance of mild transient release of creatine kinase-MB fraction after percutaneous coronary interventions. Circulation, 1996, 94(7), 1528-1536.
[http://dx.doi.org/10.1161/01.CIR.94.7.1528] [PMID: 8840840]
[66]
Ndrepepa, G.; Braun, S.; Tada, T.; King, L.; Cassese, S.; Fusaro, M.; Keta, D.; Kastrati, A.; Schmidt, R. Comparative prognostic value of C-reactive protein & fibrinogen in patients with coronary artery disease. Indian J. Med. Res., 2014, 140(3), 392-400.
[PMID: 25366207]
[67]
van der Meer, I.M.; de Maat, M.P.; Kiliaan, A.J.; van der Kuip, D.A.; Hofman, A.; Witteman, J.C. The value of C-reactive protein in cardiovascular risk prediction: the Rotterdam Study. Arch. Intern. Med., 2003, 163(11), 1323-1328.
[http://dx.doi.org/10.1001/archinte.163.11.1323] [PMID: 12796068]
[68]
Anand, S.S.; Yusuf, S. C-reactive protein is a bystander of cardiovascular disease. Eur. Heart J., 2010, 31(17), 2092-2096.
[http://dx.doi.org/10.1093/eurheartj/ehq242] [PMID: 20675658]
[69]
Kaptoge, S.; Di Angelantonio, E.; Lowe, G.; Pepys, M.B.; Thompson, S.G.; Collins, R.; Danesh, J. Emerging Risk Factors Collaboration. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet, 2010, 375(9709), 132-140.
[http://dx.doi.org/10.1016/S0140-6736(09)61717-7] [PMID: 20031199]
[70]
Kardys, I.; Knetsch, A.M.; Bleumink, G.S.; Deckers, J.W.; Hofman, A.; Stricker, B.H.; Witteman, J.C. C-reactive protein and risk of heart failure. The Rotterdam Study. Am. Heart J., 2006, 152(3), 514-520.
[http://dx.doi.org/10.1016/j.ahj.2006.02.023] [PMID: 16923423]
[71]
Fonseca, F.A.H.; Izar, M.C.O. High-sensitivity C-reactive protein and cardiovascular disease across countries and ethnicities. Clinics (São Paulo), 2016, 71(4), 235-242.
[http://dx.doi.org/10.6061/clinics/2016(04)11] [PMID: 27166776]
[72]
Mavrea, A.M.; Dragomir, T.; Bordejevic, D.A.; Tomescu, M.C.; Ancusa, O.; Marincu, I. Causes and predictors of hospital readmissions in patients older than 65 years hospitalized for heart failure with preserved left ventricular ejection fraction in western Romania. Clin. Interv. Aging, 2015, 10, 979-990.
[PMID: 26124651]
[73]
Dieplinger, B.; Bocksrucker, C.; Egger, M.; Eggers, C.; Haltmayer, M.; Mueller, T. Prognostic value of inflammatory and cardiovascular biomarkers for prediction of 90-day all-cause mortality after acute ischemic stroke—results from the Linz Stroke Unit Study. Clin. Chem., 2017, 63(6), 1101-1109.
[http://dx.doi.org/10.1373/clinchem.2016.269969] [PMID: 28348074]
[74]
Mishra, R.K.; Beatty, A.L.; Jaganath, R.; Regan, M.; Wu, A.H.; Whooley, M.A. B-type natriuretic peptides for the prediction of cardiovascular events in patients with stable coronary heart disease: the Heart and Soul Study. J. Am. Heart Assoc., 2014, 3(4), e000907
[http://dx.doi.org/10.1161/JAHA.114.000907] [PMID: 25053234]
[75]
Seronde, M-F.; Vausort, M.; Gayat, E.; Goretti, E.; Ng, L.L.; Squire, I.B.; Vodovar, N.; Sadoune, M.; Samuel, J.L.; Thum, T.; Solal, A.C.; Laribi, S.; Plaisance, P.; Wagner, D.R.; Mebazaa, A.; Devaux, Y. GREAT network. Circulating microRNAs and outcome in patients with acute heart failure. PLoS One, 2015, 10(11), e0142237
[http://dx.doi.org/10.1371/journal.pone.0142237] [PMID: 26580972]
[76]
Kotecha, D.; Flather, M.D.; Atar, D.; Collins, P.; Pepper, J.; Jenkins, E.; Reid, C.M.; Eccleston, D. Alternative Risk Markers in Coronary Artery Disease (ARM-CAD) Study. B-type natriuretic peptide trumps other prognostic markers in patients assessed for coronary disease. BMC Med., 2019, 17(1), 72.
[http://dx.doi.org/10.1186/s12916-019-1306-9] [PMID: 30943979]
[77]
Jacobs, L. Annals express: Rapidly rule out acute myocardial infarction by combining copeptin and HFABP with cardiac troponin. Ann. Clin. Biochem., 2015.
[http://dx.doi.org/10.1177/0004563215578189]
[78]
Beysel, S.; Kizilgul, M.; Ozbek, M.; Caliskan, M.; Kan, S.; Apaydin, M.; Ozcelik, O.; Cakal, E. Heart-type fatty acid binding protein levels in elderly diabetics without known cardiovascular disease. Clin. Interv. Aging, 2017, 12, 2063-2068.
[http://dx.doi.org/10.2147/CIA.S137247] [PMID: 29255351]
[79]
Cubranic, Z.; Madzar, Z.; Matijevic, S.; Dvornik, S.; Fisic, E.; Tomulic, V.; Kunisek, J.; Laskarin, G.; Kardum, I.; Zaputovic, L. Diagnostic accuracy of heart fatty acid binding protein (H-FABP) and glycogen phosphorylase isoenzyme BB (GPBB) in diagnosis of acute myocardial infarction in patients with acute coronary syndrome. Biochem. Med. (Zagreb), 2012, 22(2), 225-236.
[http://dx.doi.org/10.11613/BM.2012.025] [PMID: 22838188]
[80]
Hoffmann, U.; Espeter, F.; Weiß, C.; Ahmad-Nejad, P.; Lang, S.; Brueckmann, M.; Akin, I.; Neumaier, M.; Borggrefe, M.; Behnes, M. Ischemic biomarker heart-type fatty acid binding protein (hFABP) in acute heart failure - diagnostic and prognostic insights compared to NT-proBNP and troponin I. BMC Cardiovasc. Disord., 2015, 15(1), 50.
[http://dx.doi.org/10.1186/s12872-015-0026-0] [PMID: 26072112]
[81]
Held, C.; White, H.D.; Stewart, R.A.H.; Budaj, A.; Cannon, C.P.; Hochman, J.S.; Koenig, W.; Siegbahn, A.; Steg, P.G.; Soffer, J.; Weaver, W.D.; Östlund, O.; Wallentin, L. STABILITY Investigators. Inflammatory biomarkers interleukin‐6 and C‐reactive protein and outcomes in stable coronary heart disease: experiences from the STABILITY (stabilization of atherosclerotic plaque by initiation of darapladib therapy) trial. J. Am. Heart Assoc., 2017, 6(10), e005077
[http://dx.doi.org/10.1161/JAHA.116.005077] [PMID: 29066452]
[82]
Fanola, C.L.; Morrow, D.A.; Cannon, C.P.; Jarolim, P.; Lukas, M.A.; Bode, C.; Hochman, J.S.; Goodrich, E.L.; Braunwald, E.; O’Donoghue, M.L. Interleukin‐6 and the risk of adverse outcomes in patients after an acute coronary syndrome: observations from the SOLID‐TIMI 52 (stabilization of plaque using darapladib—thrombolysis in myocardial infarction 52) trial. J. Am. Heart Assoc., 2017, 6(10), e005637
[http://dx.doi.org/10.1161/JAHA.117.005637] [PMID: 29066436]
[83]
Dunlay, S.M.; Weston, S.A.; Redfield, M.M.; Killian, J.M.; Roger, V.L. Tumor necrosis factor-α and mortality in heart failure: a community study. Circulation, 2008, 118(6), 625-631.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.759191] [PMID: 18645056]
[84]
Liu, X.; Fan, Z.; Zhao, T.; Cao, W.; Zhang, L.; Li, H.; Xie, Q.; Tian, Y.; Wang, B. Plasma miR-1, miR-208, miR-499 as potential predictive biomarkers for acute myocardial infarction: An independent study of Han population. Exp. Gerontol., 2015, 72, 230-238.
[http://dx.doi.org/10.1016/j.exger.2015.10.011] [PMID: 26526403]
[85]
Kuwabara, Y.; Ono, K.; Horie, T.; Nishi, H.; Nagao, K.; Kinoshita, M.; Watanabe, S.; Baba, O.; Kojima, Y.; Shizuta, S.; Imai, M.; Tamura, T.; Kita, T.; Kimura, T. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet, 2011, 4(4), 446-454.
[http://dx.doi.org/10.1161/CIRCGENETICS.110.958975] [PMID: 21642241]
[86]
Li, Q.; Chen, L.; Chen, D.; Wu, X.; Chen, M. Influence of microRNA-related polymorphisms on clinical outcomes in coronary artery disease. Am. J. Transl. Res., 2015, 7(2), 393-400.
[PMID: 25901206]
[87]
Jäntti, T.; Segersvärd, H.; Tolppanen, H.; Tarvasmäki, T.; Lassus, J.; Devaux, Y.; Vausort, M.; Pulkki, K.; Sionis, A.; Bayes-Genis, A.; Tikkanen, I.; Lakkisto, P.; Harjola, V.P. Circulating levels of microRNA 423-5p are associated with 90 day mortality in cardiogenic shock. ESC Heart Fail., 2019, 6(1), 98-102.
[http://dx.doi.org/10.1002/ehf2.12377] [PMID: 30472788]
[88]
Wang, F.; Long, G.; Zhao, C.; Li, H.; Chaugai, S.; Wang, Y.; Chen, C.; Wang, D.W. Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis. J. Transl. Med., 2013, 11(1), 222.
[http://dx.doi.org/10.1186/1479-5876-11-222] [PMID: 24053180]
[89]
Zhu, L. The correlations of circulating microRNA-133a with the risk and severity of coronary heart disease. Int. J. Clin. Exp. Med., 2017, 10(1), 972-978.
[90]
Kim, J.S.; Pak, K.; Goh, T.S.; Jeong, D.C.; Han, M.E.; Kim, J.; Oh, S.O.; Kim, C.D.; Kim, Y.H. Prognostic Value of MicroRNAs in Coronary Artery Diseases: A Meta-Analysis. Yonsei Med. J., 2018, 59(4), 495-500.
[http://dx.doi.org/10.3349/ymj.2018.59.4.495] [PMID: 29749132]
[91]
Alavi-Moghaddam, M.; Chehrazi, M.; Alipoor, S.D.; Mohammadi, M.; Baratloo, A.; Mahjoub, M.P.; Movasaghi, M.; Garssen, J.; Adcock, I.M.; Mortaz, E. A Preliminary Study of microRNA-208b after Acute Myocardial Infarction: Impact on 6-Month Survival. Dis. Markers, 2018, 20182410451
[http://dx.doi.org/10.1155/2018/2410451] [PMID: 29977411]
[92]
Shabaninejad, Z.; Yousefi, F.; Movahedpour, A.; Ghasemi, Y.; Dokanehiifard, S.; Rezaei, S.; Aryan, R.; Savardashtaki, A.; Mirzaei, H. Electrochemical-based biosensors for microRNA detection: Nanotechnology comes into view. Anal. Biochem., 2019, 581113349
[http://dx.doi.org/10.1016/j.ab.2019.113349] [PMID: 31254490]
[93]
Roointan, A.; Ahmad Mir, T.; Ibrahim Wani, S. Mati-Ur-Rehman; Hussain, K.K.; Ahmed, B.; Abrahim, S.; Savardashtaki, A.; Gandomani, G.; Gandomani, M.; Chinnappan, R.; Akhtar, M.H.. Early detection of lung cancer biomarkers through biosensor technology: A review. J. Pharm. Biomed. Anal., 2019, 164, 93-103.
[http://dx.doi.org/10.1016/j.jpba.2018.10.017] [PMID: 30366148]
[94]
Ozkan, S.A. Electroanalytical methods in pharmaceutical analysis and their validation; HNB Publishing, 2012.
[95]
Justino, C.I.; Rocha-Santos, T.A.; Duarte, A.C. Advances in point-of-care technologies with biosensors based on carbon nanotubes. Trends Analyt. Chem., 2013, 45, 24-36.
[http://dx.doi.org/10.1016/j.trac.2012.12.012]
[96]
Bakirhan, N.K.; Ozcelikay, G.; Ozkan, S.A. Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors. J. Pharm. Biomed. Anal., 2018, 159, 406-424.
[http://dx.doi.org/10.1016/j.jpba.2018.07.021] [PMID: 30036704]
[97]
Gomes-Filho, S. A carbon nanotube-based electrochemical immunosensor for cardiac troponin T. Microchem. J., 2013, 109, 10-15.
[http://dx.doi.org/10.1016/j.microc.2012.05.033]
[98]
Silva, B.V.; Cavalcanti, I.T.; Mattos, A.B.; Moura, P. Sotomayor, Mdel.P.; Dutra, R.F. Disposable immunosensor for human cardiac troponin T based on streptavidin-microsphere modified screen-printed electrode. Biosens. Bioelectron., 2010, 26(3), 1062-1067.
[http://dx.doi.org/10.1016/j.bios.2010.08.051] [PMID: 20863683]
[99]
Abdorahim, M. Nanomaterials-based electrochemical immunosensors for cardiac troponin recognition: An illustrated review. Trends Analyt. Chem., 2016, 82, 337-347.
[http://dx.doi.org/10.1016/j.trac.2016.06.015]
[100]
Shumkov, A.A. Gold and silver nanoparticles for electrochemical detection of cardiac troponin I based on stripping voltammetry. Bionanoscience, 2013, 3(2), 216-222.
[http://dx.doi.org/10.1007/s12668-013-0090-9]
[101]
Qiao, X.; Li, K.; Xu, J.; Cheng, N.; Sheng, Q.; Cao, W.; Yue, T.; Zheng, J. Novel electrochemical sensing platform for ultrasensitive detection of cardiac troponin I based on aptamer-MoS2 nanoconjugates. Biosens. Bioelectron., 2018, 113, 142-147.
[http://dx.doi.org/10.1016/j.bios.2018.05.003] [PMID: 29754053]
[102]
Suprun, E.V.; Saveliev, A.A.; Evtugyn, G.A.; Lisitsa, A.V.; Bulko, T.V.; Shumyantseva, V.V.; Archakov, A.I. Electrochemical approach for acute myocardial infarction diagnosis based on direct antibodies-free analysis of human blood plasma. Biosens. Bioelectron., 2012, 33(1), 158-164.
[http://dx.doi.org/10.1016/j.bios.2011.12.045] [PMID: 22310155]
[103]
Silva, B.V.; Cavalcanti, I.T.; Silva, M.M.; Dutra, R.F. A carbon nanotube screen-printed electrode for label-free detection of the human cardiac troponin T. Talanta, 2013, 117, 431-437.
[http://dx.doi.org/10.1016/j.talanta.2013.08.059] [PMID: 24209364]
[104]
Chua, J.H.; Chee, R.E.; Agarwal, A.; Wong, S.M.; Zhang, G.J. Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Anal. Chem., 2009, 81(15), 6266-6271.
[http://dx.doi.org/10.1021/ac901157x] [PMID: 20337397]
[105]
Lee, I.; Luo, X.; Huang, J.; Cui, X.T.; Yun, M. Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors. Biosensors (Basel), 2012, 2(2), 205-220.
[http://dx.doi.org/10.3390/bios2020205] [PMID: 25585711]
[106]
Zhang, G-J.; Luo, Z.H.; Huang, M.J.; Ang, J.J.; Kang, T.G.; Ji, H. An integrated chip for rapid, sensitive, and multiplexed detection of cardiac biomarkers from fingerprick blood. Biosens. Bioelectron., 2011, 28(1), 459-463.
[http://dx.doi.org/10.1016/j.bios.2011.07.007] [PMID: 21807497]
[107]
Pakapongpan, S.; Palangsuntikul, R.; Surareungchai, W. Electrochemical sensors for hemoglobin and myoglobin detection based on methylene blue-multiwalled carbon nanotubes nanohybrid-modified glassy carbon electrode. Electrochim. Acta, 2011, 56(19), 6831-6836.
[http://dx.doi.org/10.1016/j.electacta.2011.05.089]
[108]
Sharma, V. Electrochemical impedance immunosensor for the detection of cardiac biomarker Myogobin (Mb) in aqueous solution. Thin Solid Films, 2010, 519(3), 1167-1170.
[http://dx.doi.org/10.1016/j.tsf.2010.08.063]
[109]
Mishra, S.K.; Kumar, D.; Biradar, A.M. Rajesh, Electrochemical impedance spectroscopy characterization of mercaptopropionic acid capped ZnS nanocrystal based bioelectrode for the detection of the cardiac biomarker--myoglobin. Bioelectrochemistry, 2012, 88, 118-126.
[http://dx.doi.org/10.1016/j.bioelechem.2012.07.006] [PMID: 22922532]
[110]
Moreira, F.T. Surface imprinting approach on screen printed electrodes coated with carboxylated PVC for myoglobin detection with electrochemical transduction. Procedia Eng., 2012, 47, 865-868.
[http://dx.doi.org/10.1016/j.proeng.2012.09.284]
[111]
Lee, I.; Luo, X.; Cui, X.T.; Yun, M. Highly sensitive single polyaniline nanowire biosensor for the detection of immunoglobulin G and myoglobin. Biosens. Bioelectron., 2011, 26(7), 3297-3302.
[http://dx.doi.org/10.1016/j.bios.2011.01.001] [PMID: 21269820]
[112]
Kokkinos, C.; Prodromidis, M.; Economou, A.; Petrou, P.; Kakabakos, S. Disposable integrated bismuth citrate-modified screen-printed immunosensor for ultrasensitive quantum dot-based electrochemical assay of C-reactive protein in human serum. Anal. Chim. Acta, 2015, 886, 29-36.
[http://dx.doi.org/10.1016/j.aca.2015.05.035] [PMID: 26320633]
[113]
Ibupoto, Z.H. Development of a disposable potentiometric antibody immobilized ZnO nanotubes based sensor for the detection of C-reactive protein. Sens. Actuators B Chem., 2012, 166, 809-814.
[http://dx.doi.org/10.1016/j.snb.2012.03.083]
[114]
Miao, W.; Bard, A.J. Electrogenerated chemiluminescence. 72. Determination of immobilized DNA and C-reactive protein on Au(111) electrodes using tris(2,2′-bipyridyl)-ruthenium(II) labels. Anal. Chem., 2003, 75(21), 5825-5834.
[http://dx.doi.org/10.1021/ac034596v] [PMID: 14588023]
[115]
Lin, K-C.; Kunduru, V.; Bothara, M.; Rege, K.; Prasad, S.; Ramakrishna, B.L. Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins. Biosens. Bioelectron., 2010, 25(10), 2336-2342.
[http://dx.doi.org/10.1016/j.bios.2010.03.032] [PMID: 20417087]
[116]
Songjaroen, T. Label-free detection of C-reactive protein using an electrochemical DNA immunoassay. Sens. Biosensing Res., 2016, 8, 14-19.
[http://dx.doi.org/10.1016/j.sbsr.2016.03.003]
[117]
Buch, M.; Rishpon, J. An Electrochemical Immunosensor for C‐Reactive Protein Based on Multi‐Walled Carbon Nanotube‐Modified Electrodes. Electroanalysis. An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2008, 20(23), 2592-2594.
[118]
Gupta, R.K.; Meyyappan, M.; Koehne, J.E. Vertically aligned carbon nanofiber nanoelectrode arrays: electrochemical etching and electrode reusability. RSC Advances, 2014, 4(43), 22642-22650.
[http://dx.doi.org/10.1039/c4ra01779j] [PMID: 25089188]
[119]
Anwar, R.M. Highly sensitive conductive polymer nanofibers for applications in cardiac biomarker detection. Adv. Sci. Eng. Med., 2013, 5(7), 633-640.
[http://dx.doi.org/10.1166/asem.2013.1297]
[120]
Kunduru, V.; Bothara, M.; Grosch, J.; Sengupta, S.; Patra, P.K.; Prasad, S. Nanostructured surfaces for enhanced protein detection toward clinical diagnostics. Nanomedicine (Lond.), 2010, 6(5), 642-650.
[http://dx.doi.org/10.1016/j.nano.2010.03.002] [PMID: 20353834]
[121]
Zhuo, Y.; Yi, W.J.; Lian, W.B.; Yuan, R.; Chai, Y.Q.; Chen, A.; Hu, C.M. Ultrasensitive electrochemical strategy for NT-proBNP detection with gold nanochains and horseradish peroxidase complex amplification. Biosens. Bioelectron., 2011, 26(5), 2188-2193.
[http://dx.doi.org/10.1016/j.bios.2010.09.033] [PMID: 20952179]
[122]
Serafín, V.; Torrente-Rodríguez, R.M.; González-Cortés, A.; García de Frutos, P.; Sabaté, M.; Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. An electrochemical immunosensor for brain natriuretic peptide prepared with screen-printed carbon electrodes nanostructured with gold nanoparticles grafted through aryl diazonium salt chemistry. Talanta, 2018, 179, 131-138.
[http://dx.doi.org/10.1016/j.talanta.2017.10.063] [PMID: 29310212]
[123]
Panneer Selvam, A.; Prasad, S. Nanosensor electrical immunoassay for quantitative detection of NT-pro brain natriuretic peptide. Future Cardiol., 2013, 9(1), 137-147.
[http://dx.doi.org/10.2217/fca.12.76] [PMID: 23259480]
[124]
Liu, P. High yield two-dimensional (2-D) polyaniline layer and its application in detection of B-type natriuretic peptide in human serum. Sens. Actuators B Chem., 2016, 230, 184-190.
[http://dx.doi.org/10.1016/j.snb.2016.02.051]
[125]
Matsuura, H.; Sato, Y.; Niwa, O.; Mizutani, F. Electrochemical enzyme immunoassay of a peptide hormone at picomolar levels. Anal. Chem., 2005, 77(13), 4235-4240.
[http://dx.doi.org/10.1021/ac040190m] [PMID: 15987132]
[126]
Kim, J. Rapid prototyping of multifunctional microfluidic cartridges for electrochemical biosensing platforms. Sens. Actuators B Chem., 2014, 202, 60-66.
[http://dx.doi.org/10.1016/j.snb.2014.05.009]
[127]
Hong, C-Y.; Chen, X.; Liu, T.; Li, J.; Yang, H.H.; Chen, J.H.; Chen, G.N. Ultrasensitive electrochemical detection of cancer-associated circulating microRNA in serum samples based on DNA concatamers. Biosens. Bioelectron., 2013, 50, 132-136.
[http://dx.doi.org/10.1016/j.bios.2013.06.040] [PMID: 23850778]
[128]
Yin, H.; Zhou, Y.; Chen, C.; Zhu, L.; Ai, S. An electrochemical signal ‘off-on’ sensing platform for microRNA detection. Analyst (Lond.), 2012, 137(6), 1389-1395.
[http://dx.doi.org/10.1039/c2an16098f] [PMID: 22311172]
[129]
Wen, Y.; Liu, G.; Pei, H.; Li, L.; Xu, Q.; Liang, W.; Li, Y.; Xu, L.; Ren, S.; Fan, C. DNA nanostructure-based ultrasensitive electrochemical microRNA biosensor. Methods, 2013, 64(3), 276-282.
[http://dx.doi.org/10.1016/j.ymeth.2013.07.035] [PMID: 23911620]
[130]
Pöhlmann, C.; Sprinzl, M. Electrochemical detection of microRNAs via gap hybridization assay. Anal. Chem., 2010, 82(11), 4434-4440.
[http://dx.doi.org/10.1021/ac100186p] [PMID: 20433153]
[131]
Cheng, F-F.; He, T.T.; Miao, H.T.; Shi, J.J.; Jiang, L.P.; Zhu, J.J. Electron transfer mediated electrochemical biosensor for microRNAs detection based on metal ion functionalized titanium phosphate nanospheres at attomole level. ACS Appl. Mater. Interfaces, 2015, 7(4), 2979-2985.
[http://dx.doi.org/10.1021/am508690x] [PMID: 25588109]
[132]
Tran, H.V.; Piro, B.; Reisberg, S.; Huy Nguyen, L.; Dung Nguyen, T.; Duc, H.T.; Pham, M.C. An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes. Biosens. Bioelectron., 2014, 62, 25-30.
[http://dx.doi.org/10.1016/j.bios.2014.06.014] [PMID: 24973539]
[133]
Schreiber, A.; Feldbrügge, R.; Key, G.; Glatz, J.F.; Spener, F. An immunosensor based on disposable electrodes for rapid estimation of fatty acid-binding protein, an early marker of myocardial infarction. Biosens. Bioelectron., 1997, 12(11), 1131-1137.
[http://dx.doi.org/10.1016/S0956-5663(97)00003-1] [PMID: 9451800]
[134]
O’Regan, T.M.; Pravda, M.; O’Sullivan, C.K.; Guilbault, G.G. Development of a disposable immunosensor for the detection of human heart fatty-acid binding protein in human whole blood using screen-printed carbon electrodes. Talanta, 2002, 57(3), 501-510.
[http://dx.doi.org/10.1016/S0039-9140(02)00047-4] [PMID: 18968649]
[135]
Hasić, S.; Kiseljaković, E.; Jadrić, R.; Radovanović, J.; Winterhalter-Jadrić, M. Cardiac troponin I: the gold standard in acute myocardial infarction diagnosis. Bosn. J. Basic Med. Sci., 2003, 3(3), 41-44.
[http://dx.doi.org/10.17305/bjbms.2003.3527] [PMID: 16232149]
[136]
Cheng, Y.; Regnier, M. Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility. Arch. Biochem. Biophys., 2016, 601, 11-21.
[http://dx.doi.org/10.1016/j.abb.2016.02.004] [PMID: 26851561]
[137]
Davies, K.R.; Gelb, A.W.; Manninen, P.H.; Boughner, D.R.; Bisnaire, D. Cardiac function in aneurysmal subarachnoid haemorrhage: a study of electrocardiographic and echocardiographic abnormalities. Br. J. Anaesth., 1991, 67(1), 58-63.
[http://dx.doi.org/10.1093/bja/67.1.58] [PMID: 1859761]
[138]
Korff, S.; Katus, H.A.; Giannitsis, E. Differential diagnosis of elevated troponins. Heart, 2006, 92(7), 987-993.
[http://dx.doi.org/10.1136/hrt.2005.071282] [PMID: 16775113]
[139]
Moran, A.E.; Tzong, K.Y.; Forouzanfar, M.H.; Rothy, G.A.; Mensah, G.A.; Ezzati, M.; Murray, C.J.; Naghavi, M. Variations in ischemic heart disease burden by age, country, and income: the Global Burden of Diseases, Injuries, and Risk Factors 2010 study. Glob. Heart, 2014, 9(1), 91-99.
[http://dx.doi.org/10.1016/j.gheart.2013.12.007] [PMID: 24977114]
[140]
Thygesen, K.; Alpert, J.S.; White, H.D. Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. J. Am. Coll. Cardiol., 2007, 50(22), 2173-2195.
[http://dx.doi.org/10.1016/j.jacc.2007.09.011] [PMID: 18036459]
[141]
Song, W-J.; Van Keuren, M.L.; Drabkin, H.A.; Cypser, J.R.; Gemmill, R.M.; Kurnit, D.M. Assignment of the human slow twitch skeletal muscle/cardiac troponin C gene (TNNC1) to human chromosome 3p21.3-->3p14.3 using somatic cell hybrids. Cytogenet. Cell Genet., 1996, 75(1), 36-37.
[http://dx.doi.org/10.1159/000134453] [PMID: 8995486]
[142]
Ravkilde, J. Risk stratification in acute coronary syndrome using cardiac troponin I. Clin. Chem., 2000, 46(4), 443-444.
[http://dx.doi.org/10.1093/clinchem/46.4.443] [PMID: 10759466]
[143]
Cina, S.J.; Brown, D.K.; Smialek, J.E.; Collins, K.A. A rapid postmortem cardiac troponin T assay: laboratory evidence of sudden cardiac death. Am. J. Forensic Med. Pathol., 2001, 22(2), 173-176.
[http://dx.doi.org/10.1097/00000433-200106000-00012] [PMID: 11394753]
[144]
Stelzle, D.; Shah, A.S.V.; Anand, A.; Strachan, F.E.; Chapman, A.R.; Denvir, M.A.; Mills, N.L.; McAllister, D.A. High-sensitivity cardiac troponin I and risk of heart failure in patients with suspected acute coronary syndrome: a cohort study. Eur. Heart J. Qual. Care Clin. Outcomes, 2018, 4(1), 36-42.
[http://dx.doi.org/10.1093/ehjqcco/qcx022] [PMID: 29045610]
[145]
Kazemi, S.H.; Ghodsi, E.; Abdollahi, S.; Nadri, S. Porous graphene oxide nanostructure as an excellent scaffold for label-free electrochemical biosensor: Detection of cardiac troponin I. Mater. Sci. Eng. C, 2016, 69, 447-452.
[http://dx.doi.org/10.1016/j.msec.2016.07.005] [PMID: 27612734]
[146]
Liu, G.; Qi, M.; Zhang, Y.; Cao, C.; Goldys, E.M. Nanocomposites of gold nanoparticles and graphene oxide towards an stable label-free electrochemical immunosensor for detection of cardiac marker troponin-I. Anal. Chim. Acta, 2016, 909, 1-8.
[http://dx.doi.org/10.1016/j.aca.2015.12.023] [PMID: 26851079]
[147]
Jo, H.; Gu, H.; Jeon, W.; Youn, H.; Her, J.; Kim, S.K.; Lee, J.; Shin, J.H.; Ban, C. Electrochemical aptasensor of cardiac troponin I for the early diagnosis of acute myocardial infarction. Anal. Chem., 2015, 87(19), 9869-9875.
[http://dx.doi.org/10.1021/acs.analchem.5b02312] [PMID: 26352249]
[148]
Periyakaruppan, A.; Gandhiraman, R.P.; Meyyappan, M.; Koehne, J.E. Label-free detection of cardiac troponin-I using carbon nanofiber based nanoelectrode arrays. Anal. Chem., 2013, 85(8), 3858-3863.
[http://dx.doi.org/10.1021/ac302801z] [PMID: 23384128]
[149]
Li, F.; Yu, Y.; Cui, H.; Yang, D.; Bian, Z. Label-free electrochemiluminescence immunosensor for cardiac troponin I using luminol functionalized gold nanoparticles as a sensing platform. Analyst (Lond.), 2013, 138(6), 1844-1850.
[http://dx.doi.org/10.1039/c3an36805j] [PMID: 23377497]
[150]
Ramadan, M.A. Acta Crystallographica Section D In: The three-dimensional structure of calcium-depleted human C-reactive protein from perfectly twinned crystals; , 2002, 58, pp. 6-2.
[http://dx.doi.org/10.1107/S0907444902005693]
[151]
Ledue, T.B.; Rifai, N. Preanalytic and analytic sources of variations in C-reactive protein measurement: implications for cardiovascular disease risk assessment. Clin. Chem., 2003, 49(8), 1258-1271.
[http://dx.doi.org/10.1373/49.8.1258] [PMID: 12881440]
[152]
Blake, G.J.; Ridker, P.M. Inflammatory bio-markers and cardiovascular risk prediction. J. Intern. Med., 2002, 252(4), 283-294.
[http://dx.doi.org/10.1046/j.1365-2796.2002.01019.x] [PMID: 12366601]
[153]
Lee, S-S. High-sensitivity C-reactive protein as an associate of clinical subsets and organ damage in systemic lupus erythematosus. In: Seminars in arthritis and rheumatism; Elsevier, 2008.
[http://dx.doi.org/10.1016/j.semarthrit.2007.09.005]
[154]
Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation, 2002, 105(9), 1135-1143.
[http://dx.doi.org/10.1161/hc0902.104353] [PMID: 11877368]
[155]
Pagana, K.D.; Pagana, T.J. Mosby’s Manual of Diagnostic and Laboratory Tests-E-Book; Elsevier Health Sciences, 2017.
[156]
Cao, J.J.; Thach, C.; Manolio, T.A.; Psaty, B.M.; Kuller, L.H.; Chaves, P.H.; Polak, J.F.; Sutton-Tyrrell, K.; Herrington, D.M.; Price, T.R.; Cushman, M. C-reactive protein, carotid intima-media thickness, and incidence of ischemic stroke in the elderly: the Cardiovascular Health Study. Circulation, 2003, 108(2), 166-170.
[http://dx.doi.org/10.1161/01.CIR.0000079160.07364.6A] [PMID: 12821545]
[157]
Ridker, P.M.; Glynn, R.J.; Hennekens, C.H. C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation, 1998, 97(20), 2007-2011.
[http://dx.doi.org/10.1161/01.CIR.97.20.2007] [PMID: 9610529]
[158]
Yasojima, K.; Schwab, C.; McGeer, E.G.; McGeer, P.L. Generation of C-reactive protein and complement components in atherosclerotic plaques. Am. J. Pathol., 2001, 158(3), 1039-1051.
[http://dx.doi.org/10.1016/S0002-9440(10)64051-5] [PMID: 11238052]
[159]
Williams, T.N.; Zhang, C.X.; Game, B.A.; He, L.; Huang, Y. C-reactive protein stimulates MMP-1 expression in U937 histiocytes through Fc[γ]RII and extracellular signal-regulated kinase pathway: an implication of CRP involvement in plaque destabilization. Arterioscler. Thromb. Vasc. Biol., 2004, 24(1), 61-66.
[http://dx.doi.org/10.1161/01.ATV.0000104014.24367.16] [PMID: 14592848]
[160]
de Beer, F.C.; Hind, C.R.; Fox, K.M.; Allan, R.M.; Maseri, A.; Pepys, M.B. Measurement of serum C-reactive protein concentration in myocardial ischaemia and infarction. Br. Heart J., 1982, 47(3), 239-243.
[http://dx.doi.org/10.1136/hrt.47.3.239] [PMID: 7059401]
[161]
Morrow, D.A.; Cannon, C.P.; Jesse, R.L.; Newby, L.K.; Ravkilde, J.; Storrow, A.B.; Wu, A.H.; Christenson, R.H. National Academy of Clinical Biochemistry. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: Clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Circulation, 2007, 115(13), e356-e375.
[PMID: 17384331]
[162]
Burtis, C.A.; Ashwood, E.R.; Bruns, D.E. Tietz textbook of clinical chemistry and molecular diagnostics-e-book; Elsevier Health Sciences, 2012.
[163]
Gupta, R.K.; Periyakaruppan, A.; Meyyappan, M.; Koehne, J.E. Label-free detection of C-reactive protein using a carbon nanofiber based biosensor. Biosens. Bioelectron., 2014, 59, 112-119.
[http://dx.doi.org/10.1016/j.bios.2014.03.027] [PMID: 24709327]
[164]
Bryan, T.; Luo, X.; Bueno, P.R.; Davis, J.J. An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood. Biosens. Bioelectron., 2013, 39(1), 94-98.
[http://dx.doi.org/10.1016/j.bios.2012.06.051] [PMID: 22809521]
[165]
Hennessey, H.; Afara, N.; Omanovic, S.; Padjen, A.L. Electrochemical investigations of the interaction of C-reactive protein (CRP) with a CRP antibody chemically immobilized on a gold surface. Anal. Chim. Acta, 2009, 643(1-2), 45-53.
[http://dx.doi.org/10.1016/j.aca.2009.04.009] [PMID: 19446062]
[166]
Wang, J.; Guo, J.; Zhang, J.; Zhang, W.; Zhang, Y. RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes. Biosens. Bioelectron., 2017, 95, 100-105.
[http://dx.doi.org/10.1016/j.bios.2017.04.014] [PMID: 28431362]
[167]
Liu, T-Z.; Hu, R.; Zhang, X.; Zhang, K.L.; Liu, Y.; Zhang, X.B.; Bai, R.Y.; Li, D.; Yang, Y.H. Metal-organic framework nanomaterials as novel signal probes for electron transfer mediated ultrasensitive electrochemical immunoassay. Anal. Chem., 2016, 88(24), 12516-12523.
[http://dx.doi.org/10.1021/acs.analchem.6b04191] [PMID: 28193012]
[168]
Hamon, L.; Llewellyn, P.L.; Devic, T.; Ghoufi, A.; Clet, G.; Guillerm, V.; Pirngruber, G.D.; Maurin, G.; Serre, C.; Driver, G.; van Beek, W.; Jolimaître, E.; Vimont, A.; Daturi, M.; Férey, G. Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF. J. Am. Chem. Soc., 2009, 131(47), 17490-17499.
[http://dx.doi.org/10.1021/ja907556q] [PMID: 19904944]
[169]
Zhao, M.; Deng, K.; He, L.; Liu, Y.; Li, G.; Zhao, H.; Tang, Z. Core-shell palladium nanoparticle@metal-organic frame-works as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc., 2014, 136(5), 1738-1741.
[http://dx.doi.org/10.1021/ja411468e] [PMID: 24437922]
[170]
Nassar, A-E.F. Electrochemical properties of myoglobin embedded in Langmuir-Blodgett and cast films of synthetic lipids. J. Chem. Soc., Faraday Trans., 1995, 91(12), 1775-1782.
[http://dx.doi.org/10.1039/FT9959101775]
[171]
McDonnell, B.; Hearty, S.; Leonard, P.; O’Kennedy, R. Cardiac biomarkers and the case for point-of-care testing. Clin. Biochem., 2009, 42(7-8), 549-561.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.01.019] [PMID: 19318022]
[172]
Isakov, A.; Shapira, I.; Burke, M.; Almog, C. Serum myoglobin levels in patients with ischemic myocardial insult. Arch. Intern. Med., 1988, 148(8), 1762-1765.
[http://dx.doi.org/10.1001/archinte.1988.00380080054016] [PMID: 3401097]
[173]
Bhayana, V.; Gougoulias, T.; Cohoe, S.; Henderson, A.R. Discordance between results for serum troponin T and troponin I in renal disease. Clin. Chem., 1995, 41(2), 312-317.
[http://dx.doi.org/10.1093/clinchem/41.2.312] [PMID: 7874786]
[174]
Cao, W. Direct electrochemistry and electrocatalysis of myoglobin immobilized on gold nanoparticles/carbon nanotubes nanohybrid film. Electroanalysis. An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2008, 20(17), 1925-1931.
[175]
Sun, W. Electrodeposition of Co nanoparticles on the carbon ionic liquid electrode as a platform for myoglobin electrochemical biosensor. J. Phys. Chem. C, 2009, 113(26), 11294-11300.
[http://dx.doi.org/10.1021/jp8114594]
[176]
Ruan, C. Electrochemical myoglobin biosensor based on graphene-ionic liquid-chitosan bionanocomposites: Direct electrochemistry and electrocatalysis. Electrochim. Acta, 2012, 64, 183-189.
[http://dx.doi.org/10.1016/j.electacta.2012.01.005]
[177]
Pur, M.R.K. Highly sensitive label-free electrochemiluminescence aptasensor for early detection of myoglobin, a biomarker for myocardial infarction. Mikrochim. Acta, 2017, 184(9), 3529-3537.
[http://dx.doi.org/10.1007/s00604-017-2385-y]
[178]
Yasue, H.; Yoshimura, M.; Sumida, H.; Kikuta, K.; Kugiyama, K.; Jougasaki, M.; Ogawa, H.; Okumura, K.; Mukoyama, M.; Nakao, K. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation, 1994, 90(1), 195-203.
[http://dx.doi.org/10.1161/01.CIR.90.1.195] [PMID: 8025996]
[179]
Kumar, V.; Brent, J.R.; Shorie, M.; Kaur, H.; Chadha, G.; Thomas, A.G.; Lewis, E.A.; Rooney, A.P.; Nguyen, L.; Zhong, X.L.; Burke, M.G.; Haigh, S.J.; Walton, A.; McNaughter, P.D.; Tedstone, A.A.; Savjani, N.; Muryn, C.A.; O’Brien, P.; Ganguli, A.K.; Lewis, D.J.; Sabherwal, P. Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces, 2016, 8(35), 22860-22868.
[http://dx.doi.org/10.1021/acsami.6b06488] [PMID: 27508925]
[180]
Moreira, F.T. Electrochemical biosensor based on biomimetic material for myoglobin detection. Electrochim. Acta, 2013, 107, 481-487.
[http://dx.doi.org/10.1016/j.electacta.2013.06.061]
[181]
Schlattner, U.; Klaus, A.; Ramirez Rios, S.; Guzun, R.; Kay, L.; Tokarska-Schlattner, M. Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Amino Acids, 2016, 48(8), 1751-1774.
[http://dx.doi.org/10.1007/s00726-016-2267-3] [PMID: 27318991]
[182]
Lang, H.; Würzburg, U. Creatine kinase, an enzyme of many forms. Clin. Chem., 1982, 28(7), 1439-1447.
[http://dx.doi.org/10.1093/clinchem/28.7.1439] [PMID: 7044614]
[183]
Voss, E.M.; Sharkey, S.W.; Gernert, A.E.; Murakami, M.M.; Johnston, R.B.; Hsieh, C.C.; Apple, F.S. Human and canine cardiac troponin T and creatine kinase-MB distribution in normal and diseased myocardium. Infarct sizing using serum profiles. Arch. Pathol. Lab. Med., 1995, 119(9), 799-806.
[PMID: 7668937]
[184]
Sharkey, S.W.; Elsperger, K.J.; Murakami, M.; Apple, F.S. Canine myocardial creatine kinase isoenzyme response to coronary artery occlusion. Am. J. Physiol., 1989, 256(2 Pt 2), H508-H514.
[PMID: 2916683]
[185]
Ingwall, J.S.; Kramer, M.F.; Fifer, M.A.; Lorell, B.H.; Shemin, R.; Grossman, W.; Allen, P.D. The creatine kinase system in normal and diseased human myocardium. N. Engl. J. Med., 1985, 313(17), 1050-1054.
[http://dx.doi.org/10.1056/NEJM198510243131704] [PMID: 2931604]
[186]
Silverman, L.; Mendell, J.; Gruemer, H. creatine-kinase isoenzymes in muscular-dystrophy In:Clinical Chemistry; amer assoc clinical chemistry;; 2101 l street nw: suite 202, washington, dc. , 1974.
[187]
Neumeier, D.; Hofstetter, R. Radioimmunoassay for subunit B in isoenzymes CK-MB and CK-BB of creatine phosphokinase. Clin. Chim. Acta, 1977, 79(1), 107-113.
[http://dx.doi.org/10.1016/0009-8981(77)90467-3] [PMID: 890944]
[188]
Kanemitsu, F.; Okigaki, T. Creatine kinase MB isoforms for early diagnosis and monitoring of acute myocardial infarction. Clin. Chim. Acta, 1992, 206(3), 191-199.
[http://dx.doi.org/10.1016/0009-8981(92)90088-8] [PMID: 1606705]
[189]
Moreira, F.T.; Dutra, R.A.; Noronha, J.P.; Sales, M.G. Novel sensory surface for creatine kinase electrochemical detection. Biosens. Bioelectron., 2014, 56, 217-222.
[http://dx.doi.org/10.1016/j.bios.2013.12.052] [PMID: 24508544]
[190]
Prakash, M.D. Electrochemical Detection of Cardiac Biomarkers Utilizing Electrospun Multiwalled Carbon Nanotubes Embedded SU‐8 Nanofibers. Electroanalysis, 2017, 29(2), 380-386.
[http://dx.doi.org/10.1002/elan.201501163]
[191]
Cheng, V.; Kazanagra, R.; Garcia, A.; Lenert, L.; Krishnaswamy, P.; Gardetto, N.; Clopton, P.; Maisel, A. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study. J. Am. Coll. Cardiol., 2001, 37(2), 386-391.
[http://dx.doi.org/10.1016/S0735-1097(00)01157-8] [PMID: 11216951]
[192]
Clerico, A.; Iervasi, G.; Del Chicca, M.G.; Emdin, M.; Maffei, S.; Nannipieri, M.; Sabatino, L.; Forini, F.; Manfredi, C.; Donato, L. Circulating levels of cardiac natriuretic peptides (ANP and BNP) measured by highly sensitive and specific immunoradiometric assays in normal subjects and in patients with different degrees of heart failure. J. Endocrinol. Invest., 1998, 21(3), 170-179.
[http://dx.doi.org/10.1007/BF03347297] [PMID: 9591213]
[193]
Mair, J.; Hammerer-Lercher, A.; Puschendorf, B. The impact of cardiac natriuretic peptide determination on the diagnosis and management of heart failure. Clin. Chem. Lab. Med., 2001, 39(7), 571-588.
[http://dx.doi.org/10.1515/CCLM.2001.093] [PMID: 11522102]
[194]
Markham, D.W.; de Lemos, J.A. Screening for cardiovascular disease using B-type natriuretic peptides: detecting an imbalance of the four humours; Oxford University Press, 2005.
[195]
Okamoto, F.; Sohmiya, K.; Ohkaru, Y.; Kawamura, K.; Asayama, K.; Kimura, H.; Nishimura, S.; Ishii, H.; Sunahara, N.; Tanaka, T. Human heart-type cytoplasmic fatty acid-binding protein (H-FABP) for the diagnosis of acute myocardial infarction. Clinical evaluation of H-FABP in comparison with myoglobin and creatine kinase isoenzyme MB. Clin. Chem. Lab. Med., 2000, 38(3), 231-238.
[http://dx.doi.org/10.1515/CCLM.2000.034] [PMID: 10905760]
[196]
Wollert, K.C.; Drexler, H. The role of interleukin-6 in the failing heart. Heart Fail. Rev., 2001, 6(2), 95-103.
[http://dx.doi.org/10.1023/A:1011401825680] [PMID: 11309528]
[197]
Conraads, V.M.; Denollet, J.; De Clerck, L.S.; Stevens, W.J.; Bridts, C.; Vrints, C.J. Type D personality is associated with increased levels of tumour necrosis factor (TNF)-α and TNF-α receptors in chronic heart failure. Int. J. Cardiol., 2006, 113(1), 34-38.
[http://dx.doi.org/10.1016/j.ijcard.2005.10.013] [PMID: 16325284]
[198]
Tang, W.H.; Brennan, M.L.; Philip, K.; Tong, W.; Mann, S.; Van Lente, F.; Hazen, S.L. Plasma myeloperoxidase levels in patients with chronic heart failure. Am. J. Cardiol., 2006, 98(6), 796-799.
[http://dx.doi.org/10.1016/j.amjcard.2006.04.018] [PMID: 16950188]
[199]
McCullough, P.A.; Hollander, J.E.; Nowak, R.M.; Storrow, A.B.; Duc, P.; Omland, T.; McCord, J.; Herrmann, H.C.; Steg, P.G.; Westheim, A.; Knudsen, C.W.; Abraham, W.T.; Lamba, S.; Wu, A.H.; Perez, A.; Clopton, P.; Krishnaswamy, P.; Kazanegra, R.; Maisel, A.S. BNP Multinational Study Investigators. Uncovering heart failure in patients with a history of pulmonary disease: rationale for the early use of B-type natriuretic peptide in the emergency department. Acad. Emerg. Med., 2003, 10(3), 198-204.
[http://dx.doi.org/10.1197/aemj.10.3.198] [PMID: 12615582]
[200]
Pedrero, M.; Campuzano, S.; Pingarrón, J.M. Electrochemical biosensors for the determination of cardiovascular markers: A review. Electroanalysis, 2014, 26(6), 1132-1153.
[http://dx.doi.org/10.1002/elan.201300597]
[201]
Matsuura, H. Surface electrochemical enzyme immunoassay for the highly sensitive measurement of B-type natriureric peptide. Sens. Actuators B Chem., 2005, 108(1-2), 603-607.
[http://dx.doi.org/10.1016/j.snb.2004.11.042]
[202]
Rosenberry, T.L. Acetylcholinesterase Adv. Enzymol. Relat. Areas Mol. Biol., 1975, 43, 103-218.
[http://dx.doi.org/10.1002/9780470122884.ch3] [PMID: 891]
[203]
Soreq, H.; Seidman, S. Acetylcholinesterase--new roles for an old actor. Nat. Rev. Neurosci., 2001, 2(4), 294-302.
[http://dx.doi.org/10.1038/35067589] [PMID: 11283752]
[204]
Hartati, Y.W. B-Type Natriuretic Peptide (BNP) Detection Using Electrochemical Immunosensor Based On Sandwich ELISA With Horseradish Peroxidase-Tetramethylbenzidine System Procedia technology, 2017, 27, 149-150.
[http://dx.doi.org/10.1016/j.protcy.2017.04.065]
[205]
Shanmugam, N.R.; Muthukumar, S.; Tanak, A.S.; Prasad, S. Multiplexed electrochemical detection of three cardiac biomarkers cTnI, cTnT and BNP using nanostructured ZnO-sensing platform. Future Cardiol., 2018, 14(2), 131-141.
[http://dx.doi.org/10.2217/fca-2017-0074] [PMID: 29388803]
[206]
Hombach, S.; Kretz, M. Non-coding RNAs: classification, biology and functioning.Non-coding RNAs in Colorectal Cancer; Springer, 2016, pp. 3-17.
[http://dx.doi.org/10.1007/978-3-319-42059-2-1]
[207]
Gangwar, R.S.; Rajagopalan, S.; Natarajan, R.; Deiuliis, J.A. Noncoding RNAs in cardiovascular disease: pathological relevance and emerging role as biomarkers and therapeutics. Am. J. Hypertens., 2018, 31(2), 150-165.
[http://dx.doi.org/10.1093/ajh/hpx197] [PMID: 29186297]
[208]
Poller, W.; Dimmeler, S.; Heymans, S.; Zeller, T.; Haas, J.; Karakas, M.; Leistner, D.M.; Jakob, P.; Nakagawa, S.; Blankenberg, S.; Engelhardt, S.; Thum, T.; Weber, C.; Meder, B.; Hajjar, R.; Landmesser, U. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur. Heart J., 2018, 39(29), 2704-2716.
[http://dx.doi.org/10.1093/eurheartj/ehx165] [PMID: 28430919]
[209]
Creemers, E.E.; Tijsen, A.J.; Pinto, Y.M. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ. Res., 2012, 110(3), 483-495.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.247452] [PMID: 22302755]
[210]
van Rooij, E.; Olson, E.N. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat. Rev. Drug Discov., 2012, 11(11), 860-872.
[http://dx.doi.org/10.1038/nrd3864] [PMID: 23080337]
[211]
Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: insights into functions. Nat. Rev. Genet., 2009, 10(3), 155-159.
[http://dx.doi.org/10.1038/nrg2521] [PMID: 19188922]
[212]
Yan, Y. Circulating long noncoding RNA UCA1 as a novel biomarker of acute myocardial infarction. BioMed Research. International., 2016, 2016
[http://dx.doi.org/10.1155/2016/8079372]
[213]
Peng, Y.; Jiang, J.; Yu, R. A sensitive electrochemical biosensor for microRNA detection based on streptavidin-gold nanoparticles and enzymatic amplification. Anal. Methods, 2014, 6(9), 2889-2893.
[http://dx.doi.org/10.1039/C4AY00033A]
[214]
Wu, X. Dual signal amplification strategy for enzyme-free electrochemical detection of microRNAs. Sens. Actuators B Chem., 2014, 203, 296-302.
[http://dx.doi.org/10.1016/j.snb.2014.06.131]
[215]
Lusi, E.A.; Passamano, M.; Guarascio, P.; Scarpa, A.; Schiavo, L. Innovative electrochemical approach for an early detection of microRNAs. Anal. Chem., 2009, 81(7), 2819-2822.
[http://dx.doi.org/10.1021/ac8026788] [PMID: 19331434]
[216]
Gao, Z.; Deng, H.; Shen, W.; Ren, Y. A label-free biosensor for electrochemical detection of femtomolar microRNAs. Anal. Chem., 2013, 85(3), 1624-1630.
[http://dx.doi.org/10.1021/ac302883c] [PMID: 23323518]
[217]
Hudziak, R.M.; Barofsky, E.; Barofsky, D.F.; Weller, D.L.; Huang, S.B.; Weller, D.D. Resistance of morpholino phosphorodiamidate oligomers to enzymatic degradation. Antisense Nucleic Acid Drug Dev., 1996, 6(4), 267-272.
[http://dx.doi.org/10.1089/oli.1.1996.6.267] [PMID: 9012862]
[218]
Kim, J. A Novel Zebrafish Model for Assessing In Vivo Delivery of Morpholino Oligomers.Exon Skipping and Inclusion Therapies; Springer, 2018, pp. 293-306.[http://dx.doi.org/10.1007/978-1-4939-8651-4-18]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy