Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Accessing the Blood-Brain Barrier to Treat Brain Disorders

Author(s): M. Sureshkumar* and A. Pandian

Volume 9, Issue 3, 2019

Page: [198 - 209] Pages: 12

DOI: 10.2174/2468187309666190823154318

Abstract

Crossing the blood-brain barrier (BBB) and treating brain disorders by delivering therapeutic agents to specific regions of the brain is a challenge. The BBB, naturally evolved, protective physiological barrier acts as a selective permeable membrane in such a way that it allows only nonionic molecules and molecules of low molecular weight to pass through. Treating brain tumor has become a great challenge as the drug molecules of larger size are not able to cross the BBB and reach the target site. The incompetence of techniques for brain-specific delivery of therapeutic molecules has led researchers to increasingly explore the diagnosis and treatment of disorders incurable with present techniques. This article is to discuss the various techniques or methods to deliver drugs to the brain crossing the BBB.

Keywords: Brain tumor, blood-brain barrier (BBB), targeted drug delivery, nanoparticles, therapeutic agents, nonionic molecules.

Graphical Abstract

[1]
Allard E, Passirani C, Benoit J-P. Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 2009; 30(12): 2302-18.
[2]
Funmilola AF, Andreas GS, Ijeoma FU. Nanomedicines in the treatment of brain tumor. J Nanomedicine 2018; 13(6): 579-83.
[3]
Roy S, Bandyopadhyay SK. Nanotechnology uses detection of brain tumor- A review. J Nano 2018; 3(4): 555-622.
[4]
Yang H, Chopp M, Schallert T. functional issues in brain tumor treatment. J Neurol Neurophysiol 2011; S5.
[5]
Tajes M, Ramos-Fernández E, Weng-Jiang X, et al. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol 2014; 31(5): 152-67.
[6]
Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier. Vascul Pharmacol 2002; 38(6): 323-37.
[7]
Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37(1): 13-25.
[8]
Wei X, Chen X, Ying M, Lu W. Brain tumor-targeted drug delivery strategies. Acta Pharm Sin B 2014; 4(3): 193-201.
[9]
Palmer AM. The role of the blood-CNS barrier in CNS disorders and their treatment. Neurobiol Dis 2010; 37(1): 3-12.
[10]
Zhan C, Lu W. The blood-brain/tumor barriers: challenges and chances for malignant gliomas targeted drug delivery. Curr Pharm Biotechnol 2012; 13(12): 2380-7.
[11]
Barar J, Rafi MA, Pourseif MM, Omidi Y. Blood-brain barrier transport machineries and targeted therapy of brain diseases. Bioimpacts 2016; 6(4): 225-48.
[12]
Transendothelial Transport and Its Role in Therapeutics. 39 International Scholarly Research Notices 2014.
[13]
Meairs S, Alonso A. Ultrasound, microbubbles and the blood-brain barrier. Prog Biophys Mol Biol 2007; 93(1-3): 354-62.
[14]
Tajes M, Ramos-Fernández E, Weng-Jiang X, et al. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol 2014; 31(5): 152-67.
[15]
Jones AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res 2007; 24(9): 1759-71.
[16]
Mária A. Drug transport and the blood - brain barrier. Solubility, delivery and ADME problems of drugs and drug candidates 2011.
[17]
van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 2015; 19: 1-12.
[18]
Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002; 54(5): 631-51.
[19]
Löscher W. Mechanisms of drug resistance. Epileptic Disord 2005; 7((Suppl. 1)): S3.
[20]
Régina A, Demeule M, Laplante A, et al. Multidrug resistance in brain tumors: roles of the blood-brain barrier. Cancer Metastasis Rev 2001; 20(1-2): 13-25.
[21]
ABC Multidrug Transporters. target for modulation of drug pharmacokinetics and drug-drug interactions 2011; 12: 600-20.
[22]
Demeule M, Régina A, Jodoin J, et al. Drug transport to the brain: key roles for the efflux pump P-glycoprotein in the blood-brain barrier. Vascul Pharmacol 2002; 38(6): 339-48.
[23]
Castro MG, Cowen R, Williamson IK, et al. Current and future strategies for the treatment of malignant brain tumors. Pharmacol Ther 2003; 98(1): 71-108.
[24]
Chakroun RW, Zhang P, Lin R, Schiapparelli P, Quinones-Hinojosa A, Cui H. Nanotherapeutic systems for local treatment of brain tumors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018; 10(1)e1479
[25]
Laquintana V, Trapani A, Denora N, Wang F, Gallo JM, Trapani G. New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv 2009; 6(10): 1017-32.
[26]
Deng CX. Targeted drug delivery across the blood-brain barrier using ultrasound technique. Ther Deliv 2010; 1(6): 819-48.
[27]
Guilherme FSF, Diego EC, Thais RFM, Jean LS, Man CC. The prodrug approach: a successful tool for improving drug solubility. Molecules 2016; 21: 42.
[28]
Rautio J, Laine K, Gynther M, Savolainen J. Prodrug approaches for CNS delivery. AAPS J 2008; 10(1): 92-102.
[29]
Varsha A. Poles apart inimitability of brain targeted drug delivery system in middle of NDDS. Int J Drug Dev & Res 2014; 6(4): 15-27.
[30]
Xiao G, Gan L. Receptor- Journal of Cell Biology Volume 2013; 14
[31]
Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 2002; 22(3): 225-50.
[32]
Kinsky SC. Preparation of liposomes and a spectrophotometric assay for release of trapped glucose marker. Methods Enzymol 1974; 32: 501-13.
[33]
Vieira DB, Gamarra LF. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Nanomedicine 2016; 11: 5381-414.
[34]
Seleci M, Ag Seleci D, Scheper T, Stahl F. Theranostic Liposome-Nanoparticle Hybrids for Drug Delivery and Bioimaging. Int J Mol Sci 2017; 18(7): 1415.
[35]
Qin Y, Fan W, Chen H, et al. In vitro and in vivo investigation of glucose-mediated brain-targeting liposomes. J Drug Target 2010; 18(7): 536-49.
[36]
Siegal T, Horowitz A, Gabizon A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J Neurosurg 1995; 83(6): 1029-37.
[37]
Peters GJ, Adema AD, Bijnsdorp IV, Sandvold ML. Lipophilic prodrugs and formulations of conventional (deoxy)nucleoside and fluoropyrimidine analogs in cancer. Nucleosides Nucleotides Nucleic Acids 2011; 30(12): 1168-80.
[38]
Dimendra J. Treatment of cancer by using Nanoparticles as a Drug Delivery Int J Drug Dev 4(1): 14-27.2012;
[39]
Tosi G, Costantino L, Ruozi B, Forni F, Vandelli MA. Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin Drug Deliv 2008; 5(2): 155-74.
[40]
Agrawal P, Singh RP, et al. TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy. Mater Sci Eng C 2017; 74: 167-76.
[41]
Xia H, Gao X, Gu G, et al. Penetratin-functionalized PEG-PLA nanoparticles for brain drug delivery. Int J Pharm 2012; 436(1-2): 840-50.
[42]
Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006; 6(9): 688-701.
[43]
Nance E, Timbie K, Miller GW, et al. Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood-brain barrier using MRI-guided focused ultrasound. J Control Release 2014; 189: 123-32.
[44]
Suresh Kumar M, Yuvaraj M, Aruna P, Koteeswaran D, Ganesan S. Influence of Anionic Surface Charged Biocompatible Dendrimer With a Photosensitizer, Protoporphyrin IX, on Human Red Blood Cells: A Spectroscopic Investigation. International Journal of Polymeric Materials and Polymeric Biomaterials 2015; 64(10): 519-25.
[45]
Ghalamfarsa G, Hojjat-Farsangi M, Mohammadnia-Afrouzi M, et al. Application of nanomedicine for crossing the blood-brain barrier: Theranostic opportunities in multiple sclerosis. J Immunotoxicol 2016; 13(5): 603-19.
[46]
Kumar MS, Aruna P, Ganesan S. Influence of protoporphyrin IX loaded phloroglucinol succinic acid dendrimer in photodynamic therapy. Mater Res Express 2018; 5(3)034004
[47]
Xu L, Zhang H, Wu Y. Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem Neurosci 2014; 5(1): 2-13.
[48]
Gonawala S, Ali MM. Application of Dendrimer-based Nanoparticles in Glioma Imaging. J Nanomed Nanotechnol 2017; 8(3): 444.
[49]
He H, Li Y, Jia X-R, et al. PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 2011; 32(2): 478-87.
[50]
Dhanikula RS, Argaw A, Bouchard J-F, Hildgen P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharm 2008; 5(1): 105-16.
[51]
Sonali V, Viswanadh MK, Singh RP, et al. Nanotheranostics: Emerging Strategies for Early Diagnosis and Therapy of Brain Cancer. Nanotheranostics 2018; 2(1): 70-86.
[52]
Chertok B, Moffat BA, David AE, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 2008; 29(4): 487-96.
[53]
Wen X, Wang K, Zhao Z, et al. Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles. PLoS One 2014; 9(9)e106652
[54]
Sanginario A, Miccoli B, Demarchi D. Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. Biosensors (Basel) 2017; 7(1): 9.
[55]
Elhissi AMA, Ahmed W, Hassan IU, Dhanak VR, D’Emanuele A. Carbon nanotubes in cancer therapy and drug delivery. J Drug Deliv 2012.2012837327
[56]
Ren J, Shen S, Wang D, et al. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials 2012; 33(11): 3324-33.
[57]
Puente P, Fettig N, Luderer MJ, et al. Injectable Hydrogels for Localized Chemotherapy and Radiotherapy in Brain Tumors. J Pharm Sci 2018; 107(3): 922-33.
[58]
Rahman CV, Smith SJ, Morgan PS, et al. Adjuvant chemotherapy for brain tumors delivered via a novel intra-cavity moldable polymer matrix. PLoS One 2013; 8(10) e77435
[59]
Torres AJ, Zhu C, Shuler ML, Pannullo S. Paclitaxel delivery to brain tumors from hydrogels: a computational study. Biotechnol Prog 2011; 27(5): 1478-87.
[60]
Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian XQ. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 2014; 9: 2241-57.
[61]
Jahangiri A, Chin AT, Flanigan PM, Chen R, Bankiewicz K, Aghi MK. Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. J Neurosurg 2017; 126(1): 191-200.
[62]
Gumerlock MK, Belshe BD, Madsen R, Watts C. Osmotic blood-brain barrier disruption and chemotherapy in the treatment of high grade malignant glioma: patient series and literature review. J Neurooncol 1992; 12(1): 33-46.
[63]
Bellavance M-A, Blanchette M, Fortin D. Recent advances in blood-brain barrier disruption as a CNS delivery strategy. AAPS J 2008; 10(1): 166-77.
[64]
Joshi S, Ergin A, Wang M, et al. Inconsistent blood brain barrier disruption by intraarterial mannitol in rabbits: implications for chemotherapy. J Neurooncol 2011; 104(1): 11-9.
[65]
Chandran S. Pichandy Muthu Prasanna, “Blood Brain Barrier and Various Strategies for Drug Delivery to Brain. Br Biomed Bull 2014; 2(3): 504-20.
[66]
Brem H, Gabikian P. Biodegradable polymer implants to treat brain tumors. J Control Release 2001; 74(1-3): 63-7.
[67]
Fan Ching-Hsiang, et al. SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. J. Biomaterial 2013.
[68]
Fan C-H, Liu H-L, Ting C-Y, et al. Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery. PLoS One 2014; 9(5)e96327
[69]
Liu H-L, Hua M-Y, Yang H-W, et al. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci USA 2010; 107(34): 15205-10.

© 2024 Bentham Science Publishers | Privacy Policy