Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Opinion Article

Understanding Non-Mendelian Genetic Risk

Author(s): Gerhard A. Coetzee*

Volume 20, Issue 5, 2019

Page: [322 - 324] Pages: 3

DOI: 10.2174/1389202920666191018085511

Price: $65

Abstract

This opinion paper highlights strategies for a better understanding of non-Mendelian genetic risk that was revealed by genome-wide association studies (GWAS) of complex diseases. The genetic risk resides predominantly in non-coding regulatory DNA, such as in enhancers. The identification of mechanisms, the causal variants (mainly SNPs), and their target genes are, however, not always apparent but are likely involved in a network of risk determinants; the identification presents a bottle-neck in the full understanding of the genetics of complex phenotypes. Here, we propose strategies to identify functional SNPs and link risk enhancers with their target genes. The strategies are 1) identifying finemapped SNPs that break/form response elements within chromatin bio-features in relevant cell types 2) considering the nearest gene on linear DNA, 3) analyzing eQTLs, 4) mapping differential DNA methylation regions and relating them to gene expression, 5) employing genomic editing with CRISPR/cas9 and 6) identifying topological associated chromatin domains using chromatin conformation capture.

Keywords: GWAS functionality, chromatin, genomics, SNP, genes, non-mendelian genetic risk.

[1]
Rice, J.P.; Saccone, N.L.; Corbett, J. The lod score method. Adv. Genet., 2001, 42, 99-113.
[http://dx.doi.org/10.1016/S0065-2660(01)42017-7] [PMID: 11037316]
[2]
Gallagher, M.D.; Chen-Plotkin, A.S. The Post-GWAS era: From association to function. Am. J. Hum. Genet., 2018, 102(5), 717-730.
[http://dx.doi.org/10.1016/j.ajhg.2018.04.002] [PMID: 29727686]
[3]
Slatkin, M. Linkage disequilibrium--understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet., 2008, 9(6), 477-485.
[http://dx.doi.org/10.1038/nrg2361] [PMID: 18427557]
[4]
Marchini, J.; Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet., 2010, 11(7), 499-511.
[http://dx.doi.org/10.1038/nrg2796] [PMID: 20517342]
[5]
Buffry, A.D.; Mendes, C.C.; McGregor, A.P. The functionality and evolution of eukaryotic transcriptional enhancers. Adv. Genet., 2016, 96, 143-206.
[http://dx.doi.org/10.1016/bs.adgen.2016.08.004] [PMID: 27968730]
[6]
Coetzee, S.G.; Coetzee, G.A.; Hazelett, D.J. motifbreakR: An R/Bioconductor package for predicting variant effects at transcription factor binding sites. Bioinformatics, 2015, 31(23), 3847-3849.
[http://dx.doi.org/10.1093/bioinformatics/btv470] [PMID: 26272984]
[7]
Li, G.; Ruan, X.; Auerbach, R.K.; Sandhu, K.S.; Zheng, M.; Wang, P.; Poh, H.M.; Goh, Y.; Lim, J.; Zhang, J.; Sim, H.S.; Peh, S.Q.; Mulawadi, F.H.; Ong, C.T.; Orlov, Y.L.; Hong, S.; Zhang, Z.; Landt, S.; Raha, D.; Euskirchen, G.; Wei, C.L.; Ge, W.; Wang, H.; Davis, C.; Fisher-Aylor, K.I.; Mortazavi, A.; Gerstein, M.; Gingeras, T.; Wold, B.; Sun, Y.; Fullwood, M.J.; Cheung, E.; Liu, E.; Sung, W.K.; Snyder, M.; Ruan, Y. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell, 2012, 148(1-2), 84-98.
[http://dx.doi.org/10.1016/j.cell.2011.12.014] [PMID: 22265404]
[8]
Smemo, S.; Tena, J.J.; Kim, K.H.; Gamazon, E.R.; Sakabe, N.J.; Gómez-Marín, C.; Aneas, I.; Credidio, F.L.; Sobreira, D.R.; Wasserman, N.F.; Lee, J.H.; Puviindran, V.; Tam, D.; Shen, M.; Son, J.E.; Vakili, N.A.; Sung, H.K.; Naranjo, S.; Acemel, R.D.; Manzanares, M.; Nagy, A.; Cox, N.J.; Hui, C.C.; Gomez-Skarmeta, J.L.; Nóbrega, M.A. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature, 2014, 507(7492), 371-375.
[http://dx.doi.org/10.1038/nature13138] [PMID: 24646999]
[9]
Yao, L.; Shen, H.; Laird, P.W.; Farnham, P.J.; Berman, B.P. Inferring regulatory element landscapes and transcription factor networks from cancer methylomes. Genome Biol., 2015, 16, 105.
[http://dx.doi.org/10.1186/s13059-015-0668-3] [PMID: 25994056]
[10]
Jin, F.; Li, Y.; Dixon, J.R.; Selvaraj, S.; Ye, Z.; Lee, A.Y.; Yen, C.A.; Schmitt, A.D.; Espinoza, C.A.; Ren, B. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature, 2013, 503(7475), 290-294.
[http://dx.doi.org/10.1038/nature12644] [PMID: 24141950]
[11]
Pennacchio, L.A.; Bickmore, W.; Dean, A.; Nobrega, M.A.; Bejerano, G. Enhancers: Five essential questions. Nat. Rev. Genet., 2013, 14(4), 288-295.
[http://dx.doi.org/10.1038/nrg3458] [PMID: 23503198]
[12]
Coetzee, G.A.; Pierce, S. The five dimensions of parkinson’s disease genetic risk. J. Parkinsons Dis., 2017.
[http://dx.doi.org/10.3233/JPD-171256] [PMID: 29254107]
[13]
Parry, E.M.; Gable, D.L.; Stanley, S.E.; Khalil, S.E.; Antonescu, V.; Florea, L.; Armanios, M. Germline mutations in DNA repair genes in lung adenocarcinoma. J. Thorac. Oncol., 2017, 12(11), 1673-1678.
[http://dx.doi.org/10.1016/j.jtho.2017.08.011] [PMID: 28843361]
[14]
Brandt, M.; Lappalainen, T. SnapShot: Discovering genetic regulatory variants by QTL analysis. Cell, 2017, 171, 980.
[http://dx.doi.org/10.1016/j.cell.2017.10.031]
[15]
Liu, B.; Gloudemans, M.J.; Rao, A.S.; Ingelsson, E.; Montgomery, S.B. Abundant associations with gene expression complicate GWAS follow-up. Nat. Genet., 2019, 51(5), 768-769.
[http://dx.doi.org/10.1038/s41588-019-0404-0] [PMID: 31043754]
[16]
Rhie, S.K.; Guo, Y.; Tak, Y.G.; Yao, L.; Shen, H.; Coetzee, G.A.; Laird, P.W.; Farnham, P.J. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits. Epigenetics Chromatin, 2016, 9, 50.
[http://dx.doi.org/10.1186/s13072-016-0102-4] [PMID: 27833659]
[17]
Silva, T.C.; Coetzee, S.G.; Gull, N.; Yao, L.; Hazelett, D.J.; Noushmehr, H.; Lin, D.C.; Berman, B.P. ELMER v.2: An R/Bioconductor package to reconstruct gene regulatory networks from DNA methylation and transcriptome profiles. Bioinformatics, 2019, 35(11), 1974-1977.
[http://dx.doi.org/10.1093/bioinformatics/bty902] [PMID: 30364927]
[18]
Bak, R.O.; Gomez-Ospina, N.; Porteus, M.H. Gene editing on center stage. Trends Genet., 2018, 34(8), 600-611.
[http://dx.doi.org/10.1016/j.tig.2018.05.004] [PMID: 29908711]
[19]
Soldner, F.; Stelzer, Y.; Shivalila, C.S.; Abraham, B.J.; Latourelle, J.C.; Barrasa, M.I.; Goldmann, J.; Myers, R.H.; Young, R.A.; Jaenisch, R. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature, 2016, 533(7601), 95-99.
[http://dx.doi.org/10.1038/nature17939] [PMID: 27096366]
[20]
Guo, Y.; Perez, A.A.; Hazelett, D.J.; Coetzee, G.A.; Rhie, S.K.; Farnham, P.J. CRISPR-mediated deletion of prostate cancer risk-associated CTCF loop anchors identifies repressive chromatin loops. Genome Biol., 2018, 19(1), 160.
[http://dx.doi.org/10.1186/s13059-018-1531-0] [PMID: 30296942]
[21]
Dekker, J.; Misteli, T. Long-range chromatin interactions. Cold Spring Harb. Perspect. Biol., 2015, 7(10)a019356
[http://dx.doi.org/10.1101/cshperspect.a019356] [PMID: 26430217]
[22]
Dekker, J.; Mirny, L. The 3D genome as moderator of chromosomal communication. Cell, 2016, 164(6), 1110-1121.
[http://dx.doi.org/10.1016/j.cell.2016.02.007] [PMID: 26967279]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy