Abstract
Background: Tuberculosis is one of the biggest threats to human health. Recent studies have demonstrated that anti-tubercular peptides are promising candidates for the discovery of new anti-tubercular drugs. Since experimental methods are still labor intensive, it is highly desirable to develop automatic computational methods to identify anti-tubercular peptides from the huge amount of natural and synthetic peptides. Hence, accurate and fast computational methods are highly needed.
Methods and Results: In this study, a support vector machine based method was proposed to identify anti-tubercular peptides, in which the peptides were encoded by using the optimal g-gap dipeptide compositions. Comparative results demonstrated that our method outperforms existing methods on the same benchmark dataset. For the convenience of scientific community, a freely accessible web-server was built, which is available at http://lin-group.cn/server/iATP.
Conclusion: It is anticipated that the proposed method will become a useful tool for identifying anti-tubercular peptides.
Keywords: Tuberculosis, anti-tubercular peptides, g-gap dipeptide, support vector, machine, feature selection, web-server.
Graphical Abstract
[http://dx.doi.org/10.1016/j.tube.2014.03.011] [PMID: 24813349]
[http://dx.doi.org/10.1016/j.apjtm.2016.09.005] [PMID: 27890360]
[http://dx.doi.org/10.1159/000369711] [PMID: 25613372]
[http://dx.doi.org/10.1039/C5OB02298C] [PMID: 26645944]
[http://dx.doi.org/10.1016/j.biotechadv.2016.05.007] [PMID: 27235189]
[http://dx.doi.org/10.1016/j.tim.2016.03.007] [PMID: 27068531]
[http://dx.doi.org/10.1016/S0140-6736(10)60410-2] [PMID: 20488523]
[http://dx.doi.org/10.1093/jac/dku570] [PMID: 25681127]
[http://dx.doi.org/10.3389/fphar.2018.00954] [PMID: 30210341]
[http://dx.doi.org/10.1111/1574-6968.12489] [PMID: 24888447]
[http://dx.doi.org/10.3390/ijms19061779] [PMID: 29914091]
[http://dx.doi.org/10.1016/j.ab.2014.06.022] [PMID: 25016190]
[http://dx.doi.org/10.1016/j.ab.2013.05.024] [PMID: 23756733]
[http://dx.doi.org/10.1093/bioinformatics/bty508] [PMID: 29931187]
[http://dx.doi.org/10.1016/j.knosys.2018.10.007]
[http://dx.doi.org/10.3389/fmicb.2018.00476] [PMID: 29616000]
[http://dx.doi.org/10.1155/2014/623149] [PMID: 24967386]
[http://dx.doi.org/10.1093/bioinformatics/btx479] [PMID: 28961687]
[http://dx.doi.org/10.2174/157016461302160514000940]
[http://dx.doi.org/10.2174/1574893611666160608075753]
[http://dx.doi.org/10.2174/1574893611666160608102537]
[http://dx.doi.org/10.1631/jzus.2004.1382] [PMID: 15495331]
[http://dx.doi.org/10.1016/j.jtbi.2016.04.032] [PMID: 27155042]
[http://dx.doi.org/10.1016/j.neucom.2014.12.123]
[http://dx.doi.org/10.1186/s12918-016-0353-5] [PMID: 28155714]
[http://dx.doi.org/10.1089/cmb.2018.0004] [PMID: 30113871]
[http://dx.doi.org/10.7150/ijbs.24174] [PMID: 29989085]
[http://dx.doi.org/10.1093/bioinformatics/bty943] [PMID: 30428009]
[http://dx.doi.org/10.3390/ijms19010183] [PMID: 29316706]
[http://dx.doi.org/10.2174/1389200219666181031105916] [PMID: 30378494]
[PMID: 29416743]
[http://dx.doi.org/10.1155/2013/530696] [PMID: 23762187]
[http://dx.doi.org/10.1155/2013/567529] [PMID: 24062796]
[http://dx.doi.org/10.1093/bioinformatics/bty827] [PMID: 30247625]
[http://dx.doi.org/10.2174/1574893611308020007]
[http://dx.doi.org/10.1007/s40484-016-0081-2]
[PMID: 27543076]
[http://dx.doi.org/10.1093/nar/gkw1052] [PMID: 27899615]
[PMID: 28171531]
[http://dx.doi.org/10.1038/s41598-017-08115-6] [PMID: 28784999]
[http://dx.doi.org/10.2174/1574893612666170707095707]
[http://dx.doi.org/10.2174/1574893611666160815150746]
[http://dx.doi.org/10.1261/rna.069112] [PMID: 30425123]
[http://dx.doi.org/10.2174/1574893612666170125124538]
[http://dx.doi.org/10.1016/j.neucom.2018.04.082]
[http://dx.doi.org/10.2174/1574893612666170221152848]
[http://dx.doi.org/10.1016/j.jpdc.2017.08.009]