Abstract
Type 2 diabetes is a major health issue worldwide with complex metabolic and endocrine abnormalities. Hyperglycemia, defects in insulin secretion and insulin resistance are classic features of type 2 diabetes. Insulin signaling regulates metabolic homeostasis by regulating glucose and lipid turnover in the liver, skeletal muscle and adipose tissue. Major treatment modalities for diabetes include the drugs from the class of sulfonyl urea, Insulin, GLP-1 agonists, SGLT2 inhibitors, DPP-IV inhibitors and Thiazolidinediones. Emerging antidiabetic therapeutics also include classes of drugs targeting GPCRs in the liver, adipose tissue and skeletal muscle. Interestingly, recent research highlights several shared intermediates between insulin and GPCR signaling cascades opening potential novel avenues for diabetic drug discovery.
Keywords: GPCRs, Insulin Signaling, Diabetes, Cross-talk, Drug Discovery, RTKs, IRs.
Graphical Abstract
[http://dx.doi.org/10.2337/db16-0766] [PMID: 28533294]
[http://dx.doi.org/10.1038/nrendo.2016.86] [PMID: 27339889]
[http://dx.doi.org/10.1152/physrev.00063.2017] [PMID: 30067154]
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[http://dx.doi.org/10.1074/jbc.272.49.30729] [PMID: 9388210]
[http://dx.doi.org/10.1210/er.2008-0047] [PMID: 19752219]
[http://dx.doi.org/10.1016/j.tibs.2008.06.003] [PMID: 18640841]
[http://dx.doi.org/10.1038/nrm2043] [PMID: 17057754]
[http://dx.doi.org/10.1023/A:1006819008507] [PMID: 9609111]
[http://dx.doi.org/10.1074/jbc.R115.675728] [PMID: 26126823]
[http://dx.doi.org/10.1016/bs.mcb.2017.07.014] [PMID: 28964339]
[http://dx.doi.org/10.1016/j.molcel.2011.02.025] [PMID: 21419339]
[http://dx.doi.org/10.1074/jbc.M010884200] [PMID: 11278773]
(b)Zheng, H.; Shen, H.; Oprea, I.; Worrall, C.; Stefanescu, R.; Girnita, A.; Girnita, L. β-Arrestin-biased agonism as the central mechanism of action for insulin-like growth factor 1 receptor-targeting antibodies in Ewing’s sarcoma. Proc. Natl. Acad. Sci. USA, 2012, 109(50), 20620-20625.
[http://dx.doi.org/10.1073/pnas.1216348110] [PMID: 23188799]
(c)Luan, B.; Zhao, J.; Wu, H.; Duan, B.; Shu, G.; Wang, X.; Li, D.; Jia, W.; Kang, J.; Pei, G. Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance. Nature, 2009, 457(7233), 1146-1149.
[http://dx.doi.org/10.1038/nature07617] [PMID: 19122674]
(d)Michel, G.; Matthes, H.W.; Hachet-Haas, M.; El Baghdadi, K.; de Mey, J.; Pepperkok, R.; Simpson, J.C.; Galzi, J.L.; Lecat, S. Plasma membrane translocation of REDD1 governed by GPCRs contributes to mTORC1 activation. J. Cell Sci., 2014, 127(Pt 4), 773-787.
[http://dx.doi.org/10.1242/jcs.136432] [PMID: 24338366]
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2229] [PMID: 20388847]
[http://dx.doi.org/10.3389/fphys.2014.00357] [PMID: 25295009]
[http://dx.doi.org/10.1074/jbc.M116.763235] [PMID: 27856640]
[http://dx.doi.org/10.1038/sj.bjp.0706626] [PMID: 16415914]
[http://dx.doi.org/10.1097/FJC.0000000000000481] [PMID: 28328746]
[http://dx.doi.org/10.1128/MCB.22.17.6272-6285.2002] [PMID: 12167719]
[http://dx.doi.org/10.1016/j.cellsig.2014.02.015] [PMID: 24583283]
(b)Haxho, F.; Haq, S.; Szewczuk, M.R. Biased G protein-coupled receptor agonism mediates Neu1 sialidase and matrix metalloproteinase-9 crosstalk to induce transactivation of insulin receptor signaling. Cell. Signal., 2018, 43, 71-84.
[http://dx.doi.org/10.1016/j.cellsig.2017.12.006] [PMID: 29277445]
[http://dx.doi.org/10.1038/379840a0] [PMID: 8587610]
[http://dx.doi.org/10.1042/bj20031659] [PMID: 15025562]
[http://dx.doi.org/10.1126/science.3018928] [PMID: 3018928]
[http://dx.doi.org/10.1210/endo.139.1.5693] [PMID: 9421418]
[http://dx.doi.org/10.1016/j.cmet.2017.03.008] [PMID: 28380372]
[http://dx.doi.org/10.2337/db17-0728] [PMID: 29074598]
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0418] [PMID: 19679549]
[http://dx.doi.org/10.1172/JCI92913] [PMID: 28650340]
[http://dx.doi.org/10.1038/srep27002] [PMID: 27243589]
[http://dx.doi.org/10.1021/acs.jmedchem.5b01198] [PMID: 26512410]
(b)Yang, J.W.; Kim, H.S. Im, J.H.; Kim, J.W.; Jun, D.W.; Lim, S.C.; Lee, K.; Choi, J.M.; Kim, S.K.; Kang, K.W. GPR119: A promising target for nonalcoholic fatty liver disease. FASEB J., 2016, 30(1), 324-335.
[http://dx.doi.org/10.1096/fj.15-273771] [PMID: 26399788]
[http://dx.doi.org/10.1172/JCI41541] [PMID: 20440069]
[http://dx.doi.org/10.1097/00005344-199907000-00005] [PMID: 10413063]
[http://dx.doi.org/10.1152/ajpcell.00287.2006] [PMID: 16870827]
[http://dx.doi.org/10.1038/ncomms2852] [PMID: 23652017]
[http://dx.doi.org/10.2337/db06-1491] [PMID: 17456850]
[http://dx.doi.org/10.1074/jbc.M103898200] [PMID: 11724768]
[http://dx.doi.org/10.1161/01.HYP.0000051891.90321.12] [PMID: 12623995]
(b)Taniyama, Y.; Ushio-Fukai, M.; Hitomi, H.; Rocic, P.; Kingsley, M.J.; Pfahnl, C.; Weber, D.S.; Alexander, R.W.; Griendling, K.K. Role of p38 MAPK and MAPKAPK-2 in angiotensin II-induced Akt activation in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol., 2004, 287(2), C494-C499.
[http://dx.doi.org/10.1152/ajpcell.00439.2003] [PMID: 15084475]
[http://dx.doi.org/10.1038/nrd.2015.4] [PMID: 26822831]
[http://dx.doi.org/10.1124/pr.117.014373] [PMID: 29233848]
[http://dx.doi.org/10.1021/acs.jmedchem.6b00892] [PMID: 27749056]
[http://dx.doi.org/10.1016/j.ejphar.2015.12.010] [PMID: 26683635]
[http://dx.doi.org/10.1016/j.coph.2017.08.001] [PMID: 28822846]
[http://dx.doi.org/10.2337/db08-1233] [PMID: 19401434]
[http://dx.doi.org/10.1016/S0140-6736(11)61879-5] [PMID: 22374408]
[http://dx.doi.org/10.1002/med.21441] [PMID: 28328012]
[http://dx.doi.org/10.1111/bph.14042] [PMID: 28940377]
[http://dx.doi.org/10.1016/j.cell.2010.07.041] [PMID: 20813258]
[http://dx.doi.org/10.1172/JCI61953] [PMID: 22653059]
[http://dx.doi.org/10.1016/j.biocel.2017.04.010] [PMID: 28457969]
[http://dx.doi.org/10.1371/journal.pone.0189060] [PMID: 29206860]
[http://dx.doi.org/10.1080/10799893.2016.1193522] [PMID: 27277698]
(b)Evans, B.A.; Broxton, N.; Merlin, J.; Sato, M.; Hutchinson, D.S.; Christopoulos, A.; Summers, R.J. Quantification of functional selectivity at the human α(1A)-adrenoceptor. Mol. Pharmacol., 2011, 79(2), 298-307.
[http://dx.doi.org/10.1124/mol.110.067454] [PMID: 20978120]
[http://dx.doi.org/10.1016/0003-9861(89)90249-X] [PMID: 2712567]
[http://dx.doi.org/10.1038/sj.bjp.0704845] [PMID: 12183326]
(b)Dehvari, N.; Hutchinson, D.S.; Nevzorova, J.; Dallner, O.S.; Sato, M.; Kocan, M.; Merlin, J.; Evans, B.A.; Summers, R.J.; Bengtsson, T. β(2)-Adrenoceptors increase translocation of GLUT4 via GPCR kinase sites in the receptor C-terminal tail. Br. J. Pharmacol., 2012, 165(5), 1442-1456.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01647.x] [PMID: 21883150]
(c)Sato, M.; Dehvari, N.; Oberg, A.I.; Dallner, O.S.; Sandström, A.L.; Olsen, J.M.; Csikasz, R.I.; Summers, R.J.; Hutchinson, D.S.; Bengtsson, T. Improving type 2 diabetes through a distinct adrenergic signaling pathway involving mTORC2 that mediates glucose uptake in skeletal muscle. Diabetes, 2014, 63(12), 4115-4129.
[http://dx.doi.org/10.2337/db13-1860] [PMID: 25008179]
[http://dx.doi.org/10.1152/ajpendo.2000.279.2.E463] [PMID: 10913048]
(b)Evans, B.A.; Sato, M.; Sarwar, M.; Hutchinson, D.S.; Summers, R.J. Ligand-directed signalling at beta-adrenoceptors. Br. J. Pharmacol., 2010, 159(5), 1022-1038.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00602.x] [PMID: 20132209]
[http://dx.doi.org/10.2337/db16-1362] [PMID: 28193789]
(b)Robertson, R.P. The COX-2/PGE2/EP3/Gi/o/cAMP/GSIS Pathway in the Islet: The beat goes on. Diabetes, 2017, 66(6), 1464-1466.
[http://dx.doi.org/10.2337/dbi17-0017] [PMID: 28533298]