Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Antiviral Activities of Human Host Defense Peptides

Author(s): David C. Brice and Gill Diamond*

Volume 27, Issue 9, 2020

Page: [1420 - 1443] Pages: 24

DOI: 10.2174/0929867326666190805151654

Price: $65

Abstract

Peptides with broad-spectrum antimicrobial activity are found widely expressed throughout nature. As they participate in a number of different aspects of innate immunity in mammals, they have been termed Host Defense Peptides (HDPs). Due to their common structural features, including an amphipathic structure and cationic charge, they have been widely shown to interact with and disrupt microbial membranes. Thus, it is not surprising that human HDPs have activity against enveloped viruses as well as bacteria and fungi. However, these peptides also exhibit activity against a wide range of non-enveloped viruses as well, acting at a number of different steps in viral infection. This review focuses on the activity of human host defense peptides, including alpha- and beta-defensins and the sole human cathelicidin, LL-37, against both enveloped and non-enveloped viruses. The broad spectrum of antiviral activity of these peptides, both in vitro and in vivo suggest that they play an important role in the innate antiviral defense against viral infections. Furthermore, the literature suggests that they may be developed into antiviral therapeutic agents.

Keywords: Antimicrobial peptide, host defense peptide, virus, defensin, LL-37, innate immunity.

[1]
Chatterjee, A.; Modarai, M.; Naylor, N.R.; Boyd, S.E.; Atun, R.; Barlow, J.; Holmes, A.H.; Johnson, A.; Robotham, J.V. Quantifying drivers of antibiotic resistance in humans: a systematic review. Lancet Infect. Dis., 2018, 18(12), e368-e378.
[http://dx.doi.org/10.1016/S1473-3099(18)30296-2] [PMID: 30172580]
[2]
Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[3]
de la Fuente-Núñez, C.; Silva, O.N.; Lu, T.K.; Franco, O.L. Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacol. Ther., 2017, 178, 132-140.
[http://dx.doi.org/10.1016/j.pharmthera.2017.04.002] [PMID: 28435091]
[4]
Hancock, R.E. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis., 2001, 1(3), 156-164.
[http://dx.doi.org/10.1016/S1473-3099(01)00092-5] [PMID: 11871492]
[5]
Delattin, N.; Brucker, K.; Cremer, K.; Cammue, B.P.; Thevissen, K. Antimicrobial peptides as a strategy to combat fungal biofilms. Curr. Top. Med. Chem., 2017, 17(5), 604-612.
[http://dx.doi.org/10.2174/1568026616666160713142228] [PMID: 27411323]
[6]
Hans, M.; Madaan Hans, V. Epithelial antimicrobial peptides: guardian of the oral cavity. Int. J. Pept., 2014, 2014, 370297
[http://dx.doi.org/10.1155/2014/370297] [PMID: 25435884]
[7]
Lee, J.; Lee, D.G. Antimicrobial peptides (AMPs) with dual mechanisms: membrane disruption and apoptosis. J. Microbiol. Biotechnol., 2015, 25(6), 759-764.
[http://dx.doi.org/10.4014/jmb.1411.11058] [PMID: 25537721]
[8]
Zhao, L.; Lu, W. Defensins in innate immunity. Curr. Opin. Hematol., 2014, 21(1), 37-42.
[http://dx.doi.org/10.1097/MOH.0000000000000005] [PMID: 24275690]
[9]
Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol., 2003, 3(9), 710-720.
[http://dx.doi.org/10.1038/nri1180] [PMID: 12949495]
[10]
Nguyen, T.X.; Cole, A.M.; Lehrer, R.I. Evolution of primate θ-defensins: a serpentine path to a sweet tooth. Peptides, 2003, 24(11), 1647-1654.
[http://dx.doi.org/10.1016/j.peptides.2003.07.023] [PMID: 15019196]
[11]
Lynn, D.J.; Bradley, D.G. Discovery of α-defensins in basal mammals. Dev. Comp. Immunol., 2007, 31(10), 963-967.
[http://dx.doi.org/10.1016/j.dci.2007.01.007] [PMID: 17367857]
[12]
Beckloff, N.; Diamond, G. Computational analysis suggests beta-defensins are processed to mature peptides by signal peptidase. Protein Pept. Lett., 2008, 15(5), 536-540.
[http://dx.doi.org/10.2174/092986608784567618] [PMID: 18537746]
[13]
Klotman, M.E.; Chang, T.L. Defensins in innate antiviral immunity. Nat. Rev. Immunol., 2006, 6(6), 447-456.
[http://dx.doi.org/10.1038/nri1860] [PMID: 16724099]
[14]
Ding, J.; Chou, Y-Y.; Chang, T.L. Defensins in viral infections. J. Innate Immun., 2009, 1(5), 413-420.
[http://dx.doi.org/10.1159/000226256] [PMID: 20375599]
[15]
Gwyer Findlay, E.; Currie, S.M.; Davidson, D.J. Cationic host defence peptides: potential as antiviral therapeutics. BioDrugs, 2013, 27(5), 479-493.
[http://dx.doi.org/10.1007/s40259-013-0039-0] [PMID: 23649937]
[16]
Wiens, M.E.; Wilson, S.S.; Lucero, C.M.; Smith, J.G. Defensins and viral infection: dispelling common misconceptions. PLoS Pathog., 2014, 10(7), e1004186
[http://dx.doi.org/10.1371/journal.ppat.1004186] [PMID: 25033215]
[17]
Wilson, S.S.; Wiens, M.E.; Holly, M.K.; Smith, J.G. Defensins at the mucosal surface: latest insights into defensin-virus interactions. J. Virol., 2016, 90(11), 5216-5218.
[http://dx.doi.org/10.1128/JVI.00904-15] [PMID: 27009960]
[18]
Holly, M.K.; Diaz, K.; Smith, J.G. Defensins in viral infection and pathogenesis. Annu. Rev. Virol., 2017, 4(1), 369-391.
[http://dx.doi.org/10.1146/annurev-virology-101416-041734] [PMID: 28715972]
[19]
Holly, M.K.; Smith, J.G. Paneth cells during viral infection and pathogenesis. Viruses, 2018, 10(5), E225
[http://dx.doi.org/10.3390/v10050225] [PMID: 29701691]
[20]
Park, M.S.; Kim, J.I.; Lee, I.; Park, S.; Bae, J.Y.; Park, M.S. Towards the application of human defensins as antivirals. Biomol. Ther. (Seoul), 2018, 26(3), 242-254.
[http://dx.doi.org/10.4062/biomolther.2017.172] [PMID: 29310427]
[21]
Wilson, S.S.; Wiens, M.E.; Smith, J.G. Antiviral mechanisms of human defensins. J. Mol. Biol., 2013, 425(24), 4965-4980.
[http://dx.doi.org/10.1016/j.jmb.2013.09.038] [PMID: 24095897]
[22]
Ryan, L.K.; Diamond, G. Modulation of human β-defensin-1 production by viruses. Viruses, 2017, 9(6), E153
[http://dx.doi.org/10.3390/v9060153] [PMID: 28635669]
[23]
Howell, M.D.; Streib, J.E.; Leung, D.Y.M. Antiviral activity of human beta-defensin 3 against vaccinia virus. J. Allergy Clin. Immunol., 2007, 119(4), 1022-1025.
[http://dx.doi.org/10.1016/j.jaci.2007.01.044] [PMID: 17353034]
[24]
Toussirot, E.; Roudier, J.; Roudier, C. Epstein-Barr virus in autoimmune diseases. Best Pract. Res. Clin. Rheumatol., 2008, 22(5), 883-896.
[http://dx.doi.org/10.1016/j.berh.2008.09.007] [PMID: 19028369]
[25]
Fülöp, T.; Larbi, A.; Pawelec, G.; Human, T. Human T cell aging and the impact of persistent viral infections. Front. Immunol., 2013, 4, 271.
[http://dx.doi.org/10.3389/fimmu.2013.00271] [PMID: 24062739]
[26]
Looker, K.J.; Magaret, A.S.; May, M.T.; Turner, K.M.E.; Vickerman, P.; Gottlieb, S.L.; Newman, L.M. Global and regional estimates of prevalent and incident herpes simplex virus Type 1 Infections in 2012. PLoS One, 2015, 10(10), e0140765
[http://dx.doi.org/10.1371/journal.pone.0140765] [PMID: 26510007]
[27]
Ganz, T.; Selsted, M.E.; Szklarek, D.; Harwig, S.S.; Daher, K.; Bainton, D.F.; Lehrer, R.I. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest., 1985, 76(4), 1427-1435.
[http://dx.doi.org/10.1172/JCI112120] [PMID: 2997278]
[28]
Daher, K.A.; Selsted, M.E.; Lehrer, R.I. Direct inactivation of viruses by human granulocyte defensins. J. Virol., 1986, 60(3), 1068-1074.
[http://dx.doi.org/10.1128/JVI.60.3.1068-1074.1986] [PMID: 3023659]
[29]
Gaudreault, E.; Gosselin, J. Leukotriene B4-mediated release of antimicrobial peptides against cytomegalovirus is BLT1 dependent. Viral Immunol., 2007, 20(3), 407-420.
[http://dx.doi.org/10.1089/vim.2006.0099] [PMID: 17931111]
[30]
Yasin, B.; Pang, M.; Turner, J.S.; Cho, Y.; Dinh, N.N.; Waring, A.J.; Lehrer, R.I.; Wagar, E.A. Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides. Eur. J. Clin. Microbiol. Infect. Dis., 2000, 19(3), 187-194.
[http://dx.doi.org/10.1007/s100960050457] [PMID: 10795591]
[31]
Isaacs, C.E.; Jia, J.H. The anti-infective activity of human milk is potentially greater than the sum of its microbicidal components. Adv. Exp. Med. Biol., 2004, 554, 439-441.
[http://dx.doi.org/10.1007/978-1-4757-4242-8_60] [PMID: 15384620]
[32]
Yasin, B.; Wang, W.; Pang, M.; Cheshenko, N.; Hong, T.; Waring, A.J.; Herold, B.C.; Wagar, E.A.; Lehrer, R.I. Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J. Virol., 2004, 78(10), 5147-5156.
[http://dx.doi.org/10.1128/JVI.78.10.5147-5156.2004] [PMID: 15113897]
[33]
Hazrati, E.; Galen, B.; Lu, W.; Wang, W.; Ouyang, Y.; Keller, M.J.; Lehrer, R.I.; Herold, B.C. Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J. Immunol., 2006, 177(12), 8658-8666.
[http://dx.doi.org/10.4049/jimmunol.177.12.8658] [PMID: 17142766]
[34]
Scudiero, O.; Galdiero, S.; Cantisani, M.; Di Noto, R.; Vitiello, M.; Galdiero, M.; Naclerio, G.; Cassiman, J-J.; Pedone, C.; Castaldo, G.; Salvatore, F. Novel synthetic, salt-resistant analogs of human beta-defensins 1 and 3 endowed with enhanced antimicrobial activity. Antimicrob. Agents Chemother., 2010, 54(6), 2312-2322.
[http://dx.doi.org/10.1128/AAC.01550-09] [PMID: 20308372]
[35]
Ryan, L.K.; Dai, J.; Yin, Z.; Megjugorac, N.; Uhlhorn, V.; Yim, S.; Schwartz, K.D.; Abrahams, J.M.; Diamond, G.; Fitzgerald-Bocarsly, P. Modulation of human beta-defensin-1 (hBD-1) in plasmacytoid dendritic cells (PDC), monocytes, and epithelial cells by influenza virus, Herpes simplex virus, and Sendai virus and its possible role in innate immunity. J. Leukoc. Biol., 2011, 90(2), 343-356.
[http://dx.doi.org/10.1189/jlb.0209079] [PMID: 21551252]
[36]
Crack, L.R.; Jones, L.; Malavige, G.N.; Patel, V.; Ogg, G.S. Human antimicrobial peptides LL-37 and human β-defensin-2 reduce viral replication in keratinocytes infected with varicella zoster virus. Clin. Exp. Dermatol., 2012, 37(5), 534-543.
[http://dx.doi.org/10.1111/j.1365-2230.2012.04305.x] [PMID: 22639919]
[37]
Wang, A.; Chen, F.; Wang, Y.; Shen, M.; Xu, Y.; Hu, J.; Wang, S.; Geng, F.; Wang, C.; Ran, X.; Su, Y.; Cheng, T.; Wang, J. Enhancement of antiviral activity of human alpha-defensin 5 against herpes simplex virus 2 by arginine mutagenesis at adaptive evolution sites. J. Virol., 2013, 87(5), 2835-2845.
[http://dx.doi.org/10.1128/JVI.02209-12] [PMID: 23269800]
[38]
Shust, G.F.; Cho, S.; Kim, M.; Madan, R.P.; Guzman, E.M.; Pollack, M.; Epstein, J.; Cohen, H.W.; Keller, M.J.; Herold, B.C. Female genital tract secretions inhibit herpes simplex virus infection: correlation with soluble mucosal immune mediators and impact of hormonal contraception. Am. J. Reprod. Immunol., 2010, 63(2), 110-119.
[http://dx.doi.org/10.1111/j.1600-0897.2009.00768.x] [PMID: 20015330]
[39]
Herold, B.C.; Dezzutti, C.S.; Richardson, B.A.; Marrazzo, J.; Mesquita, P.M.M.; Carpenter, C.; Huber, A.; Louissaint, N.; Marzinke, M.A.; Hillier, S.L.; Hendrix, C.W. Antiviral activity of genital tract secretions after oral or topical tenofovir pre-exposure prophylaxis for HIV-1. J. Acquir. Immune Defic. Syndr., 2014, 66(1), 65-73.
[http://dx.doi.org/10.1097/QAI.0000000000000110] [PMID: 24457633]
[40]
Gropp, R.; Frye, M.; Wagner, T.O.F.; Bargon, J. Epithelial defensins impair adenoviral infection: implication for adenovirus-mediated gene therapy. Hum. Gene Ther., 1999, 10(6), 957-964.
[http://dx.doi.org/10.1089/10430349950018355] [PMID: 10223729]
[41]
Bastian, A.; Schäfer, H. Human α-defensin 1 (HNP-1) inhibits adenoviral infection in vitro. Regul. Pept., 2001, 101(1-3), 157-161.
[http://dx.doi.org/10.1016/S0167-0115(01)00282-8] [PMID: 11495691]
[42]
Harvey, S.A.K.; Romanowski, E.G.; Yates, K.A.; Gordon, Y.J. Adenovirus-directed ocular innate immunity: the role of conjunctival defensin-like chemokines (IP-10, I-TAC) and phagocytic human defensin-α. Invest. Ophthalmol. Vis. Sci., 2005, 46(10), 3657-3665.
[http://dx.doi.org/10.1167/iovs.05-0438] [PMID: 16186347]
[43]
Smith, J.G.; Nemerow, G.R. Mechanism of adenovirus neutralization by Human α-defensins. Cell Host Microbe, 2008, 3(1), 11-19.
[http://dx.doi.org/10.1016/j.chom.2007.12.001] [PMID: 18191790]
[44]
Nemerow, G.R.; Stewart, P.L. Insights into adenovirus uncoating from interactions with integrins and mediators of host immunity. Viruses, 2016, 8(12), E337
[http://dx.doi.org/10.3390/v8120337] [PMID: 28009821]
[45]
Tenge, V.R.; Gounder, A.P.; Wiens, M.E.; Lu, W.; Smith, J.G. Delineation of interfaces on human alpha-defensins critical for human adenovirus and human papillomavirus inhibition. PLoS Pathog., 2014, 10(9), e1004360
[http://dx.doi.org/10.1371/journal.ppat.1004360] [PMID: 25188351]
[46]
Holly, M.K.; Smith, J.G. Adenovirus infection of human enteroids reveals interferon sensitivity and preferential infection of goblet cells. J. Virol., 2018, 92(9), e00250-e18.
[http://dx.doi.org/10.1128/JVI.00250-18] [PMID: 29467318]
[47]
Nguyen, E.K.; Nemerow, G.R.; Smith, J.G. Direct evidence from single-cell analysis that human alpha-defensins block adenovirus uncoating to neutralize infection. J. Virol., 2010, 84(8), 4041-4049.
[http://dx.doi.org/10.1128/JVI.02471-09] [PMID: 20130047]
[48]
Gounder, A.P.; Wiens, M.E.; Wilson, S.S.; Lu, W.; Smith, J.G. Critical determinants of human α-defensin 5 activity against non-enveloped viruses. J. Biol. Chem., 2012, 287(29), 24554-24562.
[http://dx.doi.org/10.1074/jbc.M112.354068] [PMID: 22637473]
[49]
Smith, J.G.; Silvestry, M.; Lindert, S.; Lu, W.; Nemerow, G.R.; Stewart, P.L. Insight into the mechanisms of adenovirus capsid disassembly from studies of defensin neutralization. PLoS Pathog., 2010, 6(6), e1000959
[http://dx.doi.org/10.1371/journal.ppat.1000959] [PMID: 20585634]
[50]
Flatt, J.W.; Kim, R.; Smith, J.G.; Nemerow, G.R.; Stewart, P.L. An intrinsically disordered region of the adenovirus capsid is implicated in neutralization by human alpha defensin 5. PLoS One, 2013, 8(4), e61571
[http://dx.doi.org/10.1371/journal.pone.0061571] [PMID: 23620768]
[51]
Snijder, J.; Reddy, V.S.; May, E.R.; Roos, W.H.; Nemerow, G.R.; Wuite, G.J.L. Integrin and defensin modulate the mechanical properties of adenovirus. J. Virol., 2013, 87(5), 2756-2766.
[http://dx.doi.org/10.1128/JVI.02516-12] [PMID: 23269786]
[52]
Vragniau, C.; Hübner, J-M.; Beidler, P.; Gil, S.; Saydaminova, K.; Lu, Z-Z.; Yumul, R.; Wang, H.; Richter, M.; Sova, P.; Drescher, C.; Fender, P.; Lieber, A. Studies on the interaction of tumor-derived hd5 alpha defensins with adenoviruses and implications for oncolytic adenovirus therapy. J. Virol., 2017, 91(6), e02030-e16.
[http://dx.doi.org/10.1128/JVI.02030-16] [PMID: 28077642]
[53]
Virella-Lowell, I.; Poirier, A.; Chesnut, K.A.; Brantly, M.; Flotte, T.R. Inhibition of recombinant adeno-associated virus (rAAV) transduction by bronchial secretions from cystic fibrosis patients. Gene Ther., 2000, 7(20), 1783-1789.
[http://dx.doi.org/10.1038/sj.gt.3301268] [PMID: 11083501]
[54]
Ljubojevic, S.; Skerlev, M. HPV-associated diseases. Clin. Dermatol., 2014, 32(2), 227-234.
[http://dx.doi.org/10.1016/j.clindermatol.2013.08.007] [PMID: 24559558]
[55]
Zhao, S.; Zhou, H.Y.; Li, H.; Yi, T.; Zhao, X. The therapeutic impact of HNP-1 in condyloma acuminatum. Int. J. Dermatol., 2015, 54(10), 1205-1210.
[http://dx.doi.org/10.1111/ijd.12725] [PMID: 25600882]
[56]
Buck, C.B.; Day, P.M.; Thompson, C.D.; Lubkowski, J.; Lu, W.; Lowy, D.R.; Schiller, J.T. Human alpha-defensins block papillomavirus infection. Proc. Natl. Acad. Sci. USA, 2006, 103(5), 1516-1521.
[http://dx.doi.org/10.1073/pnas.0508033103] [PMID: 16432216]
[57]
Chong, K.T.; Xiang, L.; Wang, X.; Jun, E.L.; Xi, L-F.; Schweinfurth, J.M. High level expression of human epithelial beta-defensins (hBD-1, 2 and 3) in papillomavirus induced lesions. Virol. J., 2006, 3, 75.
[http://dx.doi.org/10.1186/1743-422X-3-75] [PMID: 16961924]
[58]
Szukiewicz, D.; Alkhalayla, H.; Pyzlak, M.; Watroba, M.; Szewczyk, G.; Wejman, J. Human beta-defensin 1, 2 and 3 production by amniotic epithelial cells with respect to human papillomavirus (HPV) infection, HPV oncogenic potential and the mode of delivery. Microb. Pathog., 2016, 97, 154-165.
[http://dx.doi.org/10.1016/j.micpath.2016.06.010] [PMID: 27289038]
[59]
Hubert, P.; Herman, L.; Maillard, C.; Caberg, J-H.; Nikkels, A.; Pierard, G.; Foidart, J-M.; Noel, A.; Boniver, J.; Delvenne, P. Defensins induce the recruitment of dendritic cells in cervical human papillomavirus-associated (pre)neoplastic lesions formed in vitro and transplanted in vivo. FASEB J., 2007, 21(11), 2765-2775.
[http://dx.doi.org/10.1096/fj.06-7646com] [PMID: 17470569]
[60]
Segat, L.; Zupin, L.; Moura, R.R.; Coelho, A.V.C.; Chagas, B.S.; de Freitas, A.C.; Crovella, S. DEFB1 polymorphisms are involved in susceptibility to human papillomavirus infection in Brazilian gynaecological patients. Mem. Inst. Oswaldo Cruz, 2014, 109(7), 918-922.
[http://dx.doi.org/10.1590/0074-0276140220] [PMID: 25410996]
[61]
Wiens, M.E.; Smith, J.G. α-Defensin HD5 inhibits human papillomavirus 16 infection via capsid stabilization and redirection to the lysosome. MBio, 2017, 8(1), e02304-e02316.
[http://dx.doi.org/10.1128/mBio.02304-16] [PMID: 28119475]
[62]
Wiens, M.E.; Smith, J.G. Alpha-defensin HD5 inhibits furin cleavage of human papillomavirus 16 L2 to block infection. J. Virol., 2015, 89(5), 2866-2874.
[http://dx.doi.org/10.1128/JVI.02901-14] [PMID: 25540379]
[63]
Gardner, S.D.; Field, A.M.; Coleman, D.V.; Hulme, B. New human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet, 1971, 1(7712), 1253-1257.
[http://dx.doi.org/10.1016/S0140-6736(71)91776-4] [PMID: 4104714]
[64]
J. L.; Chou, S.-M.. Particles resembling papova viruses in human cerebral demyelinating disease. Science, 1962, 135(3509), 1128-1130.
[PMID: 14472429]
[65]
Padgett, B.L.; Walker, D.L.; ZuRhein, G.M.; Eckroade, R.J.; Dessel, B.H. Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet, 1971, 1(7712), 1257-1260.
[http://dx.doi.org/10.1016/S0140-6736(71)91777-6] [PMID: 4104715]
[66]
Trang, V.D.; Rockett, R.; Jeoffreys, N.; Trung, N.V.; An, H.H.P.; Kok, J.; Dwyer, D.E. BK polyomavirus: a review of the virology, pathogenesis, clinical and laboratory features, and treatment. Future Virol., 2017, 12(8), 439-459.
[http://dx.doi.org/10.2217/fvl-2017-0013]
[67]
Delbue, S.; Comar, M.; Ferrante, P. Review on the role of the human Polyomavirus JC in the development of tumors. Infect. Agent. Cancer, 2017, 12(1), 10.
[http://dx.doi.org/10.1186/s13027-017-0122-0] [PMID: 28174598]
[68]
Sweet, B.H.; Hilleman, M.R. The vacuolating virus, S.V. 40. Proc. Soc. Exp. Biol. Med., 1960, 105, 420-427.
[http://dx.doi.org/10.3181/00379727-105-26128] [PMID: 13774265]
[69]
Lowe, D.B.; Shearer, M.H.; Jumper, C.A.; Kennedy, R.C. SV40 association with human malignancies and mechanisms of tumor immunity by large tumor antigen. Cell. Mol. Life Sci., 2007, 64(7-8), 803-814.
[http://dx.doi.org/10.1007/s00018-007-6414-6] [PMID: 17260087]
[70]
Dugan, A.S.; Maginnis, M.S.; Jordan, J.A.; Gasparovic, M.L.; Manley, K.; Page, R.; Williams, G.; Porter, E.; O’Hara, B.A.; Atwood, W.J. Human alpha-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells. J. Biol. Chem., 2008, 283(45), 31125-31132.
[http://dx.doi.org/10.1074/jbc.M805902200] [PMID: 18782756]
[71]
Zins, S.R.; Nelson, C.D.S.; Maginnis, M.S.; Banerjee, R.; O’Hara, B.A.; Atwood, W.J. The human alpha defensin HD5 neutralizes JC polyomavirus infection by reducing endoplasmic reticulum traffic and stabilizing the viral capsid. J. Virol., 2014, 88(2), 948-960.
[http://dx.doi.org/10.1128/JVI.02766-13] [PMID: 24198413]
[72]
Proud, D.; Sanders, S.P.; Wiehler, S. Human rhinovirus infection induces airway epithelial cell production of human beta-defensin 2 both in vitro and in vivo. J. Immunol., 2004, 172(7), 4637-4645.
[http://dx.doi.org/10.4049/jimmunol.172.7.4637] [PMID: 15034083]
[73]
Chen, W.; Liu, Z.; Zhang, Q.; Yan, Q.; Jing, S. Induction and antiviral activity of human β-defensin 3 in intestinal cells with picornavirus infection. Acta Virol., 2018, 62(3), 287-293.
[http://dx.doi.org/10.4149/av_2018_222] [PMID: 30160144]
[74]
Mattar, E.H.; Almehdar, H.A.; Uversky, V.N.; Redwan, E.M. Virucidal activity of human α- and β-defensins against hepatitis C virus genotype 4. Mol. Biosyst., 2016, 12(9), 2785-2797.
[http://dx.doi.org/10.1039/C6MB00283H] [PMID: 27327492]
[75]
Rusyn, I.; Lemon, S.M. Mechanisms of HCV-induced liver cancer: what did we learn from in vitro and animal studies? Cancer Lett., 2014, 345(2), 210-215.
[http://dx.doi.org/10.1016/j.canlet.2013.06.028] [PMID: 23871966]
[76]
Mattar, E.H.; Almehdar, H.A.; AlJaddawi, A.A.; Abu Zeid, I.E.M.; Redwan, E.M. Elevated concentration of defensins in hepatitis c virus-infected patients. J. Immunol. Res., 2016, 20168373819
[http://dx.doi.org/10.1155/2016/8373819] [PMID: 27413763]
[77]
Tolfvenstam, T.; Lindblom, A.; Schreiber, M.J.; Ling, L.; Chow, A.; Ooi, E.E.; Hibberd, M.L. Characterization of early host responses in adults with dengue disease. BMC Infect. Dis., 2011, 11, 209.
[http://dx.doi.org/10.1186/1471-2334-11-209] [PMID: 21810247]
[78]
Castañeda-Sánchez, J.I.; Domínguez-Martínez, D.A.; Olivar-Espinosa, N.; García-Pérez, B.E.; Loroño-Pino, M.A.; Luna-Herrera, J.; Salazar, M.I. Expression of antimicrobial peptides in human monocytic cells and neutrophils in response to dengue virus type 2. Intervirology, 2016, 59(1), 8-19.
[http://dx.doi.org/10.1159/000446282] [PMID: 27318958]
[79]
Bai, X.; Tian, T.; Wang, P.; Yang, X.; Wang, Z.; Dong, M. Potential roles of placental human beta-defensin-3 and apolipoprotein B mRNA-editing enzyme catalytic polypeptide 3G in prevention of intrauterine transmission of hepatitis B virus. J. Med. Virol., 2015, 87(3), 375-379.
[http://dx.doi.org/10.1002/jmv.24072] [PMID: 25196417]
[80]
Boda, B.; Benaoudia, S.; Huang, S.; Bonfante, R.; Wiszniewski, L.; Tseligka, E.D.; Tapparel, C.; Constant, S. Antiviral drug screening by assessing epithelial functions and innate immune responses in human 3D airway epithelium model. Antiviral Res., 2018, 156, 72-79.
[http://dx.doi.org/10.1016/j.antiviral.2018.06.007] [PMID: 29890184]
[81]
Dauletbaev, N.; Gropp, R.; Frye, M.; Loitsch, S.; Wagner, T-O-F.; Bargon, J. Expression of human beta defensin (HBD-1 and HBD-2) mRNA in nasal epithelia of adult cystic fibrosis patients, healthy individuals, and individuals with acute cold. Respiration, 2002, 69(1), 46-51.
[http://dx.doi.org/10.1159/000049369] [PMID: 11844962]
[82]
Kim, J.; Yang, Y.L.; Jang, S-H.; Jang, Y-S. Human β-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity. Virol. J., 2018, 15(1), 124.
[http://dx.doi.org/10.1186/s12985-018-1035-2] [PMID: 30089512]
[83]
Kalenik, B.M.; Góra-Sochacka, A.; Sirko, A. B-defensins - Underestimated peptides in influenza combat. Virus Res., 2018, 247, 10-14.
[http://dx.doi.org/10.1016/j.virusres.2018.01.008] [PMID: 29421304]
[84]
Hartshorn, K.L.; White, M.R.; Tecle, T.; Holmskov, U.; Crouch, E.C. Innate defense against influenza A virus: activity of human neutrophil defensins and interactions of defensins with surfactant protein D. J. Immunol., 2006, 176(11), 6962-6972.
[http://dx.doi.org/10.4049/jimmunol.176.11.6962] [PMID: 16709857]
[85]
Tripathi, S.; Tecle, T.; Verma, A.; Crouch, E.; White, M.; Hartshorn, K.L. The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. J. Gen. Virol., 2013, 94(Pt 1), 40-49.
[http://dx.doi.org/10.1099/vir.0.045013-0] [PMID: 23052388]
[86]
Tripathi, S.; Wang, G.; White, M.; Qi, L.; Taubenberger, J.; Hartshorn, K.L. Antiviral activity of the human cathelicidin, LL-37, and derived peptides on seasonal and pandemic influenza A Viruses. PLoS One, 2015, 10(4)e0124706
[http://dx.doi.org/10.1371/journal.pone.0124706] [PMID: 25909853]
[87]
Tecle, T.; White, M.R.; Gantz, D.; Crouch, E.C.; Hartshorn, K.L. Human neutrophil defensins increase neutrophil uptake of influenza A virus and bacteria and modify virus-induced respiratory burst responses. J. Immunol., 2007, 178(12), 8046-8052.
[http://dx.doi.org/10.4049/jimmunol.178.12.8046] [PMID: 17548642]
[88]
Doss, M.; White, M.R.; Tecle, T.; Gantz, D.; Crouch, E.C.; Jung, G.; Ruchala, P.; Waring, A.J.; Lehrer, R.I.; Hartshorn, K.L. Interactions of alpha-, beta-, and theta-defensins with influenza A virus and surfactant protein D. J. Immunol., 2009, 182(12), 7878-7887.
[http://dx.doi.org/10.4049/jimmunol.0804049] [PMID: 19494312]
[89]
Salvatore, M.; García-Sastre, A.; Ruchala, P.; Lehrer, R.I.; Chang, T.; Klotman, M.E. alpha-Defensin inhibits influenza virus replication by cell-mediated mechanism(s). J. Infect. Dis., 2007, 196(6), 835-843.
[http://dx.doi.org/10.1086/521027] [PMID: 17703413]
[90]
Demirkhanyan, L.H.; Marin, M.; Padilla-Parra, S.; Zhan, C.; Miyauchi, K.; Jean-Baptiste, M.; Novitskiy, G.; Lu, W.; Melikyan, G.B. Multifaceted mechanisms of HIV-1 entry inhibition by human α-defensin. J. Biol. Chem., 2012, 287(34), 28821-28838.
[http://dx.doi.org/10.1074/jbc.M112.375949] [PMID: 22733823]
[91]
Falco, A.; Mas, V.; Tafalla, C.; Perez, L.; Coll, J.M.; Estepa, A. Dual antiviral activity of human alpha-defensin-1 against viral haemorrhagic septicaemia rhabdovirus (VHSV): inactivation of virus particles and induction of a type I interferon-related response. Antiviral Res., 2007, 76(2), 111-123.
[http://dx.doi.org/10.1016/j.antiviral.2007.06.006] [PMID: 17655941]
[92]
Kota, S.; Sabbah, A.; Chang, T.H.; Harnack, R.; Xiang, Y.; Meng, X.; Bose, S. Role of human beta-defensin-2 during tumor necrosis factor-alpha/NF-kappaB-mediated innate antiviral response against human respiratory syncytial virus. J. Biol. Chem., 2008, 283(33), 22417-22429.
[http://dx.doi.org/10.1074/jbc.M710415200] [PMID: 18567888]
[93]
Aksoy, O.; Parlak, E.; Parlak, M.; Aksoy, H. Serum β-defensin-2 levels and their relationship with the clinical course and prognosis in patients with crimean-congo hemorrhagic fever. Med. Princ. Pract., 2016, 25(2), 163-168.
[http://dx.doi.org/10.1159/000442177] [PMID: 26539993]
[94]
Cohen, M.S.; Hellmann, N.; Levy, J.A.; DeCock, K.; Lange, J. The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. J. Clin. Invest., 2008, 118(4), 1244-1254.
[http://dx.doi.org/10.1172/JCI34706] [PMID: 18382737]
[95]
Reynell, L.; Trkola, A. HIV vaccines: an attainable goal? Swiss Med. Wkly., 2012, 142(0910)w13535
[PMID: 22389197]
[96]
Popovic, M.; Sarin, P.; Robert-Gurroff, M.; Kalyanaraman, V.; Mann, D.; Minowada, J.; Gallo, R.; Axler-Blin, C.; Vezinet-Brun, F.; Rouzioux, C. Isolation and transmission of human retrovirus (human t-cell leukemia virus). Science, 1983, 219(4586), 856-859.
[http://dx.doi.org/10.1126/science.6600519] [PMID: 6600519]
[97]
Robert-Guroff, M.; Nakao, Y.; Notake, K.; Ito, Y.; Sliski, A.; Gallo, R.; Mann, D.; Sidhu, G.; Stahl, R.; Zolla-Pazner, S. Natural antibodies to human retrovirus HTLV in a cluster of Japanese patients with adult T cell leukemia. Science, 1982, 215(4535), 975-978.
[http://dx.doi.org/10.1126/science.6760397] [PMID: 6760397]
[98]
Nakashima, H.; Yamamoto, N.; Masuda, M.; Fujii, N. Defensins inhibit HIV replication in vitro. AIDS, 1993, 7(8), 1129.
[http://dx.doi.org/10.1097/00002030-199308000-00019] [PMID: 8397954]
[99]
Cole, A.M.; Cole, A.L. Antimicrobial polypeptides are key anti-HIV-1 effector molecules of cervicovaginal host defense. Am. J. Reprod. Immunol., 2008, 59(1), 27-34.
[http://dx.doi.org/10.1111/j.1600-0897.2007.00561.x] [PMID: 18154593]
[100]
Weinberg, A.; Quiñones-Mateu, M.E.; Lederman, M.M. Role of human β-defensins in HIV infection. Adv. Dent. Res., 2006, 19(1), 42-48.
[http://dx.doi.org/10.1177/154407370601900109] [PMID: 16672548]
[101]
Eade, C.R.; Wood, M.P.; Cole, A.M. Mechanisms and modifications of naturally occurring host defense peptides for anti-HIV microbicide development. Curr. HIV Res., 2012, 10(1), 61-72.
[http://dx.doi.org/10.2174/157016212799304580] [PMID: 22264047]
[102]
Gianesin, K.; Petrara, R.; Freguja, R.; Zanchetta, M.; Giaquinto, C.; De Rossi, A. Host factors and early treatments to restrict paediatric HIV infection and early disease progression. J. Virus Erad., 2015, 1(3), 140-147.
[PMID: 27482405]
[103]
Nittayananta, W.; Tao, R.; Jiang, L.; Peng, Y.; Huang, Y. Oral innate immunity in HIV infection in HAART era. J. Oral Pathol. Med., 2016, 45(1), 3-8.
[http://dx.doi.org/10.1111/jop.12304] [PMID: 25639844]
[104]
Mehlotra, R.K.; Zimmerman, P.A.; Weinberg, A. Defensin gene variation and HIV/AIDS: a comprehensive perspective needed. J. Leukoc. Biol., 2016, 99(5), 687-692.
[http://dx.doi.org/10.1189/jlb.6RU1215-560R] [PMID: 26957215]
[105]
Pace, B.T.; Lackner, A.A.; Porter, E.; Pahar, B. The role of defensins in HIV pathogenesis. Mediators Inflamm., 2017, 20175186904
[http://dx.doi.org/10.1155/2017/5186904] [PMID: 28839349]
[106]
Garzino-Demo, A. Chemokines and defensins as HIV suppressive factors: an evolving story. Curr. Pharm. Des., 2007, 13(2), 163-172.
[http://dx.doi.org/10.2174/138161207779313696] [PMID: 17269925]
[107]
Kuhn, L.; Trabattoni, D.; Kankasa, C.; Semrau, K.; Kasonde, P.; Lissoni, F.; Sinkala, M.; Ghosh, M.; Vwalika, C.; Aldrovandi, G.M.; Thea, D.M.; Clerici, M. Alpha-defensins in the prevention of HIV transmission among breastfed infants. J. Acquir. Immune Defic. Syndr., 2005, 39(2), 138-142.
[PMID: 15905728]
[108]
Armogida, S.A.; Yannaras, N.M.; Melton, A.L.; Srivastava, M.D. Identification and quantification of innate immune system mediators in human breast milk. Allergy Asthma Proc., 2004, 25(5), 297-304.
[PMID: 15603202]
[109]
Jia, H.P.; Starner, T.; Ackermann, M.; Kirby, P.; Tack, B.F.; McCray, P.B. Jr. Abundant human beta-defensin-1 expression in milk and mammary gland epithelium. J. Pediatr., 2001, 138(1), 109-112.
[http://dx.doi.org/10.1067/mpd.2001.109375] [PMID: 11148522]
[110]
Tunzi, C.R.; Harper, P.A.; Bar-Oz, B.; Valore, E.V.; Semple, J.L.; Watson-MacDonell, J.; Ganz, T.; Ito, S. β-defensin expression in human mammary gland epithelia. Pediatr. Res., 2000, 48(1), 30-35.
[http://dx.doi.org/10.1203/00006450-200007000-00008] [PMID: 10879797]
[111]
Braida, L.; Boniotto, M.; Pontillo, A.; Tovo, P.A.; Amoroso, A.; Crovella, S. A single-nucleotide polymorphism in the human beta-defensin 1 gene is associated with HIV-1 infection in Italian children. AIDS, 2004, 18(11), 1598-1600.
[http://dx.doi.org/10.1097/01.aids.0000131363.82951.fb] [PMID: 15238780]
[112]
Estrada-Aguirre, J.A.; Osuna-Ramírez, I.; Prado Montes de Oca, E.; Ochoa-Ramirez, L.A.; Ramirez, M.; Magallon-Zazueta, L.G.; Gonzalez-Beltran, M.S.; Cazarez-Salazar, S.G.; Rangel-Villalobos, H.; Velarde-Felix, J.S. DEFB1 5'UTR polymorphisms modulate the risk of HIV-1 infection in Mexican women. Curr. HIV Res., 2014, 12(3), 220-226.
[http://dx.doi.org/10.2174/1570162X12666140708102722] [PMID: 25001249]
[113]
Murphy, K.; Richardson, B.A.; Dezzutti, C.S.; Marrazzo, J.; Hillier, S.L.; Hendrix, C.W.; Herold, B.C. Levels of genital tract defensins and cytokines differ between HIV-uninfected US and African women. Am. J. Reprod. Immunol., 2015, 74(4), 313-322.
[http://dx.doi.org/10.1111/aji.12411] [PMID: 26094732]
[114]
Nittayananta, W.; Kemapunmanus, M.; Amornthatree, K.; Talungchit, S.; Sriplung, H. Oral human β-defensin 2 in HIV-infected subjects with long-term use of antiretroviral therapy. J. Oral Pathol. Med., 2013, 42(1), 53-60.
[http://dx.doi.org/10.1111/j.1600-0714.2012.01183.x] [PMID: 22680235]
[115]
Corleis, B.; Lisanti, A.C.; Körner, C.; Schiff, A.E.; Rosenberg, E.S.; Allen, T.M.; Altfeld, M.; Kwon, D.S. Early type I Interferon response induces upregulation of human β-defensin 1 during acute HIV-1 infection. PLoS One, 2017, 12(3)e0173161
[http://dx.doi.org/10.1371/journal.pone.0173161] [PMID: 28253319]
[116]
Zapata, W.; Aguilar-Jiménez, W.; Feng, Z.; Weinberg, A.; Russo, A.; Potenza, N.; Estrada, H.; Rugeles, M.T. Identification of innate immune antiretroviral factors during in vivo and in vitro exposure to HIV-1. Microbes Infect., 2016, 18(3), 211-219.
[http://dx.doi.org/10.1016/j.micinf.2015.10.009] [PMID: 26548606]
[117]
Hirbod, T.; Kong, X.; Kigozi, G.; Ndyanabo, A.; Serwadda, D.; Prodger, J.L.; Tobian, A.A.; Nalugoda, F.; Wawer, M.J.; Shahabi, K.; Rojas, O.L.; Gommerman, J.L.; Broliden, K.; Kaul, R.; Gray, R.H. HIV acquisition is associated with increased antimicrobial peptides and reduced HIV neutralizing IgA in the foreskin prepuce of uncircumcised men. PLoS Pathog., 2014, 10(10)e1004416
[http://dx.doi.org/10.1371/journal.ppat.1004416] [PMID: 25275513]
[118]
Zhang, L.; Yu, W.; He, T.; Yu, J.; Caffrey, R.E.; Dalmasso, E.A.; Fu, S.; Pham, T.; Mei, J.; Ho, J.J.; Zhang, W.; Lopez, P.; Ho, D.D. Contribution of human alpha-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science, 2002, 298(5595), 995-1000.
[http://dx.doi.org/10.1126/science.1076185] [PMID: 12351674]
[119]
Zhang, L.; Lopez, P.; He, T.; Yu, W.; Ho, D.D. Retraction of an interpretation. Science, 2004, 303(5657), 467.
[http://dx.doi.org/10.1126/science.303.5657.467b] [PMID: 14739439]
[120]
Mackewicz, C.E.; Yuan, J.; Tran, P.; Diaz, L.; Mack, E.; Selsted, M.E.; Levy, J.A. alpha-Defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. AIDS, 2003, 17(14), F23-F32.
[http://dx.doi.org/10.1097/00002030-200309260-00001] [PMID: 14502030]
[121]
Chang, T.L-Y.; François, F.; Mosoian, A.; Klotman, M.E. CAF-mediated human immunodeficiency virus (HIV) type 1 transcriptional inhibition is distinct from alpha-defensin-1 HIV inhibition. J. Virol., 2003, 77(12), 6777-6784.
[http://dx.doi.org/10.1128/JVI.77.12.6777-6784.2003] [PMID: 12767998]
[122]
Quiñones-Mateu, M.E.; Lederman, M.M.; Feng, Z.; Chakraborty, B.; Weber, J.; Rangel, H.R.; Marotta, M.L.; Mirza, M.; Jiang, B.; Kiser, P.; Medvik, K.; Sieg, S.F.; Weinberg, A. Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. AIDS, 2003, 17(16), F39-F48.
[http://dx.doi.org/10.1097/00002030-200311070-00001] [PMID: 14571200]
[123]
Seidel, A.; Ye, Y.; de Armas, L.R.; Soto, M.; Yarosh, W.; Marcsisin, R.A.; Tran, D.; Selsted, M.E.; Camerini, D. Cyclic and acyclic defensins inhibit human immunodeficiency virus type-1 replication by different mechanisms. PLoS One, 2010, 5(3)e9737
[http://dx.doi.org/10.1371/journal.pone.0009737] [PMID: 20305815]
[124]
Feng, Z.; Dubyak, G.R.; Lederman, M.M.; Weinberg, A. Cutting edge: human beta defensin 3--a novel antagonist of the HIV-1 coreceptor CXCR4. J. Immunol., 2006, 177(2), 782-786.
[http://dx.doi.org/10.4049/jimmunol.177.2.782] [PMID: 16818731]
[125]
Furci, L.; Tolazzi, M.; Sironi, F.; Vassena, L.; Lusso, P. Inhibition of HIV-1 infection by human α-defensin-5, a natural antimicrobial peptide expressed in the genital and intestinal mucosae. PLoS One, 2012, 7(9)e45208
[http://dx.doi.org/10.1371/journal.pone.0045208] [PMID: 23028850]
[126]
Furci, L.; Sironi, F.; Tolazzi, M.; Vassena, L.; Lusso, P.; Lindbom, L.; Kiessling, R.; Jörnvall, H.; Wigzell, H.; Gudmundsson, G.H. Alpha-defensins block the early steps of HIV-1 infection: interference with the binding of gp120 to CD4. Blood, 2007, 109(7), 2928-2935.
[http://dx.doi.org/10.1182/blood-2006-05-024489] [PMID: 17132727]
[127]
Wu, Z.; Cocchi, F.; Gentles, D.; Ericksen, B.; Lubkowski, J.; Devico, A.; Lehrer, R.I.; Lu, W. Human neutrophil α-defensin 4 inhibits HIV-1 infection in vitro. FEBS Lett., 2005, 579(1), 162-166.
[http://dx.doi.org/10.1016/j.febslet.2004.11.062] [PMID: 15620707]
[128]
Levinson, P.; Choi, R.Y.; Cole, A.L.; Hirbod, T.; Rhedin, S.; Payne, B.; Guthrie, B.L.; Bosire, R.; Cole, A.M.; Farquhar, C.; Broliden, K. HIV-neutralizing activity of cationic polypeptides in cervicovaginal secretions of women in HIV-serodiscordant relationships. PLoS One, 2012, 7(2)e31996
[http://dx.doi.org/10.1371/journal.pone.0031996] [PMID: 22389677]
[129]
Wang, W.; Owen, S.M.; Rudolph, D.L.; Cole, A.M.; Hong, T.; Waring, A.J.; Lal, R.B.; Lehrer, R.I. Activity of alpha- and theta-defensins against primary isolates of HIV-1. J. Immunol., 2004, 173(1), 515-520.
[http://dx.doi.org/10.4049/jimmunol.173.1.515] [PMID: 15210812]
[130]
Wei, G.; Pazgier, M.; de Leeuw, E.; Rajabi, M.; Li, J.; Zou, G.; Jung, G.; Yuan, W.; Lu, W-Y.; Lehrer, R.I.; Lu, W. Trp-26 imparts functional versatility to human alpha-defensin HNP1. J. Biol. Chem., 2010, 285(21), 16275-16285.
[http://dx.doi.org/10.1074/jbc.M110.102749] [PMID: 20220136]
[131]
Pazgier, M.; Wei, G.; Ericksen, B.; Jung, G.; Wu, Z.; de Leeuw, E.; Yuan, W.; Szmacinski, H.; Lu, W-Y.; Lubkowski, J.; Lehrer, R.I.; Lu, W. Sometimes it takes two to tango: contributions of dimerization to functions of human α-defensin HNP1 peptide. J. Biol. Chem., 2012, 287(12), 8944-8953.
[http://dx.doi.org/10.1074/jbc.M111.332205] [PMID: 22270360]
[132]
Zhao, L.; Tolbert, W.D.; Ericksen, B.; Zhan, C.; Wu, X.; Yuan, W.; Li, X.; Pazgier, M.; Lu, W. Single, double and quadruple alanine substitutions at oligomeric interfaces identify hydrophobicity as the key determinant of human neutrophil alpha defensin HNP1 function. PLoS One, 2013, 8(11)e78937
[http://dx.doi.org/10.1371/journal.pone.0078937] [PMID: 24236072]
[133]
Demirkhanyan, L.; Marin, M.; Lu, W.; Melikyan, G.B. Sub-inhibitory concentrations of human α-defensin potentiate neutralizing antibodies against HIV-1 gp41 pre-hairpin intermediates in the presence of serum. PLoS Pathog., 2013, 9(6)e1003431
[http://dx.doi.org/10.1371/journal.ppat.1003431] [PMID: 23785290]
[134]
Herrera, R.; Morris, M.; Rosbe, K.; Feng, Z.; Weinberg, A.; Tugizov, S. Human beta-defensins 2 and -3 cointernalize with human immunodeficiency virus via heparan sulfate proteoglycans and reduce infectivity of intracellular virions in tonsil epithelial cells. Virology, 2016, 487, 172-187.
[http://dx.doi.org/10.1016/j.virol.2015.09.025] [PMID: 26539799]
[135]
Guo, C-J.; Tan, N.; Song, L.; Douglas, S.D.; Ho, W-Z. Alpha-defensins inhibit HIV infection of macrophages through upregulation of CC-chemokines. AIDS, 2004, 18(8), 1217-1218.
[http://dx.doi.org/10.1097/00002030-200405210-00020] [PMID: 15166542]
[136]
Chang, T.L.; Vargas, J., Jr; DelPortillo, A.; Klotman, M.E.; Klotman, M.E. Dual role of alpha-defensin-1 in anti-HIV-1 innate immunity. J. Clin. Invest., 2005, 115(3), 765-773.
[http://dx.doi.org/10.1172/JCI21948] [PMID: 15719067]
[137]
Sun, L.; Finnegan, C.M.; Kish-Catalone, T.; Blumenthal, R.; Garzino-Demo, P.; La Terra Maggiore, G.M.; Berrone, S.; Kleinman, C.; Wu, Z.; Abdelwahab, S.; Lu, W.; Garzino-Demo, A. Human beta-defensins suppress human immunodeficiency virus infection: potential role in mucosal protection. J. Virol., 2005, 79(22), 14318-14329.
[http://dx.doi.org/10.1128/JVI.79.22.14318-14329.2005] [PMID: 16254366]
[138]
Lafferty, M.K.; Sun, L.; Christensen-Quick, A.; Lu, W.; Garzino-Demo, A. Human beta defensin 2 selectively inhibits HIV-1 in highly permissive CCR6+CD4+ T cells. Viruses, 2017, 9(5)E111
[http://dx.doi.org/10.3390/v9050111] [PMID: 28509877]
[139]
Valere, K.; Rapista, A.; Eugenin, E.; Lu, W.; Chang, T.L. Human alpha-defensin HNP1 increases HIV traversal of the epithelial barrier: a potential role in STI-mediated enhancement of HIV transmission. Viral Immunol., 2015, 28(10), 609-615.
[http://dx.doi.org/10.1089/vim.2014.0137] [PMID: 26379091]
[140]
Klotman, M.E.; Rapista, A.; Teleshova, N.; Micsenyi, A.; Jarvis, G.A.; Lu, W.; Porter, E.; Chang, T.L. Neisseria gonorrhoeae-induced human defensins 5 and 6 increase HIV infectivity: role in enhanced transmission. J. Immunol., 2008, 180(9), 6176-6185.
[http://dx.doi.org/10.4049/jimmunol.180.9.6176] [PMID: 18424739]
[141]
Rapista, A.; Ding, J.; Benito, B.; Lo, Y-T.; Neiditch, M.B.; Lu, W.; Chang, T.L. Human defensins 5 and 6 enhance HIV-1 infectivity through promoting HIV attachment. Retrovirology, 2011, 8, 45.
[http://dx.doi.org/10.1186/1742-4690-8-45] [PMID: 21672195]
[142]
Ding, J.; Tasker, C.; Valere, K.; Sihvonen, T.; Descalzi-Montoya, D.B.; Lu, W.; Chang, T.L. Anti-HIV activity of human defensin 5 in primary CD4+ T cells under serum-deprived conditions is a consequence of defensin-mediated cytotoxicity. PLoS One, 2013, 8(9)e76038
[http://dx.doi.org/10.1371/journal.pone.0076038] [PMID: 24086683]
[143]
Valere, K.; Lu, W.; Chang, T.L. Key determinants of human α-Defensin 5 and 6 for enhancement of HIV infectivity. Viruses, 2017, 9(9)E244
[http://dx.doi.org/10.3390/v9090244] [PMID: 28850095]
[144]
Bandurska, K.; Berdowska, A.; Barczyńska-Felusiak, R.; Krupa, P. Unique features of human cathelicidin LL-37. Biofactors, 2015, 41(5), 289-300.
[http://dx.doi.org/10.1002/biof.1225] [PMID: 26434733]
[145]
Larrick, J.W.; Hirata, M.; Balint, R.F.; Lee, J.; Zhong, J.; Wright, S.C. Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect. Immun., 1995, 63(4), 1291-1297.
[http://dx.doi.org/10.1128/IAI.63.4.1291-1297.1995] [PMID: 7890387]
[146]
Vandamme, D.; Landuyt, B.; Luyten, W.; Schoofs, L. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell. Immunol., 2012, 280(1), 22-35.
[http://dx.doi.org/10.1016/j.cellimm.2012.11.009] [PMID: 23246832]
[147]
Bals, R.; Wilson, J.M. Cathelicidins--a family of multifunctional antimicrobial peptides. Cell. Mol. Life Sci., 2003, 60(4), 711-720.
[http://dx.doi.org/10.1007/s00018-003-2186-9] [PMID: 12785718]
[148]
Barlow, P.G.; Findlay, E.G.; Currie, S.M.; Davidson, D.J. Antiviral potential of cathelicidins. Future Microbiol., 2014, 9(1), 55-73.
[http://dx.doi.org/10.2217/fmb.13.135] [PMID: 24328381]
[149]
Howell, M.D.; Wollenberg, A.; Gallo, R.L.; Flaig, M.; Streib, J.E.; Wong, C.; Pavicic, T.; Boguniewicz, M.; Leung, D.Y.M. Cathelicidin deficiency predisposes to eczema herpeticum. J. Allergy Clin. Immunol., 2006, 117(4), 836-841.
[http://dx.doi.org/10.1016/j.jaci.2005.12.1345] [PMID: 16630942]
[150]
Gordon, Y.J.; Huang, L.C.; Romanowski, E.G.; Yates, K.A.; Proske, R.J.; McDermott, A.M. Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr. Eye Res., 2005, 30(5), 385-394.
[http://dx.doi.org/10.1080/02713680590934111] [PMID: 16020269]
[151]
Vilas Boas, L.C.P.; de Lima, L.M.P.; Migliolo, L.; Mendes, G.D.; de Jesus, M.G.; Franco, O.L.; Silva, P.A. Linear antimicrobial peptides with activity against herpes simplex virus 1 and Aichi virus. Biopolymers, 2017, 108(2)e22871
[http://dx.doi.org/10.1002/bip.22871] [PMID: 27161201]
[152]
Bourgade, K.; Garneau, H.; Giroux, G.; Le Page, A.Y.; Bocti, C.; Dupuis, G.; Frost, E.H.; Fülöp, T. Jr β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology, 2015, 16(1), 85-98.
[http://dx.doi.org/10.1007/s10522-014-9538-8] [PMID: 25376108]
[153]
Roy, M.; Lebeau, L.; Chessa, C.; Damour, A.; Ladram, A.; Oury, B.; Boutolleau, D.; Bodet, C.; Lévêque, N. Comparison of anti-viral activity of frog skin anti-microbial peptides temporin-sha and [K3]SHa to LL-37 and temporin-Tb against herpes simplex virus type 1. Viruses, 2019, 11(1)E77
[http://dx.doi.org/10.3390/v11010077] [PMID: 30669255]
[154]
Ron-Doitch, S.; Sawodny, B.; Kühbacher, A.; David, M.M.N.; Samanta, A.; Phopase, J.; Burger-Kentischer, A.; Griffith, M.; Golomb, G.; Rupp, S. Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. J. Control. Release, 2016, 229, 163-171.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.025] [PMID: 27012977]
[155]
Takiguchi, T.; Morizane, S.; Yamamoto, T.; Kajita, A.; Ikeda, K.; Iwatsuki, K. Cathelicidin antimicrobial peptide LL-37 augments interferon-β expression and antiviral activity induced by double-stranded RNA in keratinocytes. Br. J. Dermatol., 2014, 171(3), 492-498.
[http://dx.doi.org/10.1111/bjd.12942] [PMID: 24601852]
[156]
Lee, C-J.; Buznyk, O.; Kuffova, L.; Rajendran, V.; Forrester, J.V.; Phopase, J.; Islam, M.M.; Skog, M.; Ahlqvist, J.; Griffith, M. Cathelicidin LL-37 and HSV-1 corneal infection: peptide versus gene therapy. Transl. Vis. Sci. Technol., 2014, 3(3), 4.
[http://dx.doi.org/10.1167/tvst.3.3.4] [PMID: 24932432]
[157]
Brice, D.C.; Toth, Z.; Diamond, G. LL-37 disrupts the Kaposi’s sarcoma-associated herpesvirus envelope and inhibits infection in oral epithelial cells. Antiviral Res., 2018, 158, 25-33.
[http://dx.doi.org/10.1016/j.antiviral.2018.07.025] [PMID: 30076864]
[158]
Fathy, H.; Amin, M.M.; El-Gilany, A-H. Upregulation of human β-defensin-3 and cathelicidin LL-37 in Kaposi’s sarcoma. F1000 Res., 2012, 1, 38.
[http://dx.doi.org/10.12688/f1000research.1-38.v2] [PMID: 24358820]
[159]
Howell, M.D.; Jones, J.F.; Kisich, K.O.; Streib, J.E.; Gallo, R.L.; Leung, D.Y.M. Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J. Immunol., 2004, 172(3), 1763-1767.
[http://dx.doi.org/10.4049/jimmunol.172.3.1763] [PMID: 14734759]
[160]
Dean, R.E.; O’Brien, L.M.; Thwaite, J.E.; Fox, M.A.; Atkins, H.; Ulaeto, D.O. A carpet-based mechanism for direct antimicrobial peptide activity against vaccinia virus membranes. Peptides, 2010, 31(11), 1966-1972.
[http://dx.doi.org/10.1016/j.peptides.2010.07.028] [PMID: 20705109]
[161]
Ulaeto, D.O.; Morris, C.J.; Fox, M.A.; Gumbleton, M.; Beck, K. Destabilization of α-helical structure in solution improves bactericidal activity of antimicrobial peptides: opposite effects on bacterial and viral targets. Antimicrob. Agents Chemother., 2016, 60(4), 1984-1991.
[http://dx.doi.org/10.1128/AAC.02146-15] [PMID: 26824944]
[162]
Braff, M.H.; Hawkins, M.A.; Di Nardo, A.; Lopez-Garcia, B.; Howell, M.D.; Wong, C.; Lin, K.; Streib, J.E.; Dorschner, R.; Leung, D.Y.M.; Gallo, R.L. Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities. J. Immunol., 2005, 174(7), 4271-4278.
[http://dx.doi.org/10.4049/jimmunol.174.7.4271] [PMID: 15778390]
[163]
Howell, M.D.; Gallo, R.L.; Boguniewicz, M.; Jones, J.F.; Wong, C.; Streib, J.E.; Leung, D.Y.M. Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity, 2006, 24(3), 341-348.
[http://dx.doi.org/10.1016/j.immuni.2006.02.006] [PMID: 16546102]
[164]
Uchio, E.; Inoue, H.; Kadonosono, K. Anti-adenoviral effects of human cationic antimicrobial protein-18/LL-37, an antimicrobial peptide, by quantitative polymerase chain reaction. Korean J. Ophthalmol., 2013, 27(3), 199-203.
[http://dx.doi.org/10.3341/kjo.2013.27.3.199] [PMID: 23730113]
[165]
Findlay, F.; Pohl, J.; Svoboda, P.; Shakamuri, P.; McLean, K.; Inglis, N.F.; Proudfoot, L.; Barlow, P.G. Carbon nanoparticles inhibit the antimicrobial activities of the human cathelicidin LL-37 through structural alteration. J. Immunol., 2017, 199(7), 2483-2490.
[http://dx.doi.org/10.4049/jimmunol.1700706] [PMID: 28814602]
[166]
Schögler, A.; Muster, R.J.; Kieninger, E.; Casaulta, C.; Tapparel, C.; Jung, A.; Moeller, A.; Geiser, T.; Regamey, N.; Alves, M.P. Vitamin D represses rhinovirus replication in cystic fibrosis cells by inducing LL-37. Eur. Respir. J., 2016, 47(2), 520-530.
[http://dx.doi.org/10.1183/13993003.00665-2015] [PMID: 26585423]
[167]
Sousa, F.H.; Casanova, V.; Findlay, F.; Stevens, C.; Svoboda, P.; Pohl, J.; Proudfoot, L.; Barlow, P.G. Cathelicidins display conserved direct antiviral activity towards rhinovirus. Peptides, 2017, 95, 76-83.
[http://dx.doi.org/10.1016/j.peptides.2017.07.013] [PMID: 28764966]
[168]
Ahmed, A.; Siman-Tov, G.; Keck, F.; Kortchak, S.; Bakovic, A.; Risner, K.; Lu, T.K.; Bhalla, N.; de la Fuente-Nunez, C.; Narayanan, A. Human cathelicidin peptide LL-37 as a therapeutic antiviral targeting Venezuelan equine encephalitis virus infections. Antiviral Res., 2019, 164, 61-69.
[http://dx.doi.org/10.1016/j.antiviral.2019.02.002] [PMID: 30738837]
[169]
Iacob, S.A.; Panaitescu, E.; Iacob, D.G.; Cojocaru, M. The human cathelicidin LL37 peptide has high plasma levels in B and C hepatitis related to viral activity but not to 25-hydroxyvitamin D plasma level. Rom. J. Intern. Med., 2012, 50(3), 217-223.
[PMID: 23330289]
[170]
Matsumura, T.; Sugiyama, N.; Murayama, A.; Yamada, N.; Shiina, M.; Asabe, S.; Wakita, T.; Imawari, M.; Kato, T. Antimicrobial peptide LL-37 attenuates infection of hepatitis C virus. Hepatol. Res., 2016, 46(9), 924-932.
[http://dx.doi.org/10.1111/hepr.12627] [PMID: 26606891]
[171]
Alagarasu, K.; Patil, P.S.; Shil, P.; Seervi, M.; Kakade, M.B.; Tillu, H.; Salunke, A. In-vitro effect of human cathelicidin antimicrobial peptide LL-37 on dengue virus type 2. Peptides, 2017, 92, 23-30.
[http://dx.doi.org/10.1016/j.peptides.2017.04.002] [PMID: 28400226]
[172]
López-González, M.; Meza-Sánchez, D.; García-Cordero, J.; Bustos-Arriaga, J.; Vélez-Del Valle, C.; Marsch-Moreno, M.; Castro-Jiménez, T.; Flores-Romo, L.; Santos-Argumedo, L.; Gutiérrez-Castañeda, B.; Cedillo-Barrón, L. Human keratinocyte cultures (HaCaT) can be infected by DENV, triggering innate immune responses that include IFNλ and LL37. Immunobiology, 2018, 223(11), 608-617.
[http://dx.doi.org/10.1016/j.imbio.2018.07.006] [PMID: 30007822]
[173]
Hsieh, I-N.; Hartshorn, K.L. The role of antimicrobial peptides in influenza virus infection and their potential as antiviral and immunomodulatory therapy. Pharmaceuticals (Basel), 2016, 9(3)E53
[http://dx.doi.org/10.3390/ph9030053] [PMID: 27608030]
[174]
Gaudreault, E.; Gosselin, J. Leukotriene B4 induces release of antimicrobial peptides in lungs of virally infected mice. J. Immunol., 2008, 180(9), 6211-6221.
[http://dx.doi.org/10.4049/jimmunol.180.9.6211] [PMID: 18424743]
[175]
Bailie, M.B.; Standiford, T.J.; Laichalk, L.L.; Coffey, M.J.; Strieter, R.; Peters-Golden, M. Leukotriene-deficient mice manifest enhanced lethality from Klebsiella pneumonia in association with decreased alveolar macrophage phagocytic and bactericidal activities. J. Immunol., 1996, 157(12), 5221-5224.
[PMID: 8955165]
[176]
Tripathi, S.; Verma, A.; Kim, E-J.; White, M.R.; Hartshorn, K.L. LL-37 modulates human neutrophil responses to influenza A virus. J. Leukoc. Biol., 2014, 96(5), 931-938.
[http://dx.doi.org/10.1189/jlb.4A1113-604RR] [PMID: 25082153]
[177]
Tripathi, S.; Wang, G.; White, M.; Rynkiewicz, M.; Seaton, B.; Hartshorn, K. Identifying the critical domain of LL-37 involved in mediating neutrophil activation in the presence of influenza virus: functional and structural analysis. PLoS One, 2015, 10(8)e0133454
[http://dx.doi.org/10.1371/journal.pone.0133454] [PMID: 26308522]
[178]
White, M.R.; Tripathi, S.; Verma, A.; Kingma, P.; Takahashi, K.; Jensenius, J.; Thiel, S.; Wang, G.; Crouch, E.C.; Hartshorn, K.L. Collectins, H-ficolin and LL-37 reduce influence viral replication in human monocytes and modulate virus-induced cytokine production. Innate Immun., 2017, 23(1), 77-88.
[http://dx.doi.org/10.1177/1753425916678470] [PMID: 27856789]
[179]
Barlow, P.G.; Svoboda, P.; Mackellar, A.; Nash, A.A.; York, I.A.; Pohl, J.; Davidson, D.J.; Donis, R.O. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One, 2011, 6(10)e25333
[http://dx.doi.org/10.1371/journal.pone.0025333] [PMID: 22031815]
[180]
Hansdottir, S.; Monick, M.M.; Hinde, S.L.; Lovan, N.; Look, D.C.; Hunninghake, G.W. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J. Immunol., 2008, 181(10), 7090-7099.
[http://dx.doi.org/10.4049/jimmunol.181.10.7090] [PMID: 18981129]
[181]
Harcourt, J.L.; McDonald, M.; Svoboda, P.; Pohl, J.; Tatti, K.; Haynes, L.M. Human cathelicidin, LL-37, inhibits respiratory syncytial virus infection in polarized airway epithelial cells. BMC Res. Notes, 2016, 9, 11.
[http://dx.doi.org/10.1186/s13104-015-1836-y] [PMID: 26732674]
[182]
Currie, S.M.; Gwyer Findlay, E.; McFarlane, A.J.; Fitch, P.M.; Böttcher, B.; Colegrave, N.; Paras, A.; Jozwik, A.; Chiu, C.; Schwarze, J.; Davidson, D.J. Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J. Immunol., 2016, 196(6), 2699-2710.
[http://dx.doi.org/10.4049/jimmunol.1502478] [PMID: 26873992]
[183]
Currie, S.M.; Findlay, E.G.; McHugh, B.J.; Mackellar, A.; Man, T.; Macmillan, D.; Wang, H.; Fitch, P.M.; Schwarze, J.; Davidson, D.J. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS One, 2013, 8(8)e73659
[http://dx.doi.org/10.1371/journal.pone.0073659] [PMID: 24023689]
[184]
Malm, J.; Sørensen, O.; Persson, T.; Frohm-Nilsson, M.; Johansson, B.; Bjartell, A.; Lilja, H.; Ståhle-Bäckdahl, M.; Borregaard, N.; Egesten, A. The human cationic antimicrobial protein (hCAP-18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa. Infect. Immun., 2000, 68(7), 4297-4302.
[http://dx.doi.org/10.1128/IAI.68.7.4297-4302.2000] [PMID: 10858248]
[185]
Levinson, P.; Kaul, R.; Kimani, J.; Ngugi, E.; Moses, S.; MacDonald, K.S.; Broliden, K.; Hirbod, T. Levels of innate immune factors in genital fluids: association of alpha defensins and LL-37 with genital infections and increased HIV acquisition. AIDS, 2009, 23(3), 309-317.
[http://dx.doi.org/10.1097/QAD.0b013e328321809c] [PMID: 19114868]
[186]
Steinstraesser, L.; Tippler, B.; Mertens, J.; Lamme, E.; Homann, H-H.; Lehnhardt, M.; Wildner, O.; Steinau, H-U.; Uberla, K. Inhibition of early steps in the lentiviral replication cycle by cathelicidin host defense peptides. Retrovirology, 2005, 2, 2.
[http://dx.doi.org/10.1186/1742-4690-2-2] [PMID: 15656908]
[187]
Bergman, P.; Walter-Jallow, L.; Broliden, K.; Agerberth, B.; Söderlund, J. The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr. HIV Res., 2007, 5(4), 410-415.
[http://dx.doi.org/10.2174/157016207781023947] [PMID: 17627504]
[188]
Wang, G.; Watson, K.M.; Buckheit, R.W. Jr Anti-human immunodeficiency virus type 1 activities of antimicrobial peptides derived from human and bovine cathelicidins. Antimicrob. Agents Chemother., 2008, 52(9), 3438-3440.
[http://dx.doi.org/10.1128/AAC.00452-08] [PMID: 18591279]
[189]
Wong, J.H.; Legowska, A.; Rolka, K.; Ng, T.B.; Hui, M.; Cho, C.H.; Lam, W.W.L.; Au, S.W.N.; Gu, O.W.; Wan, D.C.C. Effects of cathelicidin and its fragments on three key enzymes of HIV-1. Peptides, 2011, 32(6), 1117-1122.
[http://dx.doi.org/10.1016/j.peptides.2011.04.017] [PMID: 21539873]
[190]
Tseng, Y-S.; Agbandje-McKenna, M. Mapping the AAV capsid host antibody response toward the development of second generation gene delivery vectors. Front. Immunol., 2014, 5, 9.
[http://dx.doi.org/10.3389/fimmu.2014.00009] [PMID: 24523720]
[191]
Bowdish, D.M.E.; Davidson, D.J.; Hancock, R.E.W. Immunomodulatory properties of defensins and cathelicidins. Curr. Top. Microbiol. Immunol., 2006, 306, 27-66.
[http://dx.doi.org/10.1007/3-540-29916-5_2] [PMID: 16909917]
[192]
Biragyn, A.; Belyakov, I.M.; Chow, Y-H.; Dimitrov, D.S.; Berzofsky, J.A.; Kwak, L.W. DNA vaccines encoding human immunodeficiency virus-1 glycoprotein 120 fusions with proinflammatory chemoattractants induce systemic and mucosal immune responses. Blood, 2002, 100(4), 1153-1159.
[http://dx.doi.org/10.1182/blood-2002-01-0086] [PMID: 12149191]
[193]
Mohan, T.; Verma, P.; Rao, D.N. Comparative mucosal immunogenicity of HIV gp41 membrane-proximal external region (MPER) containing single and multiple repeats of ELDKWA sequence with defensin peptides. Immunobiology, 2014, 219(4), 292-301.
[http://dx.doi.org/10.1016/j.imbio.2013.11.001] [PMID: 24290973]
[194]
Wang, T-T.; Nestel, F.P.; Bourdeau, V.; Nagai, Y.; Wang, Q.; Liao, J.; Tavera-Mendoza, L.; Lin, R.; Hanrahan, J.W.; Mader, S.; White, J.H. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol., 2004, 173(5), 2909-2912.
[http://dx.doi.org/10.4049/jimmunol.173.5.2909] [PMID: 15322146]
[195]
McMahon, L.; Schwartz, K.; Yilmaz, O.; Brown, E.; Ryan, L.K.; Diamond, G. Vitamin D-mediated induction of innate immunity in gingival epithelial cells. Infect. Immun., 2011, 79(6), 2250-2256.
[http://dx.doi.org/10.1128/IAI.00099-11] [PMID: 21422187]
[196]
Beckloff, N.; Laube, D.; Castro, T.; Furgang, D.; Park, S.; Perlin, D.; Clements, D.; Tang, H.; Scott, R.W.; Tew, G.N.; Diamond, G. Activity of an antimicrobial peptide mimetic against planktonic and biofilm cultures of oral pathogens. Antimicrob. Agents Chemother., 2007, 51(11), 4125-4132.
[http://dx.doi.org/10.1128/AAC.00208-07] [PMID: 17785509]
[197]
Ryan, L.K.; Freeman, K.B.; Masso-Silva, J.A.; Falkovsky, K.; Aloyouny, A.; Markowitz, K.; Hise, A.G.; Fatahzadeh, M.; Scott, R.W.; Diamond, G. Activity of potent and selective host defense peptide mimetics in mouse models of oral candidiasis. Antimicrob. Agents Chemother., 2014, 58(7), 3820-3827.
[http://dx.doi.org/10.1128/AAC.02649-13] [PMID: 24752272]
[198]
Menzel, L.P.; Chowdhury, H.M.; Masso-Silva, J.A.; Ruddick, W.; Falkovsky, K.; Vorona, R.; Malsbary, A.; Cherabuddi, K.; Ryan, L.K.; DiFranco, K.M.; Brice, D.C.; Costanzo, M.J.; Weaver, D.; Freeman, K.B.; Scott, R.W.; Diamond, G. Potent in vitro and in vivo antifungal activity of a small molecule host defense peptide mimic through a membrane-active mechanism. Sci. Rep., 2017, 7(1), 4353.
[http://dx.doi.org/10.1038/s41598-017-04462-6] [PMID: 28659617]
[199]
Heredia, A.; Latinovic, O.S.; Barbault, F.; de Leeuw, E.P.H. A novel small-molecule inhibitor of HIV-1 entry. Drug Des. Devel. Ther., 2015, 9, 5469-5478.
[http://dx.doi.org/10.2147/DDDT.S89338] [PMID: 26491257]
[200]
Scudiero, O.; Nigro, E.; Cantisani, M.; Colavita, I.; Leone, M.; Mercurio, F.A.; Galdiero, M.; Pessi, A.; Daniele, A.; Salvatore, F.; Galdiero, S. Design and activity of a cyclic mini-β-defensin analog: a novel antimicrobial tool. Int. J. Nanomedicine, 2015, 10, 6523-6539.
[http://dx.doi.org/10.2147/IJN.S89610] [PMID: 26508857]
[201]
Pachón-Ibáñez, M.E.; Smani, Y.; Pachón, J.; Sánchez-Céspedes, J. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol. Rev., 2017, 41(3), 323-342.
[http://dx.doi.org/10.1093/femsre/fux012] [PMID: 28521337]
[202]
Wang, G.; Li, X.; Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy