Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

General Research Article

Association between hTERT Polymorphisms and Female Papillary Thyroid Carcinoma

Author(s): Ying Liu, Zhi Li, Xinyue Tang, Min Li and Feng Shi*

Volume 14, Issue 3, 2019

Page: [268 - 279] Pages: 12

DOI: 10.2174/1574892814666190919145453

Price: $65

Abstract

Background: A previous genome-wide association study showed that hTERT rs10069690 and rs2736100 polymorphisms were associated with thyroid cancer risk.

Objective: This study further investigated the association between increased risk and clinicopathologic characteristics for Papillary Thyroid Carcinoma (PTC) and hTERT polymorphisms rs10069690 or rs2736100 in a Chinese female population.

Methods: The hTERT genotypes of 276 PTC patients and 345 healthy subjects were determined with regard to SNPs rs10069690 and rs2736100. The association between these SNPs and the risk of PTC and clinicopathologic characteristics was investigated by logistic regression.

Results: We found a significant difference between PTC and rs10069690 (Odds Ratio (OR) = 1.515; P = 0.005), but not between PTC and rs2736100. When the analysis was limited to females, rs10069690 and rs2736100 were both associated with increased risk for PTC in female individuals (OR = 1.647, P = 0.007; OR = 1.339, P = 0.041, respectively). Further haplotype analysis revealed a stimulative effect of haplotypes TC and CA of TERT rs10069690-rs2736100, which increased risk for PTC in female individuals (OR = 1.579, P = 0.014; OR = 0.726, P = 0.025, respectively). Furthermore, the heterozygote A/C of rs2736100 showed significant difference for age (OR = 0.514, P = 0.047).

Conclusion: Our finding suggests that hTERT polymorphisms rs10069690 and rs2736100 are associated with increased risk for PTC in Chinese female population and rs2736100 may be related to age. Consistent with US20170360914 and US20170232075, they are expected to be a potential molecular target for anti-cancer therapy.

Keywords: Female, hTERT polymorphisms, human telomerase reverse transcriptase, papillary thyroid carcinoma, polymorphism, rs10069690, rs2736100.

[1]
Vigneri R, Malandrino P, Vigneri P. The changing epidemiology of thyroid cancer: Why is incidence increasing? Curr Opin Oncol 2015; 27(1): 1-7.
[http://dx.doi.org/10.1097/CCO.0000000000000148] [PMID: 25310641]
[2]
Sipos JA, Mazzaferri EL. Thyroid cancer epidemiology and prognostic variables. Clin Oncol (R Coll Radiol) 2010; 22(6): 395-404.
[http://dx.doi.org/10.1016/j.clon.2010.05.004] [PMID: 20627675]
[3]
Md HB, Alexander EK, Bible KC, Doherty G, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid Official Journal of the American Thyroid Association 2015; 123(3): 2165.
[4]
Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: Update on epidemiology and risk factors. J Cancer Epidemiol 2013; 2013(1)965212
[http://dx.doi.org/10.1155/2013/965212] [PMID: 23737785]
[5]
Howlader N, Noone A, Krapcho M, Garshell J, Miller D, Altekruse S, et al. SEER cancer statistics review, 1975-2013 (National Cancer Institute http://seer.cancer.gov/csr/1975_2013/based on November 2015 SEER data submission, posted to the SEER website, April, 2016).
[6]
Engholm G, Ferlay J, Christensen N. NORDCAN: Cancer incidence, mortality, prevalence and survival in the nordic countries, Version 7.3 (08.07.2016). Association of the Nordic Cancer Registries. Danish Cancer Society http://www.ancr.nuaccessedon 20/12/2016.
[7]
Yang L, Zheng R, Wang N, Zhang S, Chen W. Analysis of incidence and mortality of thyroid cancer in China, 2013. Chinese J Oncol 2017; 39: 862-7.
[8]
Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 2006; 6(4): 292-306.
[http://dx.doi.org/10.1038/nrc1836] [PMID: 16557281]
[9]
DeLellis RA. Pathology and genetics of thyroid carcinoma. J Surg Oncol 2006; 94(8): 662-9.
[http://dx.doi.org/10.1002/jso.20700] [PMID: 17131411]
[10]
Gong L, Xu Y, Hu YQ, Ding QJ, Yi CH, Huang W, et al. hTERT gene polymorphism correlates with the risk and the prognosis of thyroid cancer. Cancer Biomark 2016; 17(2): 195-204.
[http://dx.doi.org/10.3233/CBM-160631] [PMID: 27472887]
[11]
Lebastchi AH, Callender GG. Thyroid cancer. Curr Probl Cancer 2014; 38(2): 48-74.
[http://dx.doi.org/10.1016/j.currproblcancer.2014.04.001] [PMID: 24951026]
[12]
Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin 2016; 66(2): 115-32.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[13]
Baverstock K, Egloff B, Pinchera A, Ruchti C, Williams D. Thyroid cancer after Chernobyl. Nature 1992; 359(6390): 21-2.
[http://dx.doi.org/10.1038/359021b0] [PMID: 1522880]
[14]
Inskip PD. Thyroid cancer after radiotherapy for childhood cancer. Med Pediatr Oncol 2001; 36(5): 568-73.
[http://dx.doi.org/10.1002/mpo.1132] [PMID: 11340614]
[15]
Schlumberger M, Cailleux AF, Suarez HG, de Vathaire F. Irradiation and second cancers. The thyroid as a case in point. C R Acad Sci III 1999; 322(2-3): 205-13.
[http://dx.doi.org/10.1016/S0764-4469(99)80045-6] [PMID: 10196674]
[16]
Dobrenic M, Huic D, Zuvic M, Grosev D, Petrovic R, Samardzic T. Usefulness of low iodine diet in managing patients with differentiated thyroid cancer - initial results. Radiol Oncol 2011; 45(3): 189-95.
[http://dx.doi.org/10.2478/v10019-011-0017-4] [PMID: 22933955]
[17]
Shakhtarin VV, Tsyb AF, Stepanenko VF, Orlov MY, Kopecky KJ, Davis S. Iodine deficiency, radiation dose, and the risk of thyroid cancer among children and adolescents in the Bryansk region of Russia following the Chernobyl power station accident. Int J Epidemiol 2003; 32(4): 584-91.
[http://dx.doi.org/10.1093/ije/dyg205] [PMID: 12913034]
[18]
Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst 1994; 86(21): 1600-8.
[http://dx.doi.org/10.1093/jnci/86.21.1600] [PMID: 7932824]
[19]
Chen GG, Vlantis AC, Zeng Q, van Hasselt CA. Regulation of cell growth by estrogen signaling and potential targets in thyroid cancer. Curr Cancer Drug Targets 2008; 8(5): 367-77.
[http://dx.doi.org/10.2174/156800908785133150] [PMID: 18690843]
[20]
Czene K, Lichtenstein P, Hemminki K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish Family-Cancer Database. Int J Cancer 2002; 99(2): 260-6.
[http://dx.doi.org/10.1002/ijc.10332] [PMID: 11979442]
[21]
Man RJ, Chen LW, Zhu HL. Telomerase inhibitors: A patent review (2010-2015). Expert Opin Ther Pat 2016; 26(6): 679-88.
[http://dx.doi.org/10.1080/13543776.2016.1181172] [PMID: 27104627]
[22]
de Lange T. Shelterin: The protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19(18): 2100-10.
[http://dx.doi.org/10.1101/gad.1346005] [PMID: 16166375]
[23]
Blasco MA. Telomeres and human disease: Ageing, cancer and beyond. Nat Rev Genet 2005; 6(8): 611-22.
[http://dx.doi.org/10.1038/nrg1656] [PMID: 16136653]
[24]
Zhou P, Wei L, Xia X, Shao N, Qian X, Yang Y. Association between telomerase reverse transcriptase rs2736100 polymorphism and risk of glioma. J Surg Res 2014; 191(1): 156-60.
[http://dx.doi.org/10.1016/j.jss.2014.03.043] [PMID: 24888789]
[25]
Sheng X, Zhang L, Luo D, Tong N, Wang M, Fang Y, et al. A common variant near TERC and telomere length are associated with susceptibility to childhood acute lymphoblastic leukemia in Chinese. Leuk Lymphoma 2012; 53(9): 1688-92.
[http://dx.doi.org/10.3109/10428194.2012.671482] [PMID: 22390679]
[26]
Dos Santos P, Panero J, Palau Nagore V, Stanganelli C, Bezares RF, Slavutsky I. Telomere shortening associated with increased genomic complexity in chronic lymphocytic leukemia. Tumour Biol 2015; 36(11): 8317-24.
[http://dx.doi.org/10.1007/s13277-015-3556-2] [PMID: 26008147]
[27]
Wu X, Amos CI, Zhu Y, et al. Telomere dysfunction: A potential cancer predisposition factor. J Natl Cancer Inst 2003; 95(16): 1211-8.
[http://dx.doi.org/10.1093/jnci/djg011] [PMID: 12928346]
[28]
Gramatges MM, Telli ML, Balise R, Ford JM. Longer relative telomere length in blood from women with sporadic and familial breast cancer compared with healthy controls. Cancer Epidemiol Biomarkers Prev 2010; 19(2): 605-13.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-0896] [PMID: 20142254]
[29]
Mocellin S, Pooley KA, Nitti D. Telomerase and the search for the end of cancer. Trends Mol Med 2013; 19(2): 125-33.
[http://dx.doi.org/10.1016/j.molmed.2012.11.006] [PMID: 23253475]
[30]
Donate LE, Blasco MA. Telomeres in cancer and ageing. Philos Trans R Soc Lond B Biol Sci 2011; 366(1561): 76-84.
[http://dx.doi.org/10.1098/rstb.2010.0291] [PMID: 21115533]
[31]
Willeit P, Willeit J, Mayr A, Weger S, Oberhollenzer F, Brandstatter A, et al. Telomere length and risk of incident cancer and cancer mortality. JAMA 2010; 304(1): 69-75.
[http://dx.doi.org/10.1001/jama.2010.897] [PMID: 20606151]
[32]
Blackburn EH. Switching and signaling at the telomere. Cell 2001; 106(6): 661-73.
[http://dx.doi.org/10.1016/S0092-8674(01)00492-5] [PMID: 11572773]
[33]
Deng Y, Chang S. Role of telomeres and telomerase in genomic instability, senescence and cancer. Lab Invest 2007; 87(11): 1071-6.
[http://dx.doi.org/10.1038/labinvest.3700673] [PMID: 17767195]
[34]
Ding D, Zhou J, Wang M, Cong YS. Implications of telomere-independent activities of telomerase reverse transcriptase in human cancer. FEBS J 2013; 280(14): 3205-11.
[http://dx.doi.org/10.1111/febs.12258] [PMID: 23527617]
[35]
Mocellin S, Verdi D, Pooley KA, Landi MT, Egan KM, Baird DM, et al. Telomerase reverse transcriptase locus polymorphisms and cancer risk: A field synopsis and meta-analysis. J Natl Cancer Inst 2012; 104(11): 840-54.
[http://dx.doi.org/10.1093/jnci/djs222] [PMID: 22523397]
[36]
Baird DM. Variation at the TERT locus and predisposition for cancer. Expert Rev Mol Med 2010; 12(5) e16
[http://dx.doi.org/10.1017/S146239941000147X] [PMID: 20478107]
[37]
Rafnar T, Sulem P, Stacey SN, Geller F, Gudmundsson J, Sigurdsson A, et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet 2009; 41(2): 221-7.
[http://dx.doi.org/10.1038/ng.296] [PMID: 19151717]
[38]
Pellatt AJ, Wolff RK, Torres-Mejia G, John EM, Herrick JS, Lundgreen A, et al. Telomere length, telomere-related genes, and breast cancer risk: The breast cancer health disparities study. Genes Chromosomes Cancer 2013; 52(7): 595-609.
[http://dx.doi.org/10.1002/gcc.22056] [PMID: 23629941]
[39]
Pooley KA, Bojesen SE, Weischer M, Nielsen SF, Thompson D, Amin AOA, et al. A Genome-Wide Association Scan (GWAS) for mean telomere length within the COGS project: Identified loci show little association with hormone-related cancer risk. Hum Mol Genet 2013; 22(24): 5056-64.
[http://dx.doi.org/10.1093/hmg/ddt355] [PMID: 23900074]
[40]
Bojesen SE, Pooley KA, Johnatty SE, Beesley J, Michailidou K, Tyrer JP, et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet 2013; 45(4): 371-84.
[http://dx.doi.org/10.1038/ng.2566] [PMID: 23535731]
[41]
Johnatty SE, Beesley J, Chen X, Macgregor S, Duffy DL, Spurdle AB, et al. Evaluation of candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian cancer and TERT, a cancer susceptibility “hot-spot”. PLoS Genet 2010; 6(7) e1001016
[http://dx.doi.org/10.1371/journal.pgen.1001016] [PMID: 20628624]
[42]
Terry KL, Tworoger SS, Vitonis AF, Wong J, Titusernstoff L, De VI, et al. Telomere length and genetic variation in telomere maintenance genes in relation to ovarian cancer risk. Cancer Epidemiol Biomarkers Prev 2012; 21(3): 504-12.
[http://dx.doi.org/10.1158/1055-9965.EPI-11-0867] [PMID: 22267287]
[43]
Turnbull C, Rapley EA, Seal S, Pernet D, Renwick A, Hughes D, et al. UK Testicular Cancer Collaboration. Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer. Nat Genet 2010; 42(7): 604-7.
[http://dx.doi.org/10.1038/ng.607] [PMID: 20543847]
[44]
Shadrina AS, Boyarskikh UA, Oskina NA, Sinkina TV, Lazarev AF, Petrova VD, et al. TERT polymorphisms rs2853669 and rs7726159 influence on prostate cancer risk in Russian population. Tumour Biol 2015; 36(2): 841-7.
[http://dx.doi.org/10.1007/s13277-014-2688-0] [PMID: 25296732]
[45]
Wu D, Yu H, Sun J, Qi J, Liu Q, Li R, et al. Association Association of genetic polymorphisms in the telomerase reverse transcriptase gene with prostate cancer aggressiveness. Mol Med Rep 2015; 12(1): 489-97.
[http://dx.doi.org/10.3892/mmr.2015.3410] [PMID: 25738283]
[46]
Rothman N, Garcia CMN, Malats N, Wu X, Figueroa JD, Real FX, et al. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat Genet 2010; 42(11): 978-84.
[http://dx.doi.org/10.1038/ng.687] [PMID: 20972438]
[47]
Killedar A, Stutz MD, Sobinoff AP, Tomlinson CG, Bryan TM, Beesley J, et al. A common cancer risk-associated allele in the hTERT locus encodes a dominant negative inhibitor of telomerase. PLoS Genet 2015; 11(6) e1005286
[http://dx.doi.org/10.1371/journal.pgen.1005286] [PMID: 26053551]
[48]
Liu T, Yuan X, Xu D. Cancer-specific telomerase reverse transcriptase (TERT) promoter mutations: Biological and clinical implications. Genes (Basel) 2016; 7(7): 38-55.
[http://dx.doi.org/10.3390/genes7070038] [PMID: 27438857]
[49]
Zhang C, Doherty JA, Burgess S, Hung RJ, Lindstrã MS, Kraft P, et al. GECCO and GAME-ON Network: CORECT, DRIVE, ELLIPSE, FOCI, and TRICL. Genetic determinants of telomere length and risk of common cancers: A Mendelian randomization study. Hum Mol Genet 2015; 24(18): 5356-66.
[http://dx.doi.org/10.1093/hmg/ddv252] [PMID: 26138067]
[50]
Gudmundsson J, Thorleifsson G, Sigurdsson JK, Stefansdottir L, Jonasson JG, Gudjonsson SA, et al. A genome-wide association study yields five novel thyroid cancer risk loci. Nat Commun 2017; 8: 14517-24.
[http://dx.doi.org/10.1038/ncomms14517] [PMID: 28195142]
[51]
Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016; 26(1): 1-133.
[http://dx.doi.org/10.1089/thy.2015.0020] [PMID: 26462967]
[52]
Zhao Z, Zhang Z, Tang Z, Zeng Y. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: Update of the SHEsis (http://analysis.bio-x.cn). Cell Res 2009; 19(4): 519-23.
[http://dx.doi.org/10.1038/cr.2009.33] [PMID: 19290020]
[53]
Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014; 64(1): 9-29.
[http://dx.doi.org/10.3322/caac.21208] [PMID: 24399786]
[54]
González-Suárez E, Samper E, Ramírez A, Flores JM, Martín-Caballero J, Jorcano JL, et al. Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J 2001; 20(11): 2619-30.
[http://dx.doi.org/10.1093/emboj/20.11.2619] [PMID: 11387197]
[55]
González-Suárez E, Flores JM, Blasco MA. Cooperation between p53 mutation and high telomerase transgenic expression in spontaneous cancer development. Mol Cell Biol 2002; 22(20): 7291-301.
[http://dx.doi.org/10.1128/MCB.22.20.7291-7301.2002] [PMID: 12242304]
[56]
Asaad NY, Abd El-Wahed MM, Mohammed AG. Human telomerase reverse transcriptase (hTERT) gene expression in thyroid carcinoma: Diagnostic and prognostic role. J Egypt Natl Canc Inst 2006; 18(1): 8-16.
[PMID: 17237847]
[57]
Brousset P, Chaouche N, Leprat F, Branet-Brousset F, Trouette H, Zenou RC, et al. Telomerase activity in human thyroid carcinomas originating from the follicular cells. J Clin Endocrinol Metab 1997; 82(12): 4214-6.
[http://dx.doi.org/10.1210/jc.82.12.4214] [PMID: 9398742]
[58]
Umbricht CB, Saji M, Westra WH, Udelsman R, Zeiger MA, Sukumar S. Telomerase activity: A marker to distinguish follicular thyroid adenoma from carcinoma. Cancer Res 1997; 57(11): 2144-7.
[PMID: 9187112]
[59]
Liu X, Bishop J, Shan Y, Pai S, Liu D, Murugan AK, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer 2013; 20(4): 603-10.
[http://dx.doi.org/10.1530/ERC-13-0210] [PMID: 23766237]
[60]
Landa I, Ganly I, Chan TA, Mitsutake N, Matsuse M, Ibrahimpasic T, et al. Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J Clin Endocrinol Metab 2013; 98(9): E1562-6.
[http://dx.doi.org/10.1210/jc.2013-2383] [PMID: 23833040]
[61]
Vinagre J, Almeida A, Pópulo H, Rui B, Lyra J, Pinto V, et al. Frequency of TERT promoter mutations in human cancers. Nat Commun 2013; 4(4): 2185.
[http://dx.doi.org/10.1038/ncomms3185] [PMID: 23887589]
[62]
Liu R, Bishop J, Zhu G, Zhang T, Ladenson PW, Xing M. Mortality risk stratification by combining BRAF V600E and TERT promoter mutations in papillary thyroid cancer: Genetic duet of BRAF and TERT promoter mutations in thyroid cancer mortality. JAMA Oncol 2017; 3(2): 202-8.
[http://dx.doi.org/10.1001/jamaoncol.2016.3288] [PMID: 27581851]
[63]
Landi MT, Chatterjee N, Yu K, Goldin LR, Goldstein AM, Rotunno M, et al. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am J Hum Genet 2009; 85(5): 679-91.
[http://dx.doi.org/10.1016/j.ajhg.2009.09.012] [PMID: 19836008]
[64]
Choi BJ, Yoon JH, Kim O, Choi WS, Nam SW, Lee JY, et al. Influence of the hTERT rs2736100 polymorphism on telomere length in gastric cancer. World J Gastroenterol 2015; 21(31): 9328-36.
[http://dx.doi.org/10.3748/wjg.v21.i31.9328] [PMID: 26309358]
[65]
Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Sigurdsson A, Bergthorsson JT, et al. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat Genet 2009; 41(4): 460-4.
[http://dx.doi.org/10.1038/ng.339] [PMID: 19198613]
[66]
Chen XF, Cai S, Chen QG, Ni ZH, Tang JH, Xu DW, et al. Multiple variants of TERT and CLPTM1L constitute risk factors for lung adenocarcinoma. Genet Mol Res 2012; 11(1): 370-8.
[http://dx.doi.org/10.4238/2012.February.16.2] [PMID: 22370939]
[67]
Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Masson G, He H, et al. Discovery of common variants associated with low TSH levels and thyroid cancer risk. Nat Genet 2012; 44(3): 319-22.
[http://dx.doi.org/10.1038/ng.1046] [PMID: 22267200]
[68]
Melin BS, Nordfjäll K, Andersson U, Roos G. hTERT cancer risk genotypes are associated with telomere length. Genet Epidemiol 2012; 36(4): 368-72.
[http://dx.doi.org/10.1002/gepi.21630] [PMID: 22539396]
[69]
Ge L, Shao W, Zhang Y, Qiu Y, Cui D, Huang D, et al. RNAi targeting of hTERT gene expression induces apoptosis and inhibits the proliferation of lung cancer cells. Oncol Lett 2011; 2(6): 1121-9.
[http://dx.doi.org/10.3892/ol.2011.388] [PMID: 22848277]
[70]
Sharma GG, Gupta AH, Scherthan H, Dhar S, Gandhi V, Iliakis G, et al. hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene 2003; 22(1): 131-46.
[http://dx.doi.org/10.1038/sj.onc.1206063] [PMID: 12527915]
[71]
Ge M, Shi M, An C, Yang W, Nie X, Zhang J, et al. Functional evaluation of TERT-CLPTM1L genetic variants associated with susceptibility of papillary thyroid carcinoma. Sci Rep 2016; 6: 26037.
[http://dx.doi.org/10.1038/srep26037] [PMID: 27185198]
[72]
Lan Q, Richard C, Gao Y, Wei H, Iii HHD, Francesco BA, et al. Longer telomere length in peripheral white blood cells is associated with risk of lung cancer and the rs2736100 (CLPTM1L-TERT) polymorphism in a prospective cohort study among women in China. PLoS One 2013; 8(3) e59230
[http://dx.doi.org/10.1371/journal.pone.0059230] [PMID: 23555636]
[73]
Zou P, Gu A, Ji G, Zhao L, Zhao P, Lu A. The TERT rs2736100 polymorphism and cancer risk: A meta-analysis based on 25 case-control studies. BMC Cancer 2012; 12(1): 7.
[http://dx.doi.org/10.1186/1471-2407-12-7] [PMID: 22221621]
[74]
Li H, Xu Y, Mei H, Peng L, Li X, Tang J. The TERT rs2736100 polymorphism increases cancer risk: A meta-analysis. Oncotarget 2017; 8(24): 38693-705.
[http://dx.doi.org/10.18632/oncotarget.16309] [PMID: 28418878]
[75]
Wu H, Zhu R. Quantitative assessment of common genetic variants on chromosome 5p15 and lung cancer risk. Tumour Biol 2014; 35(6): 6055-63.
[http://dx.doi.org/10.1007/s13277-014-1802-7] [PMID: 24615522]
[76]
Nie W, Zang Y, Chen J, Xiu Q. TERT rs2736100 polymorphism contributes to lung cancer risk: A meta-analysis including 49,869 cases and 73,464 controls. Tumour Biol 2014; 35(6): 5569-74.
[http://dx.doi.org/10.1007/s13277-014-1734-2] [PMID: 24535778]
[77]
Rajaraman P, Melin BS, Wang Z, McKean-Cowdin R, Michaud DS, Wang SS, et al. Genome-wide association study of glioma and meta-analysis. Hum Genet 2012; 131(12): 1877-88.
[http://dx.doi.org/10.1007/s00439-012-1212-0] [PMID: 22886559]
[78]
Kinnersley B, Migliorini G, Broderick P, Whiffin N, Dobbins SE, Casey G, et al. Colon Cancer Family Registry. The TERT variant rs2736100 is associated with colorectal cancer risk. Br J Cancer 2012; 107(6): 1001-8.
[http://dx.doi.org/10.1038/bjc.2012.329] [PMID: 22878375]
[79]
Trifa AP, Bănescu C, Tevet M, Bojan A, Dima D, Urian L, et al. TERT rs2736100 A > C SNP and JAK2 46/1 haplotype significantly contribute to the occurrence of JAK2 V617F and CALR mutated myeloproliferative neoplasms - a multicentric study on 529 patients. Br J Haematol 2016; 174(2): 218-26.
[http://dx.doi.org/10.1111/bjh.14041] [PMID: 27061303]
[80]
Bayram S Y Ü, Sümbül AT, Kaya BY, Genç A, Rencüzoğullari E, et al. Polymorphisms in human telomerase reverse transcriptase (hTERT) gene and susceptibility to gastric cancer in a Turkish population: Hospital-based case-control study. Gene 2016; 585(1): 84-92.
[http://dx.doi.org/10.1016/j.gene.2016.03.030] [PMID: 27016301]
[81]
Du J, Zhu X, Xie C, Dai N, Gu Y, Zhu M, et al. Telomere length, genetic variants and gastric cancer risk in a Chinese population. Carcinogenesis 2015; 36(9): 963-70.
[http://dx.doi.org/10.1093/carcin/bgv075] [PMID: 26025910]
[82]
Ali MM, Kerstin W, Jakobsen FI, Monica H, Martin H, Dick S, et al. Association between TERT promoter polymorphisms and acute myeloid leukemia risk and prognosis. Oncotarget 2015; 6(28): 25109-20.
[http://dx.doi.org/10.18632/oncotarget.4668] [PMID: 26298771]
[83]
Campa D, Martino A, Varkonyi J, Lesueur F, Jamroziak K, Landi S, et al. Risk of multiple myeloma is associated with polymorphisms within telomerase genes and telomere length. Int J Cancer 2015; 136(5): E351-8.
[http://dx.doi.org/10.1002/ijc.29101] [PMID: 25066524]
[84]
Llorca-Cardeñosa M, Peña-Chilet M, Mayor M, Gomez-Fernandez C, Casado B, Martin-Gonzalez M, et al. Long telomere length and a TERT-CLPTM1 locus polymorphism association with melanoma risk. Eur J Cancer 2014; 50(18): 3168-77.
[http://dx.doi.org/10.1016/j.ejca.2014.09.017] [PMID: 25457634]
[85]
Wei R, DeVilbiss FT, Liu W. Genetic Polymorphism, Telomere Biology and non-small lung cancer. J Genet Genomics 2015; 42(10): 549-61.
[http://dx.doi.org/10.1016/j.jgg.2015.08.005] [PMID: 26554909]
[86]
Hsiung CA, Lan Q, Hong YC, Chen CJ, Hosgood HD, Chang IS, et al. The 5p15.33 locus is associated with risk of lung adenocarcinoma in never-smoking females in Asia. PLoS Genet 2010; 6(8): 182-8.
[http://dx.doi.org/10.1371/journal.pgen.1001051] [PMID: 20700438]
[87]
Wei R, Cao L, Pu H, Wang H, Zheng Y, Niu X, et al. TERT polymorphism rs2736100-C is associated with EGFR mutation-positive non-small cell lung cancer. Clin Cancer Res 2015; 21(22): 5173-80.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0009] [PMID: 26149460]
[88]
Jenny D, Liu T, Yuan X, Leonie S, Mehran G, Wei YB, et al. TERT rs2736100 genotypes are associated with differential risk of myeloproliferative neoplasms in Swedish and Chinese male patient populations. Ann Hematol 2016; 95(11): 1825-32.
[http://dx.doi.org/10.1007/s00277-016-2787-7] [PMID: 27561898]
[89]
Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, et al. CARDIoGRAM consortium. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet 2013; 45(4): 422-7.
[http://dx.doi.org/10.1038/ng.2528] [PMID: 23535734]
[90]
Sheng X, Tong N, Tao G, Luo D, Wang M, Fang Y, et al. TERT polymorphisms modify the risk of acute lymphoblastic leukemia in Chinese children. Carcinogenesis 2013; 34(1): 228-35.
[http://dx.doi.org/10.1093/carcin/bgs325] [PMID: 23066086]
[91]
Liu Y, Cao L, Li Z, Zhou D, Liu W, Shen Q, et al. A genome-wide association study identifies a locus on TERT for mean telomere length in Han Chinese. PLoS One 2014; 9(1) e85043
[http://dx.doi.org/10.1371/journal.pone.0085043] [PMID: 24465473]
[92]
Dahse R, Mey J. Telomerase in human tumors: Molecular diagnosis and clinical significance. Expert Rev Mol Diagn 2001; 1(2): 201-10.
[http://dx.doi.org/10.1586/14737159.1.2.201] [PMID: 11901815]
[93]
Agrawal A, Dang S, Gabrani R. Recent patents on anti-telomerase cancer therapy. Recent Patents Anticancer Drug Discov 2012; 7(1): 102-17.
[http://dx.doi.org/10.2174/157489212798357958] [PMID: 21854360]
[94]
Cech TR, Lingner J, Nakamura T, et al. Human telomerase reverse transcriptase polypeptides. US2009762254 . (2009).
[95]
Langlade DP, Adotevi O, Dosset M. Universal cancer peptides derived from telomerase. US20170360914 . (2017).
[96]
Bobadilla M, Formentini I, Blasco MMA, Baer C, Fàtima BIT. Telomerase reverse transcriptase-based therapies. US20170232075. (2017).
[97]
Ebben JD, Beyer AM. Peptide inhibitors of telomerase translocation and therapeutic uses thereof. WO2017040309 . (2011).
[98]
Kellermann G, Lahuna O, Bombard S, Segal-Bendirdjian E. New methods to produce active TERT. US20160251636 . (2016).
[99]
Tergaonkar V. Telomerase inhibitors for use in therapy. US20150232856 . (2009).
[100]
Gryaznov S, Pongracz K. Modified oligonucleotides for telomerase inhibition. US20169404112 . (2009).
[101]
Stuart MJ, Kelsey S. Use of telomerase inhibitors for the treatment of myeloproliferative disorders and myeloproliferative neoplasms. CN104936602 . (2015).
[102]
Shay J, Mender I, Batten K, Lander C. Treatment of drug resistant proliferative diseases with telomerase mediated telomere altering compounds. WO2017165675 . (2011).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy