Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Identification of Novel Molecular Network Expression in Acute Myocardial Infarction

Author(s): Marwa Matboli*, Ayman E. Shafei , Sara H.A. Agwa, Sherif Sammir Elzahy, Ahmed K. Anwar, Amr R. Mansour , Ahmed I. Gaber , Ali E.A. Said, Paula Lwis and Marwa Hamdy

Volume 20, Issue 5, 2019

Page: [340 - 348] Pages: 9

DOI: 10.2174/1389202920666190820142043

Price: $65

Abstract

Background: In the current study, we aimed to analyze the hypothesis that human myocardial- specific extracellular RNAs expression could be used for acute myocardial injury(AMI) diagnosis.

Methodology: We used bioinformatics’ analysis to identify RNAs linked to ubiquitin system and specific to AMI, named, (lncRNA-RP11-175K6.1), (LOC101927740), microRNA-106b-5p (miR-106b- 5p) and Anaphase, promoting complex 11 (ANapc11mRNA). We measured the serum expression of the chosen RNAs in 69 individuals with acute coronary syndromes, 31 individuals with angina pectoris without MI and non-cardiac chest pain and 31 healthy control individuals by real-time reversetranscription PCR.

Results: Our study revealed a significant decrease in both lncRNA-RP11-175K6.1 and ANapc11mRNA expression of in the sera samples of AMI patients compared to that of the two control groups alongside with significant upregulation of miR-106b-5p.

Conclusion: Of note, the investigated serum RNAs decrease the false discovery rate of AMI to 3.2%.

Keywords: Myocardial infarction, miRNA, lncRNA, serum, diagnosis, extracellular RNAs.

Graphical Abstract

[1]
Shi, Q.; Yang, X. Circulating microRNA and long noncoding RNA as biomarkers of cardiovascular diseases. J. Cell. Physiol., 2016, 231(4), 751-755.
[http://dx.doi.org/10.1002/jcp.25174] [PMID: 26308238]
[2]
Han, Q.Y.; Wang, H.X.; Liu, X.H.; Guo, C.X.; Hua, Q.; Yu, X.H.; Li, N.; Yang, Y.Z.; Du, J.; Xia, Y.L.; Li, H.H. Circulating E3 ligases are novel and sensitive biomarkers for diagnosis of acute myocardial infarction. Clin. Sci. (Lond.), 2015, 128(11), 751-760.
[http://dx.doi.org/10.1042/CS20140663] [PMID: 25599194]
[3]
Irwin, M. Faculty of 1000 evaluation for executive summary: Heart disease and stroke statistics- 2012 update: A report from the American Heart Association. F1000 - Post-publication Peer Review of the Biomedical Literature 2013..
[4]
Shams-Vahdati, S.; Vand-Rajavpour, Z.; Paknezhad, S.P.; Piri, R.; Moghaddasi-Ghezeljeh, E.; Mirabolfathi, S.; Naghavi-Behzad, M. Cost-effectiveness of cardiac biomarkers as screening test in acute chest pain. J. Cardiovasc. Thorac. Res., 2014, 6(1), 29-33.
[PMID: 24753829]
[5]
Muhlestein, J.B. Biomarkers of Infection and Risk of Coronary Heart Disease. Cardiovascular Biomarkers, 319-344 , 2006.
[6]
Calise, J.; Powell, S.R. The ubiquitin proteasome system and myocardial ischemia. Am. J. Physiol. Heart Circ. Physiol., 2013, 304(3), H337-H349.
[http://dx.doi.org/10.1152/ajpheart.00604.2012] [PMID: 23220331]
[7]
Willis, M.S.; Bevilacqua, A.; Pulinilkunnil, T.; Kienesberger, P.; Tannu, M.; Patterson, C. The role of ubiquitin ligases in cardiac disease. J. Mol. Cell. Cardiol., 2014, 71, 43-53.
[http://dx.doi.org/10.1016/j.yjmcc.2013.11.008] [PMID: 24262338]
[8]
Bader, M.; Steller, H. Regulation of cell death by the ubiquitin-proteasome system. Curr. Opin. Cell Biol., 2009, 21(6), 878-884.
[http://dx.doi.org/10.1016/j.ceb.2009.09.005] [PMID: 19850458]
[9]
Stringer, D.K.; Piper, R.C. Terminating protein ubiquitination: Hasta la vista, ubiquitin. Cell Cycle, 2011, 10(18), 3067-3071.
[http://dx.doi.org/10.4161/cc.10.18.17191] [PMID: 21926471]
[10]
Yang, Y.; Cheng, H.W.; Qiu, Y.; Dupee, D.; Noonan, M.; Lin, Y.D.; Fisch, S.; Unno, K.; Sereti, K.I.; Liao, R. MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ. Res., 2015, 117(5), 450-459.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.305962] [PMID: 26082557]
[11]
Shyu, K.G.; Wang, B.W.; Cheng, W.P.; Lo, H.M. MicroRNA-208a increases myocardial endoglin expression and myocardial fibrosis in acute myocardial infarction. Can. J. Cardiol., 2015, 31(5), 679-690.
[http://dx.doi.org/10.1016/j.cjca.2014.12.026] [PMID: 25936493]
[12]
Fan, Z.G.; Qu, X.L.; Chu, P.; Gao, Y.L.; Gao, X.F.; Chen, S.L.; Tian, N.L. MicroRNA-210 promotes angiogenesis in acute myocardial infarction. Mol. Med. Rep., 2018, 17(4), 5658-5665.
[http://dx.doi.org/10.3892/mmr.2018.8620] [PMID: 29484401]
[13]
Juni, R.P.; Abreu, R.C.; da Costa Martins, P.A. Regulation of microvascularization in heart failure - an endothelial cell, non-coding RNAs and exosome liaison. Noncoding RNA Res., 2017, 2(1), 45-55.
[http://dx.doi.org/10.1016/j.ncrna.2017.01.001] [PMID: 30159420]
[14]
Marchese, F.P.; Huarte, M. Long non-coding RNAs and chromatin modifiers: Their place in the epigenetic code. Epigenetics, 2014, 9(1), 21-26.
[http://dx.doi.org/10.4161/epi.27472] [PMID: 24335342]
[15]
Greco, S.; Gorospe, M.; Martelli, F. Noncoding RNA in age-related cardiovascular diseases. J. Mol. Cell. Cardiol., 2015, 83, 142-155.
[http://dx.doi.org/10.1016/j.yjmcc.2015.01.011] [PMID: 25640162]
[16]
Gao, L.; Liu, Y.; Guo, S.; Yao, R.; Wu, L.; Xiao, L.; Wang, Z.; Liu, Y.; Zhang, Y. Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cell. Physiol. Biochem., 2017, 44(4), 1497-1508.
[PMID: 29258067]
[17]
Sano, M.; Schneider, M.D. Cyclins that don’t cycle--cyclin T/cyclin-dependent kinase-9 determines cardiac muscle cell size. Cell Cycle, 2003, 2(2), 99-104.
[http://dx.doi.org/10.4161/cc.2.2.332] [PMID: 12695656]
[18]
Greco, S.; Perfetti, A.; Menicanti, L.; Castelvecchio, S.; Martelli, F. Heart failure modulates long noncoding RNA expression in human left ventricles. Eur. Heart J., 2013, 34(Suppl. 1), P3250.
[http://dx.doi.org/10.1093/eurheartj/eht309.P3250]
[19]
Da Sacco, L.; Baldassarre, A.; Masotti, A. Bioinformatics tools and novel challenges in long non-coding RNAs (lncRNAs) functional analysis. Int. J. Mol. Sci., 2012, 13(1), 97-114.
[http://dx.doi.org/10.3390/ijms13010097] [PMID: 22312241]
[20]
Xuan, L.; Sun, L.; Zhang, Y.; Huang, Y.; Hou, Y.; Li, Q.; Guo, Y.; Feng, B.; Cui, L.; Wang, X.; Wang, Z.; Tian, Y.; Yu, B.; Wang, S.; Xu, C.; Zhang, M.; Du, Z.; Lu, Y.; Yang, B.F. Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure. J. Cell. Mol. Med., 2017, 21(9), 1803-1814.
[http://dx.doi.org/10.1111/jcmm.13101] [PMID: 28296001]
[21]
Brigant, B.; Metzinger-Le, M.V.; Rochette, J.; Metzinger, L. TRIMming down to TRIM37: Relevance to inflammation, cardiovascular disorders, and cancer in MULIBREY nanism. Int. J. Mol. Sci., 2018, 20(1), 67.
[http://dx.doi.org/10.3390/ijms20010067]
[22]
Basheer, W.A.; Harris, B.S.; Mentrup, H.L.; Abreha, M.; Thames, E.L.; Lea, J.B.; Swing, D.A.; Copeland, N.G.; Jenkins, N.A.; Price, R.L.; Matesic, L.E. Cardiomyocyte-specific overexpression of the ubiquitin ligase Wwp1 contributes to reduction in Connexin 43 and arrhythmogenesis. J. Mol. Cell. Cardiol., 2015, 88, 1-13.
[http://dx.doi.org/10.1016/j.yjmcc.2015.09.004] [PMID: 26386426]
[23]
Mota, R.; Parry, T.L.; Yates, C.C.; Qiang, Z.; Eaton, S.C.; Mwiza, J.M.; Tulasi, D.; Schisler, J.C.; Patterson, C.; Zaglia, T.; Sandri, M.; Willis, M.S. Increasing cardiomyocyte atrogin-1 reduces aging-associated fibrosis and regulates remodeling in vivo. Am. J. Pathol., 2018, 188(7), 1676-1692.
[http://dx.doi.org/10.1016/j.ajpath.2018.04.007] [PMID: 29758183]
[24]
Heyman, J.; De Veylder, L. The anaphase-promoting complex/cyclosome in control of plant development. Mol. Plant, 2012, 5(6), 1182-1194.
[http://dx.doi.org/10.1093/mp/sss094] [PMID: 23034505]
[25]
Zhang, J.; Wan, L.; Dai, X.; Sun, Y.; Wei, W. Functional characterization of Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis. Biochim. Biophys. Acta, 2014, 1845(2), 277-293.
[PMID: 24569229]
[26]
Kim, I.Y.; Kwon, H.Y.; Park, K.H.; Kim, D.S. Anaphase-Promoting Complex 7 is a prognostic factor in human colorectal cancer. Ann. Coloproctol., 2017, 33(4), 139-145.
[http://dx.doi.org/10.3393/ac.2017.33.4.139] [PMID: 28932723]
[27]
Luo, Z.L.; Luo, H.J.; Fang, C.; Cheng, L. Negative correlation of ITCH E3 ubiquitin ligase and miRNA-106b dic-tates metastatic progression in pancreatic cancer. Oncotarget, 2016, 7(2), 1477-1485.
[28]
Liu, Z.; Yang, D.; Xie, P.; Ren, G.; Sun, G.; Zeng, X.; Sun, X. MiR-106b and MiR-15b modulate apoptosis and angiogenesis in myocardial infarction. Cell. Physiol. Biochem., 2012, 29(5-6), 851-862.
[http://dx.doi.org/10.1159/000258197] [PMID: 22613985]
[29]
Zhu, H.; Fan, G.C. Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc. Res., 2012, 94(2), 284-292.
[http://dx.doi.org/10.1093/cvr/cvr291] [PMID: 22038740]
[30]
Wei, R.; Huang, G.L.; Zhang, M.Y.; Li, B.K.; Zhang, H.Z.; Shi, M.; Chen, X.Q.; Huang, L.; Zhou, Q.M.; Jia, W.H.; Zheng, X.F.; Yuan, Y.F.; Wang, H.Y. Clinical significance and prognostic value of microRNA expression signatures in hepatocellular carcinoma. Clin. Cancer Res., 2013, 19(17), 4780-4791.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2728] [PMID: 23812667]
[31]
Li, F.; Liu, J.; Li, S. MicroRNA 106b ∼ 25 cluster and gastric cancer. Surg. Oncol., 2013, 22(2), e7-e10.
[http://dx.doi.org/10.1016/j.suronc.2013.01.003] [PMID: 23510949]
[32]
Hudson, R.S.; Yi, M.; Esposito, D.; Glynn, S.A.; Starks, A.M.; Yang, Y.; Schetter, A.J.; Watkins, S.K.; Hurwitz, A.A.; Dorsey, T.H.; Stephens, R.M.; Croce, C.M.; Ambs, S. MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer. Oncogene, 2013, 32(35), 4139-4147.
[http://dx.doi.org/10.1038/onc.2012.424] [PMID: 22986525]
[33]
Slaby, O.; Jancovicova, J.; Lakomy, R.; Svoboda, M.; Poprach, A.; Fabian, P.; Kren, L.; Michalek, J.; Vyzula, R. Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy. J. Exp. Clin. Cancer Res., 2010, 29(1), 90.
[http://dx.doi.org/10.1186/1756-9966-29-90] [PMID: 20609231]
[34]
Yan, Y.; Zhang, B.; Liu, N.; Qi, C.; Xiao, Y.; Tian, X.; Li, T.; Liu, B. Circulating long noncoding RNA UCA1 as a novel biomarker of acute myocardial infarction. BioMed Res. Int., 2016, 20168079372
[http://dx.doi.org/10.1155/2016/8079372] [PMID: 26949706]
[35]
Yang, Y.; Cai, Y.; Wu, G.; Chen, X.; Liu, Y. Plasma long non-coding RNA, CoroMarker, a novel bi-omarker for diagnosis of coronary artery disease. Clin. Sci. (Lond.), 2015, 129(8), 675-685.
[36]
Ergul, A.; Alhusban, A.; Fagan, S.C. Angiogenesis: A harmonized target for recovery after stroke. Stroke, 2012, 43(8), 2270-2274.
[http://dx.doi.org/10.1161/STROKEAHA.111.642710] [PMID: 22618382]
[37]
Zhang, Y.; Zheng, L.; Xu, B.M.; Tang, W.H.; Ye, Z.D.; Huang, C.; Ma, X.; Zhao, J.J.; Guo, F.X.; Kang, C.M.; Lu, J.B.; Xiu, J.C.; Li, P.; Xu, Y.J.; Xiao, L.; Wu, Q.; Hu, Y.W.; Wang, Q. LncRNA-RP11-714G18.1 suppresses vascular cell migration via directly targeting LRP2BP. Immunol. Cell Biol., 2018, 96(2), 175-189.
[http://dx.doi.org/10.1111/imcb.1028] [PMID: 29363163]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy