Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

An In Silico Immunogenicity Analysis for PbHRH: An Antiangiogenic Peptibody by Fusing HRH Peptide and Human IgG1 Fc Fragment

Author(s): Lin Ning, Jiang Huang *, Bifang He and Juanjuan Kang

Volume 15, Issue 6, 2020

Page: [547 - 553] Pages: 7

DOI: 10.2174/1574893614666190730104348

Price: $65

Abstract

Background: Peptibodies, the hybrid of peptides and antibodies, represent a novel strategy in therapeutic use. Previously, we computationally designed an antiangiogenic peptibody PbHRH, which fused the HRH peptide with angiogenesis-suppressing effect and human IgG1 Fc fragment using Romiplostim as template. Molecular modeling and simulation results indicated that it would be a potential drug for the treatment of those angiogenesis related pathological disorders. However, its immunogenicity is not known.

Methods: Several bioinformatics tools are used to predict the potential epitopes for the evaluation of the immunogenicity of PbHRH. Romiplostim is set as the control. IEDB-recommended method is used in MHC-I and MHC-II binding prediction, and the IEDB web server (http://tools.iedb.org/immunogenicity/) is used to determine the MHC-I immunogenicity of each peptide.

Results: In this work, some peptides are predicted to have the potential ability to bind to MHC-I and MHC-II molecules both in PbHRH and Romiplostim as the potential epitopes. Most of these selected peptides are exactly the same. Allele frequency analysis shows a low population distribution. Combined with the analysis of MHC-I immunogenicity prediction, both HRH and PbHRH show low immunogenicity.

Conclusions: Some potential epitopes which could bind to both MHC-I and MHC-II molecules are predicted using bioinformatics tools. The comparative analysis with Romiplostim and the results of MHC-I immunogenicity prediction indicate the low immunogenicity of both HRH and PbHRH. Thus, we form a strategy to evaluate the immunogenicity of peptibodies for the future improvement.

Keywords: Peptibody, romiplostim, immunogenicity evaluation, MHC, IEDB, antiangiogenic.

Graphical Abstract

[1]
Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 2018; 26(10): 2700-7.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[2]
Ning L, He B, Zhou P, Derda R, Huang J. Molecular design of peptide-fc fusion drugs. Curr Drug Metab 2019; 20(3): 203-8.
[PMID: 30129406]
[3]
Huang C. Receptor-Fc fusion therapeutics, traps, and MIMETIBODY technology. Curr Opin Biotechnol 2009; 20(6): 692-9.
[http://dx.doi.org/10.1016/j.copbio.2009.10.010] [PMID: 19889530]
[4]
Torchia J, Weiskopf K, Levy R. Targeting lymphoma with precision using semisynthetic anti-idiotype peptibodies. Proc Natl Acad Sci USA 2016; 113(19): 5376-81.
[http://dx.doi.org/10.1073/pnas.1603335113] [PMID: 27114517]
[5]
Cines DB, Yasothan U, Kirkpatrick P. Romiplostim. Nat Rev Drug Discov 2008; 7(11): 887-8.
[http://dx.doi.org/10.1038/nrd2741] [PMID: 18974747]
[6]
Scheen AJ. Dulaglutide for the treatment of type 2 diabetes. Expert Opin Biol Ther 2017; 17(4): 485-96.
[http://dx.doi.org/10.1080/14712598.2017.1296131 PMID: 28274140]
[7]
Robson EJ, Ghatage P. AMG 386: profile of a novel angiopoietin antagonist in patients with ovarian cancer. Expert Opin Investig Drugs 2011; 20(2): 297-304.
[http://dx.doi.org/10.1517/13543784.2011.549125] [PMID: 21210755]
[8]
Holmes K, Roberts OL, Thomas AM, Cross MJ. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 2007; 19(10): 2003-12.
[http://dx.doi.org/10.1016/j.cellsig.2007.05.013] [PMID: 17658244]
[9]
Zhang Y, He B, Liu K, et al. A novel peptide specifically binding to VEGF receptor suppresses angiogenesis in vitro and in vivo. Signal Transduct Target Ther 2017; 2: 17010.
[http://dx.doi.org/10.1038/sigtrans.2017.10] [PMID: 29263914]
[10]
Ning L, Li Z, Bai Z, et al. Computational design of antiangiogenic peptibody by fusing human IgG1 Fc fragment and HRH peptide: structural modeling, energetic analysis, and dynamics simulation of its binding potency to VEGF receptor. Int J Biol Sci 2018; 14(8): 930-7.
[http://dx.doi.org/10.7150/ijbs.24582] [PMID: 29989101]
[11]
Fernandez L, Bustos RH, Zapata C, Garcia J, Jauregui E, Ashraf GM. Immunogenicity in protein and peptide based therapeutics: an overview. Curr Protein Pept Sci 2018; 19(10): 958-71.
[http://dx.doi.org/10.2174/1389203718666170828123449 PMID: 28847291]
[12]
Hermanson T, Bennett CL, Macdougall IC. Peginesatide for the treatment of anemia due to chronic kidney disease - an unfulfilled promise. Expert Opin Drug Saf 2016; 15(10): 1421-6.
[http://dx.doi.org/10.1080/14740338.2016.1218467 PMID: 27551882]
[13]
Tsurui H, Takahashi T. Prediction of T-cell epitope. J Pharmacol Sci 2007; 105(4): 299-316.
[http://dx.doi.org/10.1254/jphs.CR0070056] [PMID: 18094522]
[14]
Nielsen M, Andreatta M. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med 2016; 8(1): 33.
[http://dx.doi.org/10.1186/s13073-016-0288-x] [PMID: 27029192]
[15]
Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 2016; 32(4): 511-7.
[http://dx.doi.org/10.1093/bioinformatics/btv639] [PMID: 26515819]
[16]
Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res 2008; 36(2)W509-12
[17]
Peters B, Sette A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 2005; 6: 132.
[http://dx.doi.org/10.1186/1471-2105-6-132] [PMID: 15927070]
[18]
Kim Y, Sidney J, Pinilla C, Sette A, Peters B. Derivation of an amino acid similarity matrix for peptide: MHC binding and its application as a Bayesian prior. BMC Bioinformatics 2009; 10: 394.
[http://dx.doi.org/10.1186/1471-2105-10-394] [PMID: 19948066]
[19]
Sidney J, Assarsson E, Moore C, et al. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res 2008; 4: 2.
[http://dx.doi.org/10.1186/1745-7580-4-2] [PMID: 18221540]
[20]
Zhang H, Lund O, Nielsen M. The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics 2009; 25(10): 1293-9.
[http://dx.doi.org/10.1093/bioinformatics/btp137] [PMID: 19297351]
[21]
Karosiene E, Lundegaard C, Lund O, Nielsen M. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics 2012; 64(3): 177-86.
[http://dx.doi.org/10.1007/s00251-011-0579-8] [PMID: 22009319]
[22]
Rasmussen M, Fenoy E, Harndahl M, et al. Pan-Specific Prediction of Peptide-MHC Class I Complex Stability, a Correlate of T Cell Immunogenicity. J Immunol 2016; 197(4): 1517-24.
[http://dx.doi.org/10.4049/jimmunol.1600582] [PMID: 27402703]
[23]
Tenzer S, Peters B, Bulik S, et al. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci 2005; 62(9): 1025-37.
[http://dx.doi.org/10.1007/s00018-005-4528-2] [PMID: 15868101]
[24]
Moutaftsi M, Peters B, Pasquetto V, et al. A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat Biotechnol 2006; 24(7): 817-9.
[http://dx.doi.org/10.1038/nbt1215] [PMID: 16767078]
[25]
Vita R, Overton JA, Greenbaum JA, et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res 2015; 43(Database issue): D405-12.
[http://dx.doi.org/10.1093/nar/gku938] [PMID: 25300482]
[26]
Wang P, Sidney J, Kim Y, et al. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 2010; 11: 568.
[http://dx.doi.org/10.1186/1471-2105-11-568] [PMID: 21092157]
[27]
Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLOS Comput Biol 2008; 4(4)e1000048
[http://dx.doi.org/10.1371/journal.pcbi.1000048] [PMID: 18389056]
[28]
Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics 2015; 67(11-12): 641-50.
[http://dx.doi.org/10.1007/s00251-015-0873-y] [PMID: 26416257]
[29]
Nielsen M, Lund O. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics 2009; 10(1): 296.
[http://dx.doi.org/10.1186/1471-2105-10-296] [PMID: 19765293]
[30]
Nielsen M, Lundegaard C, Lund O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics 2007; 8(1): 238.
[http://dx.doi.org/10.1186/1471-2105-8-238] [PMID: 17608956]
[31]
Sturniolo T, Bono E, Ding J, et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 1999; 17(6): 555-61.
[http://dx.doi.org/10.1038/9858] [PMID: 10385319]
[32]
Calis JJ, Maybeno M, Greenbaum JA, et al. Properties of MHC class I presented peptides that enhance immunogenicity. PLOS Comput Biol 2013; 9(10)e1003266
[http://dx.doi.org/10.1371/journal.pcbi.1003266] [PMID: 24204222]
[33]
Werle M, Bernkop-Schnürch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 2006; 30(4): 351-67.
[http://dx.doi.org/10.1007/s00726-005-0289-3] [PMID: 16622600]
[34]
Cavaco M, Castanho MARB, Neves V. Peptibodies: An elegant solution for a long-standing problem. Biopolymers 2017.
[http://dx.doi.org/10.1002/bip.23095] [PMID: 29266205]
[35]
Shimamoto G, Gegg C, Boone T, Quéva C. Peptibodies: A flexible alternative format to antibodies. MAbs 2012; 4(5): 586-91.
[http://dx.doi.org/10.4161/mabs.21024] [PMID: 22820181]
[36]
McGregor DP. Discovering and improving novel peptide therapeutics. Curr Opin Pharmacol 2008; 8(5): 616-9.
[http://dx.doi.org/10.1016/j.coph.2008.06.002] [PMID: 18602024]
[37]
Nichol JL. AMG 531: an investigational thrombopoiesis-stimulating peptibody. Pediatr Blood Cancer 2006; 47(5): 723-5.
[http://dx.doi.org/10.1002/pbc.20972] [PMID: 16933266]
[38]
Zhou P, Wang C, Ren Y, Yang C, Tian F. Computational peptidology: a new and promising approach to therapeutic peptide design. Curr Med Chem 2013; 20(15): 1985-96.
[http://dx.doi.org/10.2174/0929867311320150005] [PMID: 23317161]
[39]
Rammensee H, Bachmann J, Emmerich NPN, Bachor OA, Stevanović S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999; 50(3-4): 213-9.
[http://dx.doi.org/10.1007/s002510050595] [PMID: 10602881]
[40]
Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan 4.0: Improved peptide- MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol 2017; 199(9): 3360-8.
[http://dx.doi.org/10.4049/jimmunol.1700893] [PMID: 28978689]
[41]
Zhou F, Cao H, Zuo X, et al. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease. Nat Genet 2016; 48(7): 740-6.
[http://dx.doi.org/10.1038/ng.3576] [PMID: 27213287]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy