Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Synthesis and Biological Evaluation of Novel Chromone+Donepezil Hybrids for Alzheimer’s Disease Therapy

Author(s): Rim Malek, Bernard Refouvelet, Mohamed Benchekroun, Isabel Iriepa, Ignacio Moraleda, Rudolf Andrys, Kamil Musilek, José Marco-Contelles and Lhassane Ismaili*

Volume 16, Issue 9, 2019

Page: [815 - 820] Pages: 6

DOI: 10.2174/1567205016666191011112624

Price: $65

Abstract

Background: Many factors are involved in Alzheimer’s Disease (AD) such as amyloid plaques, neurofibrillary tangles, cholinergic deficit and oxidative stress. To counter the complexity of the disease the new approach for drug development is to create a single molecule able to act simultaneously on different targets.

Objective: We conceived eight drug likeliness compounds targeting the inhibition of cholinesterases and the scavenging of radicals.

Methods: We synthesised the new molecules by the Passerini multicomponent reaction and evaluated their inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) as well as their antioxidant activities by the Oxygen Radical Absorbance Capacity (ORAC) assay. The lipinski’s rule for drug likeness and in silico ADME prediction was also performed.

Results: Compounds 4f [IC50 (EeAChE) = 0.30 μM; IC50 (eqBuChE) = 0.09 μM; ORAC = 0.64 TE] and 4h [IC50 (EeAChE) = 1 μM; IC50 (eqBuChE) = 0.03 μM; ORAC = 0.50 TE] were identified as hits for further development.

Conclusion: The Passerini reaction allowed us the facile synthesis of ditarget molecules of interest for the treatment of AD.

Keywords: Alzheimer disease, antioxidants, cholinesterase, chromone, donepezil, ORAC, passerini reaction.

[1]
Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science 314(5800): 777-81. (2006).
[http://dx.doi.org/10.1126/science.1132814] [PMID: 17082447]
[2]
Finder VH. Alzheimer’s disease: a general introduction and pathomechanism. J Alzheimers Dis 22(Suppl. 3): 5-19. (2010).
[http://dx.doi.org/10.3233/JAD-2010-100975] [PMID: 20858960]
[3]
Bush AI. Drug development based on the metals hypothesis of Alzheimer’s disease. J Alzheimers Dis 15(2): 223-40. (2008).
[http://dx.doi.org/10.3233/JAD-2008-15208] [PMID: 18953111]
[4]
Opazo C, Huang X, Cherny RA, Moir RD, Roher AE, White AR, et al. Metalloenzyme-like activity of Alzheimer’s disease beta-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H(2)O(2). J Biol Chem 277(43): 40302-8. (2002).
[http://dx.doi.org/10.1074/jbc.M206428200] [PMID: 12192006]
[5]
Wilkinson D, Wirth Y, Goebel C. Memantine in patients with moderate to severe Alzheimer’s disease: meta-analyses using realistic definitions of response. Dement Geriatr Cogn Disord 37(1-2): 71-85. (2014).
[http://dx.doi.org/10.1159/000353801] [PMID: 24107324]
[6]
Perez DI, Martinez A, Gil C, Campillo NE. From biotopic inhibitors to multitarget drugs for the future treatment of Alzheimer’s disease. Curr Med Chem 22(33): 3789-806. (2015).
[PMID: 26264921]
[7]
Agis-Torres A, Sölhuber M, Fernández M, Sánchez-Montero JM. Multi-target-directed ligands and other therapeutic strategies in the search of a real solution for Alzheimer’s disease. Curr Neuropharmacol 12(1): 2-36. (2014).
[http://dx.doi.org/10.2174/1570159X113116660047] [PMID: 24533013]
[8]
Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, et al. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 51(3): 347-72. (2008).
[http://dx.doi.org/10.1021/jm7009364] [PMID: 18181565]
[9]
León R, García AG, Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med Res Rev 33(1): 139-89. (2013).
[http://dx.doi.org/10.1002/med.20248] [PMID: 21793014]
[10]
Rosini M, Simoni E, Caporaso R, Minarini A. Multitarget strategies in Alzheimer’s disease: benefits and challenges on the road to therapeutics. Future Med Chem 8(6): 697-711. (2016).
[http://dx.doi.org/10.4155/fmc-2016-0003] [PMID: 27079260]
[11]
Ismaili L, Refouvelet B, Benchekroun M, Brogi S, Brindisi M, Gemma S, et al. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer’s disease. Prog Neurobiol 151: 4-34. (2017).
[http://dx.doi.org/10.1016/j.pneurobio.2015.12.003] [PMID: 26797191]
[12]
Sadowski M, Wisniewski T. Disease modifying approaches for Alzheimer’s pathology. Curr Pharm Des 13(19): 1943-54. (2007).
[http://dx.doi.org/10.2174/138161207781039788] [PMID: 17627527]
[13]
Bartolini M, Bertucci C, Cavrini V, Andrisano V. β-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol 65(3): 407-16. (2003).
[http://dx.doi.org/10.1016/S0006-2952(02)01514-9] [PMID: 12527333]
[14]
Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc Natl Acad Sci USA 102(47): 17213-8. (2005).
[http://dx.doi.org/10.1073/pnas.0508575102] [PMID: 16275899]
[15]
Benchekroun M, Romero A, Egea J, León R, Michalska P, Buendía I, et al. The Antioxidant additive approach for Alzheimer’s disease therapy: New ferulic (lipoic) acid plus melatonin modified tacrines as cholinesterases inhibitors, direct antioxidants, and nuclear factor (erythroid-derived 2)-like 2 activators. J Med Chem 59(21): 9967-73. (2016).
[http://dx.doi.org/10.1021/acs.jmedchem.6b01178] [PMID: 27736061]
[16]
Javed H, Khan MM, Ahmad A, Vaibhav K, Ahmad ME, Khan A, et al. Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience 210: 340-52. (2012).
[http://dx.doi.org/10.1016/j.neuroscience.2012.02.046] [PMID: 22441036]
[17]
Kumar A, Singh A. Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67(2): 195-203. (2015).
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[18]
Ismaili L, do Carmo Carreiras M. Multicomponent reactions for multitargeted compounds for Alzheimer’s disease. Curr Top Med Chem 17(31): 3319-27. (2017).
[http://dx.doi.org/10.2174/1568026618666180112155424] [PMID: 29332584]
[19]
Biggs-Houck JE, Younai A, Shaw JT. Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr Opin Chem Biol 14(3): 371-82. (2010).
[http://dx.doi.org/10.1016/j.cbpa.2010.03.003] [PMID: 20392661]
[20]
Keri RS, Budagumpi S, Pai RK, Balakrishna RG. Chromones as a privileged scaffold in drug discovery: a review. Eur J Med Chem 78: 340-74. (2014).
[http://dx.doi.org/10.1016/j.ejmech.2014.03.047] [PMID: 24691058]
[21]
Dávalos A, Gómez-Cordovés C, Bartolomé B. Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J Agric Food Chem 52(1): 48-54. (2004).
[http://dx.doi.org/10.1021/jf0305231] [PMID: 14709012]
[22]
Dgachi Y, Bautista-Aguilera OM, Benchekroun M, et al. Synthesis and biological evaluation of benzochromenopyrimidinones as cholinesterase inhibitors and potent antioxidant, non-hepatotoxic agents for Alzheimer’s disease. Molecules 21(5): 634. (2016).
[http://dx.doi.org/10.3390/molecules21050634] [PMID: 27187348]
[23]
Decker M. Homobivalent quinazolinimines as novel nanomolar inhibitors of cholinesterases with dirigible selectivity toward butyrylcholinesterase. J Med Chem 49(18): 5411-3. (2006).
[http://dx.doi.org/10.1021/jm060682m] [PMID: 16942014]
[24]
Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2): 88-95. (1961).
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[25]
Banfi L, Riva R. The Passerini reaction in organic reactions John Wiley & Sons, Inc. (2004).
[26]
Benchekroun M, Ismaili L, Pudlo M, Luzet V, Gharbi T, Refouvelet B, et al. Donepezil-ferulic acid hybrids as anti-Alzheimer drugs. Future Med Chem 7(1): 15-21. (2015).
[http://dx.doi.org/10.4155/fmc.14.148] [PMID: 25582330]
[27]
Contreras JM, Rival YM, Chayer S, Bourguignon JJ, Wermuth CG. Aminopyridazines as acetylcholinesterase inhibitors. J Med Chem 42(4): 730-41. (1999).
[http://dx.doi.org/10.1021/jm981101z] [PMID: 10052979]
[28]
Benchekroun M, Bartolini M, Egea J, Romero A, Soriano E, Pudlo M, et al. Novel tacrine-grafted Ugi adducts as multipotent anti-Alzheimer drugs: a synthetic renewal in tacrine-ferulic acid hybrids. ChemMedChem 10(3): 523-39. (2015).
[http://dx.doi.org/10.1002/cmdc.201402409] [PMID: 25537267]
[29]
Fang L, Kraus B, Lehmann J, Heilmann J, Zhang Y, Decker M. Design and synthesis of tacrine-ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg Med Chem Lett 18(9): 2905-9. (2008).
[http://dx.doi.org/10.1016/j.bmcl.2008.03.073] [PMID: 18406135]
[30]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1-3): 3-26. (2001).
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy