Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Advances in Dopamine D1 Receptor Ligands for Neurotherapeutics

Author(s): Daniel E. Felsing, Manish K. Jain and John A. Allen*

Volume 19, Issue 16, 2019

Page: [1365 - 1380] Pages: 16

DOI: 10.2174/1568026619666190712210903

Price: $65

Abstract

The dopamine D1 receptor (D1R) is essential for neurotransmission in various brain pathways where it modulates key functions including voluntary movement, memory, attention and reward. Not surprisingly, the D1R has been validated as a promising drug target for over 40 years and selective activation of this receptor may provide novel neurotherapeutics for neurodegenerative and neuropsychiatric disorders. Several pharmacokinetic challenges with previously identified small molecule D1R agonists have been recently overcome with the discovery and advancement of new ligands, including drug-like non-catechol D1R agonists and positive allosteric modulators. From this, several novel molecules and mechanisms have recently entered clinical studies. Here we review the major classes of D1R selective ligands including antagonists, orthosteric agonists, non-catechol biased agonists and positive allosteric modulators, highlighting their structure-activity relationships and medicinal chemistry. Recent chemistry breakthroughs and innovative approaches to selectively target and activate the D1R also hold promise for creating pharmacotherapy for several neurological diseases.

Keywords: Positive allosteric modulator, Cognitive disorders, Biased signaling, Non-catechol, Dopamine, D1 receptor, G protein- coupled receptor, Structure-activity relationships.

Graphical Abstract

[1]
Iversen, S.D.; Iversen, L.L. Dopamine: 50 years in perspective. Trends Neurosci., 2007, 30(5), 188-193.
[http://dx.doi.org/10.1016/j.tins.2007.03.002] [PMID: 17368565]
[2]
Beaulieu, J.M.; Gainetdinov, R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev., 2011, 63(1), 182-217.
[http://dx.doi.org/10.1124/pr.110.002642] [PMID: 21303898]
[3]
Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine receptors: from structure to function. Physiol. Rev., 1998, 78(1), 189-225.
[http://dx.doi.org/10.1152/physrev.1998.78.1.189] [PMID: 9457173]
[4]
Niznik, H.B.; Van Tol, H.H. Dopamine receptor genes: new tools for molecular psychiatry. J. Psychiatry Neurosci., 1992, 17(4), 158-180.
[PMID: 1450188]
[5]
Sibley, D.R.; Monsma, F.J., Jr Molecular biology of dopamine receptors. Trends Pharmacol. Sci., 1992, 13(2), 61-69.
[http://dx.doi.org/10.1016/0165-6147(92)90025-2] [PMID: 1561715]
[6]
Sibley, D.R.; Monsma, F.J., Jr; McVittie, L.D.; Gerfen, C.R.; Burch, R.M.; Mahan, L.C. Molecular neurobiology of dopamine receptor subtypes. Neurochem. Int., 1992, 20(Suppl.), 17S-22S.
[http://dx.doi.org/10.1016/0197-0186(92)90205-6]
[7]
Zhang, J.; Xiong, B.; Zhen, X.; Zhang, A. Dopamine D1 receptor ligands: where are we now and where are we going. Med. Res. Rev., 2009, 29(2), 272-294.
[http://dx.doi.org/10.1002/med.20130] [PMID: 18642350]
[8]
Allen, J.A.; Roth, B.L. Strategies to discover unexpected targets for drugs active at G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol., 2011, 51, 117-144.
[http://dx.doi.org/10.1146/annurev-pharmtox-010510-100553] [PMID: 20868273]
[9]
Gingrich, J.A.; Caron, M.G. Recent advances in the molecular biology of dopamine receptors. Annu. Rev. Neurosci., 1993, 16, 299-321.
[http://dx.doi.org/10.1146/annurev.ne.16.030193.001503] [PMID: 8460895]
[10]
Civelli, O.; Bunzow, J.R.; Grandy, D.K.; Zhou, Q.Y.; Van Tol, H.H. Molecular biology of the dopamine receptors. Eur. J. Pharmacol., 1991, 207(4), 277-286.
[http://dx.doi.org/10.1016/0922-4106(91)90001-X] [PMID: 1783000]
[11]
Sunahara, R.K.; Guan, H.C.; O’Dowd, B.F.; Seeman, P.; Laurier, L.G.; Ng, G.; George, S.R.; Torchia, J.; Van Tol, H.H.; Niznik, H.B. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature, 1991, 350(6319), 614-619.
[http://dx.doi.org/10.1038/350614a0] [PMID: 1826762]
[12]
Dichter, G.S.; Damiano, C.A.; Allen, J.A. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J. Neurodev. Disord., 2012, 4(1), 19.
[http://dx.doi.org/10.1186/1866-1955-4-19] [PMID: 22958744]
[13]
Pierce, K.L.; Premont, R.T.; Lefkowitz, R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol., 2002, 3(9), 639-650.
[http://dx.doi.org/10.1038/nrm908] [PMID: 12209124]
[14]
Pitcher, J.A.; Freedman, N.J.; Lefkowitz, R.J. G protein-coupled receptor kinases. Annu. Rev. Biochem., 1998, 67, 653-692.
[http://dx.doi.org/10.1146/annurev.biochem.67.1.653] [PMID: 9759500]
[15]
Gainetdinov, R.R.; Premont, R.T.; Bohn, L.M.; Lefkowitz, R.J.; Caron, M.G. Desensitization of G protein-coupled receptors and neuronal functions. Annu. Rev. Neurosci., 2004, 27, 107-144.
[http://dx.doi.org/10.1146/annurev.neuro.27.070203.144206] [PMID: 15217328]
[16]
Jiang, D.; Sibley, D.R. Regulation of D(1) dopamine receptors with mutations of protein kinase phosphorylation sites: attenuation of the rate of agonist-induced desensitization. Mol. Pharmacol., 1999, 56(4), 675-683.
[PMID: 10496949]
[17]
Kim, O.J.; Gardner, B.R.; Williams, D.B.; Marinec, P.S.; Cabrera, D.M.; Peters, J.D.; Mak, C.C.; Kim, K.M.; Sibley, D.R. The role of phosphorylation in D1 dopamine receptor desensitization: evidence for a novel mechanism of arrestin association. J. Biol. Chem., 2004, 279(9), 7999-8010.
[http://dx.doi.org/10.1074/jbc.M308281200] [PMID: 14660631]
[18]
Ferguson, S.S. Evolving concepts in G protein-coupled receptor endocytosis: The role in receptor desensitization and signaling. Pharmacol. Rev., 2001, 53(1), 1-24.
[PMID: 11171937]
[19]
Rajagopal, S.; Rajagopal, K.; Lefkowitz, R.J. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat. Rev. Drug Discov., 2010, 9(5), 373-386.
[http://dx.doi.org/10.1038/nrd3024] [PMID: 20431569]
[20]
Hall, R.A.; Premont, R.T.; Lefkowitz, R.J. Heptahelical receptor signaling: beyond the G protein paradigm. J. Cell Biol., 1999, 145(5), 927-932.
[http://dx.doi.org/10.1083/jcb.145.5.927] [PMID: 10352011]
[21]
Luttrell, L.M.; Ferguson, S.S.; Daaka, Y.; Miller, W.E.; Maudsley, S.; Della Rocca, G.J.; Lin, F.; Kawakatsu, H.; Owada, K.; Luttrell, D.K.; Caron, M.G.; Lefkowitz, R.J. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science, 1999, 283(5402), 655-661.
[http://dx.doi.org/10.1126/science.283.5402.655] [PMID: 9924018]
[22]
Allen, J.A.; Yost, J.M.; Setola, V.; Chen, X.; Sassano, M.F.; Chen, M.; Peterson, S.; Yadav, P.N.; Huang, X.P.; Feng, B.; Jensen, N.H.; Che, X.; Bai, X.; Frye, S.V.; Wetsel, W.C.; Caron, M.G.; Javitch, J.A.; Roth, B.L.; Jin, J. Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc. Natl. Acad. Sci. USA, 2011, 108(45), 18488-18493.
[http://dx.doi.org/10.1073/pnas.1104807108] [PMID: 22025698]
[23]
Gray, D.L.; Allen, J.A.; Mente, S.; O’Connor, R.E.; DeMarco, G.J.; Efremov, I.; Tierney, P.; Volfson, D.; Davoren, J.; Guilmette, E.; Salafia, M.; Kozak, R.; Ehlers, M.D. Impaired β-arrestin recruitment and reduced desensitization by non-catechol agonists of the D1 dopamine receptor. Nat. Commun., 2018, 9(1), 674.
[http://dx.doi.org/10.1038/s41467-017-02776-7] [PMID: 29445200]
[24]
Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet, 2015, 386(9996), 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[25]
Galvan, A.; Wichmann, T. Pathophysiology of parkinsonism. Clin. Neurophysiol., 2008, 119(7), 1459-1474.
[http://dx.doi.org/10.1016/j.clinph.2008.03.017] [PMID: 18467168]
[26]
Arnsten, A.F. The neurobiology of thought: the groundbreaking discoveries of Patricia Goldman-Rakic 1937-2003. Cereb. Cortex, 2013, 23(10), 2269-2281.
[http://dx.doi.org/10.1093/cercor/bht195] [PMID: 23926115]
[27]
Nutt, D.J.; Lingford-Hughes, A.; Erritzoe, D.; Stokes, P.R. The dopamine theory of addiction: 40 years of highs and lows. Nat. Rev. Neurosci., 2015, 16(5), 305-312.
[http://dx.doi.org/10.1038/nrn3939] [PMID: 25873042]
[28]
Buchanan, R.W.; Freedman, R.; Javitt, D.C.; Abi-Dargham, A.; Lieberman, J.A. Recent advances in the development of novel pharmacological agents for the treatment of cognitive impairments in schizophrenia. Schizophr. Bull., 2007, 33(5), 1120-1130.
[http://dx.doi.org/10.1093/schbul/sbm083] [PMID: 17641146]
[29]
Girgis, R.R.; Van Snellenberg, J.X.; Glass, A.; Kegeles, L.S.; Thompson, J.L.; Wall, M.; Cho, R.Y.; Carter, C.S.; Slifstein, M.; Abi-Dargham, A.; Lieberman, J.A. A proof-of-concept, randomized controlled trial of DAR-0100A, a dopamine-1 receptor agonist, for cognitive enhancement in schizophrenia. J. Psychopharmacol. (Oxford), 2016, 30(5), 428-435.
[http://dx.doi.org/10.1177/0269881116636120] [PMID: 26966119]
[30]
Jensen, S.; Plaetke, R.; Holik, J.; Hoff, M.; O’Connell, P.; Reimherr, F.; Wender, P.; Zhou, Q.Y.; Civelli, O.; Litt, M. Linkage analysis of the D1 dopamine receptor gene and manic depression in six families. Hum. Hered., 1992, 42(5), 269-275.
[http://dx.doi.org/10.1159/000154081] [PMID: 1360940]
[31]
Gelernter, J.; Kennedy, J.L.; Grandy, D.K.; Zhou, Q.Y.; Civelli, O.; Pauls, D.L.; Pakstis, A.; Kurlan, R.; Sunahara, R.K.; Niznik, H.B. Exclusion of close linkage of Tourette’s syndrome to D1 dopamine receptor. Am. J. Psychiatry, 1993, 150(3), 449-453.
[http://dx.doi.org/10.1176/ajp.150.3.449] [PMID: 8434661]
[32]
Anden, N.E.; Carlsson, A.; Dahlstroem, A.; Fuxe, K.; Hillarp, N.A.; Larsson, K. Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci., 1964, 3(3), 523-530.
[http://dx.doi.org/10.1016/0024-3205(64)90161-4] [PMID: 14187491]
[33]
Sawaguchi, T.; Goldman-Rakic, P.S. D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science, 1991, 251(4996), 947-950.
[http://dx.doi.org/10.1126/science.1825731] [PMID: 1825731]
[34]
Goldman-Rakic, P.S.; Castner, S.A.; Svensson, T.H.; Siever, L.J.; Williams, G.V. Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl.), 2004, 174(1), 3-16.
[http://dx.doi.org/10.1007/s00213-004-1793-y] [PMID: 15118803]
[35]
Waddington, J.L. Therapeutic potential of selective D-1 dopamine receptor agonists and antagonists in psychiatry and neurology. Gen. Pharmacol., 1988, 19(1), 55-60.
[http://dx.doi.org/10.1016/0306-3623(88)90005-5] [PMID: 3278946]
[36]
Dearry, A.; Gingrich, J.A.; Falardeau, P.; Fremeau, R.T., Jr; Bates, M.D.; Caron, M.G. Molecular cloning and expression of the gene for a human D1 dopamine receptor. Nature, 1990, 347(6288), 72-76.
[http://dx.doi.org/10.1038/347072a0] [PMID: 2144334]
[37]
Fremeau, R.T., Jr; Duncan, G.E.; Fornaretto, M.G.; Dearry, A.; Gingrich, J.A.; Breese, G.R.; Caron, M.G. Localization of D1 dopamine receptor mRNA in brain supports a role in cognitive, affective, and neuroendocrine aspects of dopaminergic neurotransmission. Proc. Natl. Acad. Sci. USA, 1991, 88(9), 3772-3776.
[http://dx.doi.org/10.1073/pnas.88.9.3772] [PMID: 2023928]
[38]
Gerfen, C.R.; Engber, T.M.; Mahan, L.C.; Susel, Z.; Chase, T.N.; Monsma, F.J., Jr; Sibley, D.R. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 1990, 250(4986), 1429-1432.
[http://dx.doi.org/10.1126/science.2147780] [PMID: 2147780]
[39]
Smiley, J.F.; Levey, A.I.; Ciliax, B.J.; Goldman-Rakic, P.S. D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. Proc. Natl. Acad. Sci. USA, 1994, 91(12), 5720-5724.
[http://dx.doi.org/10.1073/pnas.91.12.5720] [PMID: 7911245]
[40]
Bergson, C.; Mrzljak, L.; Smiley, J.F.; Pappy, M.; Levenson, R.; Goldman-Rakic, P.S. Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J. Neurosci., 1995, 15(12), 7821-7836.
[http://dx.doi.org/10.1523/JNEUROSCI.15-12-07821.1995] [PMID: 8613722]
[41]
Jose, P.A.; Raymond, J.R.; Bates, M.D.; Aperia, A.; Felder, R.A.; Carey, R.M. The renal dopamine receptors. J. Am. Soc. Nephrol., 1992, 2(8), 1265-1278.
[PMID: 1627751]
[42]
Yang, Z.; Sibley, D.R.; Jose, P.A. D5 dopamine receptor knockout mice and hypertension. J. Recept. Signal Transduct. Res., 2004, 24(3), 149-164.
[http://dx.doi.org/10.1081/RRS-200029971] [PMID: 15521360]
[43]
Gillies, M.A.; Kakar, V.; Parker, R.J.; Honoré, P.M.; Ostermann, M. Fenoldopam to prevent acute kidney injury after major surgery-a systematic review and meta-analysis. Crit. Care, 2015, 19, 449.
[http://dx.doi.org/10.1186/s13054-015-1166-4] [PMID: 26703329]
[44]
Gershanik, O.; Heikkila, R.E.; Duvoisin, R.C. Behavioral correlations of dopamine receptor activation. Neurology, 1983, 33(11), 1489-1492.
[http://dx.doi.org/10.1212/WNL.33.11.1489] [PMID: 6605497]
[45]
Jackson, D.M.; Westlind-Danielsson, A. Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol. Ther., 1994, 64(2), 291-370.
[http://dx.doi.org/10.1016/0163-7258(94)90041-8] [PMID: 7878079]
[46]
Di Chiara, G. The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug Alcohol Depend., 1995, 38(2), 95-137.
[http://dx.doi.org/10.1016/0376-8716(95)01118-I] [PMID: 7671769]
[47]
White, N.M.; Packard, M.G.; Seamans, J. Memory enhancement by post-training peripheral administration of low doses of dopamine agonists: possible autoreceptor effect. Behav. Neural Biol., 1993, 59(3), 230-241.
[http://dx.doi.org/10.1016/0163-1047(93)90998-W] [PMID: 8099277]
[48]
Papapetropoulos, S.; Liu, W.; Duvvuri, S.; Thayer, K.; Gray, D.L. Evaluation of D1/D5 partial agonist PF-06412562 in parkinson’s disease following oral administration. Neurodegener. Dis., 2018, 18(5-6), 262-269.
[http://dx.doi.org/10.1159/000492498] [PMID: 30453303]
[49]
Sohur, U.S.; Gray, D.L.; Duvvuri, S.; Zhang, Y.; Thayer, K.; Feng, G. Phase 1 Parkinson’s disease studies show the dopamine d1/d5 agonist PF-06649751 is safe and well tolerated. Neurol. Ther., 2018, 7(2), 307-319.
[http://dx.doi.org/10.1007/s40120-018-0114-z] [PMID: 30361858]
[50]
Arnsten, A.F.; Girgis, R.R.; Gray, D.L.; Mailman, R.B. Novel dopamine therapeutics for cognitive deficits in schizophrenia. Biol. Psychiatry, 2017, 81(1), 67-77.
[http://dx.doi.org/10.1016/j.biopsych.2015.12.028] [PMID: 26946382]
[51]
Wang, M.; Datta, D.; Enwright, J.; Galvin, V.; Yang, S.T.; Paspalas, C.; Kozak, R.; Gray, D.L.; Lewis, D.A.; Arnsten, A.F.T. A novel dopamine D1 receptor agonist excites delay-dependent working memory-related neuronal firing in primate dorsolateral prefrontal cortex. Neuropharmacology, 2019, 150, 46-58.
[http://dx.doi.org/10.1016/j.neuropharm.2019.03.001] [PMID: 30858103]
[52]
Fischer, H.; Nyberg, L.; Karlsson, S.; Karlsson, P.; Brehmer, Y.; Rieckmann, A.; MacDonald, S.W.; Farde, L.; Bäckman, L. Simulating neurocognitive aging: effects of a dopaminergic antagonist on brain activity during working memory. Biol. Psychiatry, 2010, 67(6), 575-580.
[http://dx.doi.org/10.1016/j.biopsych.2009.12.013] [PMID: 20138255]
[53]
Jucaite, A.; Forssberg, H.; Karlsson, P.; Halldin, C.; Farde, L. Age-related reduction in dopamine D1 receptors in the human brain: from late childhood to adulthood, a positron emission tomography study. Neuroscience, 2010, 167(1), 104-110.
[http://dx.doi.org/10.1016/j.neuroscience.2010.01.034] [PMID: 20109534]
[54]
Abi-Dargham, A.; Mawlawi, O.; Lombardo, I.; Gil, R.; Martinez, D.; Huang, Y.; Hwang, D.R.; Keilp, J.; Kochan, L.; Van Heertum, R.; Gorman, J.M.; Laruelle, M. Prefrontal dopamine D1 receptors and working memory in schizophrenia. J. Neurosci., 2002, 22(9), 3708-3719.
[http://dx.doi.org/10.1523/JNEUROSCI.22-09-03708.2002] [PMID: 11978847]
[55]
Rosell, D.R.; Zaluda, L.C.; McClure, M.M.; Perez-Rodriguez, M.M.; Strike, K.S.; Barch, D.M.; Harvey, P.D.; Girgis, R.R.; Hazlett, E.A.; Mailman, R.B.; Abi-Dargham, A.; Lieberman, J.A.; Siever, L.J. Effects of the D1 dopamine receptor agonist dihydrexidine (DAR-0100A) on working memory in schizotypal personality disorder. Neuropsychopharmacology, 2015, 40(2), 446-453.
[http://dx.doi.org/10.1038/npp.2014.192] [PMID: 25074637]
[56]
Nakako, T.; Murai, T.; Ikejiri, M.; Ishiyama, T.; Taiji, M.; Ikeda, K. Effects of a dopamine D1 agonist on ketamine-induced spatial working memory dysfunction in common marmosets. Behav. Brain Res., 2013, 249, 109-115.
[http://dx.doi.org/10.1016/j.bbr.2013.04.012] [PMID: 23608483]
[57]
Roberts, B.M.; Seymour, P.A.; Schmidt, C.J.; Williams, G.V.; Castner, S.A. Amelioration of ketamine-induced working memory deficits by dopamine D1 receptor agonists. Psychopharmacology (Berl.), 2010, 210(3), 407-418.
[http://dx.doi.org/10.1007/s00213-010-1840-9] [PMID: 20401749]
[58]
Seamans, J.K.; Floresco, S.B.; Phillips, A.G. D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J. Neurosci., 1998, 18(4), 1613-1621.
[http://dx.doi.org/10.1523/JNEUROSCI.18-04-01613.1998] [PMID: 9454866]
[59]
Mizoguchi, K.; Shoji, H.; Tanaka, Y.; Maruyama, W.; Tabira, T. Age-related spatial working memory impairment is caused by prefrontal cortical dopaminergic dysfunction in rats. Neuroscience, 2009, 162(4), 1192-1201.
[http://dx.doi.org/10.1016/j.neuroscience.2009.05.023] [PMID: 19463906]
[60]
Yang, Y.; Lee, S.M.; Imamura, F.; Gowda, K.; Amin, S.; Mailman, R.B. D1 dopamine receptors intrinsic activity and functional selectivity affect working memory in prefrontal cortex. Mol. Psychiatry, 2018.
[http://dx.doi.org/10.1038/s41380-018-0312-1] [PMID: 30532019]
[61]
Barger, G.; Dale, H.H. Chemical structure and sympathomimetic action of amines. J. Physiol., 1910, 41(1-2), 19-59.
[http://dx.doi.org/10.1113/jphysiol.1910.sp001392] [PMID: 16993040]
[62]
Carlsson, A.; Lindqvist, M.; Magnusson, T.; Waldeck, B. On the presence of 3-hydroxytyramine in brain. Science, 1958, 127(3296), 471.
[http://dx.doi.org/10.1126/science.127.3296.471] [PMID: 13529006]
[63]
Carlsson, A. Perspectives on the discovery of central monoaminergic neurotransmission. Annu. Rev. Neurosci., 1987, 10, 19-40.
[http://dx.doi.org/10.1146/annurev.ne.10.030187.000315] [PMID: 3032064]
[64]
Spano, P.F.; Govoni, S.; Trabucchi, M. Studies on the pharmacological properties of dopamine receptors in various areas of the central nervous system. Adv. Biochem. Psychopharmacol., 1978, 19, 155-165.
[PMID: 358777]
[65]
Bunzow, J.R.; Van Tol, H.H.; Grandy, D.K.; Albert, P.; Salon, J.; Christie, M.; Machida, C.A.; Neve, K.A.; Civelli, O. Cloning and expression of a rat D2 dopamine receptor cDNA. Nature, 1988, 336(6201), 783-787.
[http://dx.doi.org/10.1038/336783a0] [PMID: 2974511]
[66]
Monsma, F.J., Jr; Mahan, L.C.; McVittie, L.D.; Gerfen, C.R.; Sibley, D.R. Molecular cloning and expression of a D1 dopamine receptor linked to adenylyl cyclase activation. Proc. Natl. Acad. Sci. USA, 1990, 87(17), 6723-6727.
[http://dx.doi.org/10.1073/pnas.87.17.6723] [PMID: 2168556]
[67]
Sokoloff, P.; Giros, B.; Martres, M.P.; Bouthenet, M.L.; Schwartz, J.C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature, 1990, 347(6289), 146-151.
[http://dx.doi.org/10.1038/347146a0] [PMID: 1975644]
[68]
Zhou, Q.Y.; Grandy, D.K.; Thambi, L.; Kushner, J.A.; Van Tol, H.H.; Cone, R.; Pribnow, D.; Salon, J.; Bunzow, J.R.; Civelli, O. Cloning and expression of human and rat D1 dopamine receptors. Nature, 1990, 347(6288), 76-80.
[http://dx.doi.org/10.1038/347076a0] [PMID: 2168520]
[69]
Van Tol, H.H.; Bunzow, J.R.; Guan, H.C.; Sunahara, R.K.; Seeman, P.; Niznik, H.B.; Civelli, O. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature, 1991, 350(6319), 610-614.
[http://dx.doi.org/10.1038/350610a0] [PMID: 1840645]
[70]
Ernst, A.M. Relation between the action of dopamine and apomorphine and their O-methylated derivatives upon the CNS. Psychopharmacology (Berl.), 1965, 7(6), 391-399.
[http://dx.doi.org/10.1007/BF00402361] [PMID: 5831877]
[71]
Chaudhuri, K.R.; Clough, C. Subcutaneous apomorphine in Parkinson’s disease. BMJ, 1998, 316(7132), 641.
[http://dx.doi.org/10.1136/bmj.316.7132.641] [PMID: 9522772]
[72]
Chen, J.J.; Swope, D.M.; Dashtipour, K.; Lyons, K.E. Transdermal rotigotine: a clinically innovative dopamine-receptor agonist for the management of Parkinson’s disease. Pharmacotherapy, 2009, 29(12), 1452-1467.
[http://dx.doi.org/10.1592/phco.29.12.1452] [PMID: 19947805]
[73]
Davies, S. Rotigotine for restless legs syndrome. Drugs Today (Barc), 2009, 45(9), 663-668.
[http://dx.doi.org/10.1358/dot.2009.45.9.1399952] [PMID: 19956807]
[74]
Hsieh, G.C.; Hollingsworth, P.R.; Martino, B.; Chang, R.; Terranova, M.A.; O’Neill, A.B.; Lynch, J.J.; Moreland, R.B.; Donnelly-Roberts, D.L.; Kolasa, T.; Mikusa, J.P.; McVey, J.M.; Marsh, K.C.; Sullivan, J.P.; Brioni, J.D. Central mechanisms regulating penile erection in conscious rats: the dopaminergic systems related to the proerectile effect of apomorphine. J. Pharmacol. Exp. Ther., 2004, 308(1), 330-338.
[http://dx.doi.org/10.1124/jpet.103.057455] [PMID: 14569075]
[75]
Morales-Rosado, J.A.; Cousin, M.A.; Ebbert, J.O.; Klee, E.W. A critical review of repurposing apomorphine for smoking cessation. Assay Drug Dev. Technol., 2015, 13(10), 612-622.
[http://dx.doi.org/10.1089/adt.2015.680] [PMID: 26690764]
[76]
Jensen, S.B.; Christoffersen, C.B.; Noerregaard, A. Apomorphine in outpatient treatment of alcohol intoxication and abstinence: a double-blind study. Br. J. Addict. Alcohol Other Drugs, 1977, 72(4), 325-330.
[http://dx.doi.org/10.1111/j.1360-0443.1977.tb00699.x] [PMID: 341937]
[77]
Siskind, D.; McCartney, L.; Goldschlager, R.; Kisely, S. Clozapine v. first- and second-generation antipsychotics in treatment-refractory schizophrenia: Systematic review and meta-analysis. Br. J. Psychiatry, 2016, 209(5), 385-392.
[http://dx.doi.org/10.1192/bjp.bp.115.177261] [PMID: 27388573]
[78]
Giannini, A.J.; Eighan, M.S.; Loiselle, R.H.; Giannini, M.C. Comparison of haloperidol and chlorpromazine in the treatment of phencyclidine psychosis. J. Clin. Pharmacol., 1984, 24(4), 202-204.
[http://dx.doi.org/10.1002/j.1552-4604.1984.tb01831.x] [PMID: 6725621]
[79]
Leucht, S.; Cipriani, A.; Spineli, L.; Mavridis, D.; Orey, D.; Richter, F.; Samara, M.; Barbui, C.; Engel, R.R.; Geddes, J.R.; Kissling, W.; Stapf, M.P.; Lässig, B.; Salanti, G.; Davis, J.M. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet, 2013, 382(9896), 951-962.
[http://dx.doi.org/10.1016/S0140-6736(13)60733-3] [PMID: 23810019]
[80]
Carbon, M.; Hsieh, C.H.; Kane, J.M.; Correll, C.U. Tardive dyskinesia prevalence in the period of second-generation antipsychotic use: A meta-analysis. J. Clin. Psychiatry, 2017, 78(3), e264-e278.
[http://dx.doi.org/10.4088/JCP.16r10832] [PMID: 28146614]
[81]
Miller, D.D. Atypical antipsychotics: Sleep, sedation, and efficacy. Prim. Care Companion J. Clin. Psychiatry, 2004, 6(Suppl. 2), 3-7.
[PMID: 16001094]
[82]
Haupt, D.W.; Newcomer, J.W. Hyperglycemia and antipsychotic medications. J. Clin. Psychiatry, 2001, 62(Suppl. 27), 15-26.
[PMID: 11806485]
[83]
Wirshing, D.A.; Wirshing, W.C.; Kysar, L.; Berisford, M.A.; Goldstein, D.; Pashdag, J.; Mintz, J.; Marder, S.R. Novel antipsychotics: comparison of weight gain liabilities. J. Clin. Psychiatry, 1999, 60(6), 358-363.
[http://dx.doi.org/10.4088/JCP.v60n0602] [PMID: 10401912]
[84]
Muench, J.; Hamer, A.M. Adverse effects of antipsychotic medications. Am. Fam. Physician, 2010, 81(5), 617-622.
[PMID: 20187598]
[85]
Lovenberg, T.W.; Brewster, W.K.; Mottola, D.M.; Lee, R.C.; Riggs, R.M.; Nichols, D.E.; Lewis, M.H.; Mailman, R.B. Dihydrexidine, a novel selective high potency full dopamine D-1 receptor agonist. Eur. J. Pharmacol., 1989, 166(1), 111-113.
[http://dx.doi.org/10.1016/0014-2999(89)90690-0] [PMID: 2572425]
[86]
Kaiser, C.; Dandridge, P.A.; Garvey, E.; Hahn, R.A.; Sarau, H.M.; Setler, P.E.; Bass, L.S.; Clardy, J. Absolute stereochemistry and dopaminergic activity of enantiomers of 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine. J. Med. Chem., 1982, 25(6), 697-703.
[http://dx.doi.org/10.1021/jm00348a017] [PMID: 6980283]
[87]
Neumeyer, J.L.; Baindur, N.; Niznik, H.B.; Guan, H.C.; Seeman, P. (+/-)-3-Allyl-6-bromo-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3- benzazepin, a new high-affinity D1 dopamine receptor ligand: synthesis and structure-activity relationship. J. Med. Chem., 1991, 34(12), 3366-3371.
[http://dx.doi.org/10.1021/jm00116a004] [PMID: 1684995]
[88]
Giardina, W.J.; Williams, M. Adrogolide HCl (ABT-431; DAS-431), a prodrug of the dopamine D1 receptor agonist, A-86929: preclinical pharmacology and clinical data. CNS Drug Rev., 2001, 7(3), 305-316.
[http://dx.doi.org/10.1111/j.1527-3458.2001.tb00201.x] [PMID: 11607045]
[89]
Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 2011, 54(8), 2529-2591.
[http://dx.doi.org/10.1021/jm1013693] [PMID: 21413808]
[90]
Hyttel, J. SCH 23390 - the first selective dopamine D-1 antagonist. Eur. J. Pharmacol., 1983, 91(1), 153-154.
[http://dx.doi.org/10.1016/0014-2999(83)90381-3] [PMID: 6225651]
[91]
Iorio, L.C.; Barnett, A.; Leitz, F.H.; Houser, V.P.; Korduba, C.A. SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J. Pharmacol. Exp. Ther., 1983, 226(2), 462-468.
[PMID: 6135795]
[92]
Grandy, D.K.; Marchionni, M.A.; Makam, H.; Stofko, R.E.; Alfano, M.; Frothingham, L.; Fischer, J.B.; Burke-Howie, K.J.; Bunzow, J.R.; Server, A.C. Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc. Natl. Acad. Sci. USA, 1989, 86(24), 9762-9766.
[http://dx.doi.org/10.1073/pnas.86.24.9762] [PMID: 2532362]
[93]
Bischoff, S.; Heinrich, M.; Sonntag, J.M.; Krauss, J. The D-1 dopamine receptor antagonist SCH 23390 also interacts potently with brain serotonin (5-HT2) receptors. Eur. J. Pharmacol., 1986, 129(3), 367-370.
[http://dx.doi.org/10.1016/0014-2999(86)90449-8] [PMID: 3536532]
[94]
Millan, M.J.; Newman-Tancredi, A.; Quentric, Y.; Cussac, D. The “selective” dopamine D1 receptor antagonist, SCH23390, is a potent and high efficacy agonist at cloned human serotonin2C receptors. Psychopharmacology (Berl.), 2001, 156(1), 58-62.
[http://dx.doi.org/10.1007/s002130100742] [PMID: 11465634]
[95]
Bischoff, S.; Heinrich, M.; Krauss, J.; Sills, M.A.; Williams, M.; Vassout, A. Interaction of the D1 receptor antagonist SCH 23390 with the central 5-HT system: radioligand binding studies, measurements of biochemical parameters and effects on L-5-HTP syndrome. J. Recept. Res., 1988, 8(1-4), 107-120.
[http://dx.doi.org/10.3109/10799898809048981] [PMID: 3290470]
[96]
Lan, H.; Durand, C.J.; Teeter, M.M.; Neve, K.A. Structural determinants of pharmacological specificity between D(1) and D(2) dopamine receptors. Mol. Pharmacol., 2006, 69(1), 185-194.
[PMID: 16236817]
[97]
Chien, E.Y.; Liu, W.; Zhao, Q.; Katritch, V.; Han, G.W.; Hanson, M.A.; Shi, L.; Newman, A.H.; Javitch, J.A.; Cherezov, V.; Stevens, R.C. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science, 2010, 330(6007), 1091-1095.
[http://dx.doi.org/10.1126/science.1197410] [PMID: 21097933]
[98]
Wang, S.; Che, T.; Levit, A.; Shoichet, B.K.; Wacker, D.; Roth, B.L. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature, 2018, 555(7695), 269-273.
[http://dx.doi.org/10.1038/nature25758] [PMID: 29466326]
[99]
Kaiser, C.; Jain, T. Dopamine receptors: functions, subtypes and emerging concepts. Med. Res. Rev., 1985, 5(2), 145-229.
[http://dx.doi.org/10.1002/med.2610050202] [PMID: 3887065]
[100]
Seiler, M.P.; Markstein, R. Further characterization of structural requirements for agonists at the striatal dopamine D-1 receptor. Studies with a series of monohydroxyaminotetralins on dopamine-sensitive adenylate cyclase and a comparison with dopamine receptor binding. Mol. Pharmacol., 1982, 22(2), 281-289.
[PMID: 7144729]
[101]
Ohlstein, E.H.; Zabkopotapovich, B.; Berkowitz, B.A. Dopamine vascular receptors - analysis by the selective dopamine receptor agonist - Sk and F 82526. Fed. Proc., 1983, 42(5), 1364-1364.
[102]
Iorio, L.C.; Barnett, A.; Leitz, F.H.; Houser, V.P.; Korduba, C.A. SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J. Pharmacol. Exp. Ther., 1983, 226(2), 462-468.
[PMID: 6135795]
[103]
Haney, M.; Ward, A.S.; Foltin, R.W.; Fischman, M.W. Effects of ecopipam, a selective dopamine D1 antagonist, on smoked cocaine self-administration by humans. Psychopharmacology (Berl.), 2001, 155(4), 330-337.
[http://dx.doi.org/10.1007/s002130100725] [PMID: 11441422]
[104]
Astrup, A.; Greenway, F.L.; Ling, W.; Pedicone, L.; Lachowicz, J.; Strader, C.D.; Kwan, R. Randomized controlled trials of the D1/D5 antagonist ecopipam for weight loss in obese subjects. Obesity (Silver Spring), 2007, 15(7), 1717-1731.
[http://dx.doi.org/10.1038/oby.2007.205] [PMID: 17636090]
[105]
Wu, W.L.; Burnett, D.A.; Spring, R.; Greenlee, W.J.; Smith, M.; Favreau, L.; Fawzi, A.; Zhang, H.; Lachowicz, J.E. Dopamine D1/D5 receptor antagonists with improved pharmacokinetics: design, synthesis, and biological evaluation of phenol bioisosteric analogues of benzazepine D1/D5 antagonists. J. Med. Chem., 2005, 48(3), 680-693.
[http://dx.doi.org/10.1021/jm030614p] [PMID: 15689153]
[106]
Burnett, D.A.; Greenlee, W.J.; Mckittrick, B.; Su, J.; Zhu, Z.; Sasikumar, T.K.; Mazzola, R.; Qiang, L.; Ye, Y. 5-hbenzo[ d]naphth[2,1-b]azepine derivative as selective d1/d5 receptor antagonists for the treatment of obesity and cns disorders. International Patent Application: PCT/US2004/015764 (WO200503- 5504 A3), 2004.
[107]
Ring, A.M.; Manglik, A.; Kruse, A.C.; Enos, M.D.; Weis, W.I.; Garcia, K.C.; Kobilka, B.K. Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature, 2013, 502(7472), 575-579.
[http://dx.doi.org/10.1038/nature12572] [PMID: 24056936]
[108]
Mente, S.; Guilmette, E.; Salafia, M.; Gray, D. Dopamine D1 receptor-agonist interactions: A mutagenesis and homology modeling study. Bioorg. Med. Chem. Lett., 2015, 25(10), 2106-2111.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.079] [PMID: 25881819]
[109]
Ross, S.T.; Franz, R.G.; Wilson, J.W.; Brenner, M.; DeMarinis, R.M.; Hieble, J.P.; Sarau, H.M. Dopamine receptor agonists: 3-allyl-6-chloro-2,3,4,5-tetrahydro-1-(4-hydroxyphenyl)-1H-3-benza-zepine-7,8-diol and a series of related 3-benzazepines. J. Med. Chem., 1986, 29(5), 733-740.
[http://dx.doi.org/10.1021/jm00155a024] [PMID: 2871192]
[110]
Neumeyer, J.L.; Kula, N.S.; Bergman, J.; Baldessarini, R.J. Receptor affinities of dopamine D1 receptor-selective novel phenylbenzazepines. Eur. J. Pharmacol., 2003, 474(2-3), 137-140.
[http://dx.doi.org/10.1016/S0014-2999(03)02008-9] [PMID: 12921854]
[111]
O’Boyle, K.M.; Gaitanopoulos, D.E.; Brenner, M.; Waddington, J.L. Agonist and antagonist properties of benzazepine and thienopyridine derivatives at the D1 dopamine receptor. Neuropharmacology, 1989, 28(4), 401-405.
[http://dx.doi.org/10.1016/0028-3908(89)90036-1] [PMID: 2568596]
[112]
Hahn, R.A.; Wardell, J.R., Jr; Sarau, H.M.; Ridley, P.T. Characterization of the peripheral and central effects of SK&F 82526, a novel dopamine receptor agonist. J. Pharmacol. Exp. Ther., 1982, 223(2), 305-313.
[PMID: 6127401]
[113]
Carey, R.M.; Stote, R.M.; Dubb, J.W.; Townsend, L.H.; Rose, C.E., Jr; Kaiser, D.L. Selective peripheral dopamine-1 receptor stimulation with fenoldopam in human essential hypertension. J. Clin. Invest., 1984, 74(6), 2198-2207.
[http://dx.doi.org/10.1172/JCI111646] [PMID: 6150942]
[114]
Stote, R.M.; Dubb, J.W.; Familiar, R.G.; Erb, B.B.; Alexander, F. A new oral renal vasodilator, fenoldopam. Clin. Pharmacol. Ther., 1983, 34(3), 309-315.
[http://dx.doi.org/10.1038/clpt.1983.173] [PMID: 6136359]
[115]
Weinstock, J.; Ladd, D.L.; Wilson, J.W.; Brush, C.K.; Yim, N.C.; Gallagher, G., Jr; McCarthy, M.E.; Silvestri, J.; Sarau, H.M.; Flaim, K.E. Synthesis and renal vasodilator activity of some dopamine agonist 1-aryl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diols: halogen and methyl analogues of fenoldopam. J. Med. Chem., 1986, 29(11), 2315-2325.
[http://dx.doi.org/10.1021/jm00161a029] [PMID: 2878077]
[116]
Weinstock, J.; Oh, H.J.; DeBrosse, C.W.; Eggleston, D.S.; Wise, M.; Flaim, K.E.; Gessner, G.W.; Sawyer, J.L.; Kaiser, C. Synthesis, conformation, and dopaminergic activity of 5,6-ethano-bridged derivatives of selective dopaminergic 3-benzazepines. J. Med. Chem., 1987, 30(8), 1303-1308.
[http://dx.doi.org/10.1021/jm00391a007] [PMID: 2886663]
[117]
Conroy, J.L.; Free, R.B.; Sibley, D.R. Identification of G protein-biased agonists that fail to recruit β-arrestin or promote internalization of the D1 dopamine receptor. ACS Chem. Neurosci., 2015, 6(4), 681-692.
[http://dx.doi.org/10.1021/acschemneuro.5b00020] [PMID: 25660762]
[118]
Salmi, P.; Isacson, R.; Kull, B. Dihydrexidine--the first full dopamine D1 receptor agonist. CNS Drug Rev., 2004, 10(3), 230-242.
[http://dx.doi.org/10.1111/j.1527-3458.2004.tb00024.x] [PMID: 15492773]
[119]
Brewster, W.K.; Nichols, D.E.; Riggs, R.M.; Mottola, D.M.; Lovenberg, T.W.; Lewis, M.H.; Mailman, R.B. trans-10,11-dihydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a]phenanthridine: a highly potent selective dopamine D1 full agonist. J. Med. Chem., 1990, 33(6), 1756-1764.
[http://dx.doi.org/10.1021/jm00168a034] [PMID: 1971308]
[120]
Ghosh, D.; Snyder, S.E.; Watts, V.J.; Mailman, R.B.; Nichols, D.E. 9-Dihydroxy-2,3,7,11b-tetrahydro-1H-naph[1,2,3-de]isoquinoline: a potent full dopamine D1 agonist containing a rigid-beta-phenyldopamine pharmacophore. J. Med. Chem., 1996, 39(2), 549-555.
[http://dx.doi.org/10.1021/jm950707+] [PMID: 8558526]
[121]
Shiosaki, K.; Jenner, P.; Asin, K.E.; Britton, D.R.; Lin, C.W.; Michaelides, M.; Smith, L.; Bianchi, B.; Didomenico, S.; Hodges, L.; Hong, Y.; Mahan, L.; Mikusa, J.; Miller, T.; Nikkel, A.; Stashko, M.; Witte, D.; Williams, M. ABT-431: the diacetyl prodrug of A-86929, a potent and selective dopamine D1 receptor agonist: in vitro characterization and effects in animal models of Parkinson’s disease. J. Pharmacol. Exp. Ther., 1996, 276(1), 150-160.
[PMID: 8558425]
[122]
Taylor, J.R.; Lawrence, M.S.; Redmond, D.E., Jr; Elsworth, J.D.; Roth, R.H.; Nichols, D.E.; Mailman, R.B. Dihydrexidine, a full dopamine D1 agonist, reduces MPTP-induced parkinsonism in monkeys. Eur. J. Pharmacol., 1991, 199(3), 389-391.
[http://dx.doi.org/10.1016/0014-2999(91)90508-N] [PMID: 1680717]
[123]
Blanchet, P.J.; Fang, J.; Gillespie, M.; Sabounjian, L.; Locke, K.W.; Gammans, R.; Mouradian, M.M.; Chase, T.N. Effects of the full dopamine D1 receptor agonist dihydrexidine in Parkinson’s disease. Clin. Neuropharmacol., 1998, 21(6), 339-343.
[PMID: 9844789]
[124]
Seiler, M.P.; Hagenbach, A.; Wüthrich, H.J.; Markstein, R. trans-hexahydroindolo[4,3-ab]phenanthridines (“benzergolines”), the first structural class of potent and selective dopamine D1 receptor agonists lacking a catechol group. J. Med. Chem., 1991, 34(1), 303-307.
[http://dx.doi.org/10.1021/jm00105a047] [PMID: 1671417]
[125]
Chemel, B.R.; Bonner, L.A.; Watts, V.J.; Nichols, D.E. Ligand-specific roles for transmembrane 5 serine residues in the binding and efficacy of dopamine D(1) receptor catechol agonists. Mol. Pharmacol., 2012, 81(5), 729-738.
[http://dx.doi.org/10.1124/mol.111.077339] [PMID: 22334593]
[126]
Bonner, L.A.; Laban, U.; Chemel, B.R.; Juncosa, J.I.; Lill, M.A.; Watts, V.J.; Nichols, D.E. Mapping the catechol binding site in dopamine D1 receptors: synthesis and evaluation of two parallel series of bicyclic dopamine analogues. ChemMedChem, 2011, 6(6), 1024-1040.
[http://dx.doi.org/10.1002/cmdc.201100010] [PMID: 21538900]
[127]
Davoren, J.E.; Nason, D.; Coe, J.; Dlugolenski, K.; Helal, C.; Harris, A.R.; LaChapelle, E.; Liang, S.; Liu, Y.; O’Connor, R.; Orozco, C.C.; Rai, B.K.; Salafia, M.; Samas, B.; Xu, W.; Kozak, R.; Gray, D. Discovery and lead optimization of atropisomer D1 agonists with reduced desensitization. J. Med. Chem., 2018, 61(24), 11384-11397.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01622] [PMID: 30431269]
[128]
Reiter, E.; Ahn, S.; Shukla, A.K.; Lefkowitz, R.J. Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu. Rev. Pharmacol. Toxicol., 2012, 52, 179-197.
[http://dx.doi.org/10.1146/annurev.pharmtox.010909.105800] [PMID: 21942629]
[129]
Urban, J.D.; Clarke, W.P.; von Zastrow, M.; Nichols, D.E.; Kobilka, B.; Weinstein, H.; Javitch, J.A.; Roth, B.L.; Christopoulos, A.; Sexton, P.M.; Miller, K.J.; Spedding, M.; Mailman, R.B. Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther., 2007, 320(1), 1-13.
[http://dx.doi.org/10.1124/jpet.106.104463] [PMID: 16803859]
[130]
Tan, L.; Yan, W.; McCorvy, J.D.; Cheng, J. biased ligands of G protein-coupled receptors (GPCRs): Structure-functional selectivity relationships (SFSRs) and therapeutic potential. J. Med. Chem., 2018, 61(22), 9841-9878.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00435] [PMID: 29939744]
[131]
Urs, N.M.; Gee, S.M.; Pack, T.F.; McCorvy, J.D.; Evron, T.; Snyder, J.C.; Yang, X.; Rodriguiz, R.M.; Borrelli, E.; Wetsel, W.C.; Jin, J.; Roth, B.L.; O’Donnell, P.; Caron, M.G. Distinct cortical and striatal actions of a β-arrestin-biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties. Proc. Natl. Acad. Sci. USA, 2016, 113(50), E8178-E8186.
[http://dx.doi.org/10.1073/pnas.1614347113] [PMID: 27911814]
[132]
Viscusi, E.R.; Webster, L.; Kuss, M.; Daniels, S.; Bolognese, J.A.; Zuckerman, S.; Soergel, D.G.; Subach, R.A.; Cook, E.; Skobieranda, F. A randomized, phase 2 study investigating TRV130, a biased ligand of the μ-opioid receptor, for the intravenous treatment of acute pain. Pain, 2016, 157(1), 264-272.
[http://dx.doi.org/10.1097/j.pain.0000000000000363] [PMID: 26683109]
[133]
Schmid, C.L.; Kennedy, N.M.; Ross, N.C.; Lovell, K.M.; Yue, Z.; Morgenweck, J.; Cameron, M.D.; Bannister, T.D.; Bohn, L.M. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell, 2017, 171(5), 1165-1175.
[http://dx.doi.org/10.1016/j.cell.2017.10.035]
[134]
Coe, J.W.; Allen, J.A.; Davoren, J.E.; Dounay, A.B.; Efremov, I.V.; Gray, D.L.; Guilmette, E.R.; Harris, A.R.; Helal, C.J.; Henderson, J.L.; Mente, S.R.; Nason, D.M.; O’Nei, S.V.; Subramanyam, I.C.; Xu, W. Heteroaromatic compounds and their use as Dopamine D1 ligands. United States Patent 9,617,275 B2, 2017.
[135]
Nilson, A.N. F.D.; Wang, P.; Zhou, J.; Allen, J.A. Novel noncatechol dopamine D1 receptor agonists exhibit G protein biased, Beta-arrestin independent signaling. 2018 Neuroscience Meeting Planner, 2018. Online Program No. 609.622..
[136]
Wang, P.; Felsing, D.E.; Chen, H.; Raval, S.R.; Allen, J.A.; Zhou, J. Synthesis and pharmacological evaluation of non-catechol G protein biased and unbiased dopamine D1 receptor agonists. ACS Med. Chem. Lett., 2019, 10, 5792-5799.
[PMID: 31098001] [http://dx.doi.org/[DOI: https://doi.org/10.1021/acsmedchemlett.9b00050]
[137]
Martini, M.L.; Liu, J.; Ray, C.; Yu, X.; Huang, X.P.; Urs, A.; Urs, N.M.; McCorvy, J.; Caron, M.G.; Roth, B.L.; Jin, J. Defining structure-functional selectivity relationships (sfsr) for a class of non-catechol dopamine D1 receptor agonists. J. Med. Chem., 2019, 62(7), 3753-3772.
[PMID: 30875219] [http://dx.doi.org/[http://10.1021/acs.jmedchem.9b00351]
[138]
Conn, P.J.; Christopoulos, A.; Lindsley, C.W. Allosteric modulators of GPCRs: A novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov., 2009, 8(1), 41-54.
[http://dx.doi.org/10.1038/nrd2760] [PMID: 19116626]
[139]
Keov, P.; Sexton, P.M.; Christopoulos, A. Allosteric modulation of G protein-coupled receptors: A pharmacological perspective. Neuropharmacology, 2011, 60(1), 24-35.
[http://dx.doi.org/10.1016/j.neuropharm.2010.07.010] [PMID: 20637785]
[140]
Bruns, R.F.; Fergus, J.H. Allosteric enhancement of adenosine A1 receptor binding and function by 2-amino-3-benzoylthiophenes. Mol. Pharmacol., 1990, 38(6), 939-949.
[PMID: 2174510]
[141]
Nemeth, E.F.; Steffey, M.E.; Hammerland, L.G.; Hung, B.C.; Van Wagenen, B.C.; DelMar, E.G.; Balandrin, M.F. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc. Natl. Acad. Sci. USA, 1998, 95(7), 4040-4045.
[http://dx.doi.org/10.1073/pnas.95.7.4040] [PMID: 9520489]
[142]
Canals, M.; Sexton, P.M.; Christopoulos, A. Allostery in GPCRs: ‘MWC’ revisited. Trends Biochem. Sci., 2011, 36(12), 663-672.
[http://dx.doi.org/10.1016/j.tibs.2011.08.005] [PMID: 21920759]
[143]
Congreve, M.; Oswald, C.; Marshall, F.H. Applying structure-based drug design approaches to allosteric modulators of GPCRs. Trends Pharmacol. Sci., 2017, 38(9), 837-847.
[http://dx.doi.org/10.1016/j.tips.2017.05.010] [PMID: 28648526]
[144]
Christopoulos, A.; Kenakin, T. G protein-coupled receptor allosterism and complexing. Pharmacol. Rev., 2002, 54(2), 323-374.
[http://dx.doi.org/10.1124/pr.54.2.323] [PMID: 12037145]
[145]
Wootten, D.; Christopoulos, A.; Sexton, P.M. Emerging paradigms in GPCR allostery: Implications for drug discovery. Nat. Rev. Drug Discov., 2013, 12(8), 630-644.
[http://dx.doi.org/10.1038/nrd4052] [PMID: 23903222]
[146]
Wold, E.A.; Chen, J.; Cunningham, K.A.; Zhou, J. Allosteric modulation of class a GPCRs: Targets, agents, and emerging concepts. J. Med. Chem., 2019, 62(1), 88-127.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00875] [PMID: 30106578]
[147]
Williams, G.V.; Castner, S.A. Under the curve: critical issues for elucidating D1 receptor function in working memory. Neuroscience, 2006, 139(1), 263-276.
[http://dx.doi.org/10.1016/j.neuroscience.2005.09.028] [PMID: 16310964]
[148]
Rascol, O.; Blin, O.; Thalamas, C.; Descombes, S.; Soubrouillard, C.; Azulay, P.; Fabre, N.; Viallet, F.; Lafnitzegger, K.; Wright, S.; Carter, J.H.; Nutt, J.G. ABT-431, a D1 receptor agonist prodrug, has efficacy in Parkinson’s disease. Ann. Neurol., 1999, 45(6), 736-741.
[http://dx.doi.org/10.1002/1531-8249(199906)45:6<736:AID-ANA7>3.0.CO;2-F] [PMID: 10360765]
[149]
Lewis, M.A.; Hunihan, L.; Watson, J.; Gentles, R.G.; Hu, S.; Huang, Y.; Bronson, J.; Macor, J.E.; Beno, B.R.; Ferrante, M.; Hendricson, A.; Knox, R.J.; Molski, T.F.; Kong, Y.; Cvijic, M.E.; Rockwell, K.L.; Weed, M.R.; Cacace, A.M.; Westphal, R.S.; Alt, A.; Brown, J.M. Discovery of D1 dopamine receptor positive allosteric modulators: Characterization of pharmacology and identification of residues that regulate species Selectivity. J. Pharmacol. Exp. Ther., 2015, 354(3), 340-349.
[http://dx.doi.org/10.1124/jpet.115.224071] [PMID: 26109678]
[150]
May, L.T.; Leach, K.; Sexton, P.M.; Christopoulos, A. Allosteric modulation of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol., 2007, 47, 1-51.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105159] [PMID: 17009927]
[151]
Gjoni, T.; Urwyler, S. Receptor activation involving positive allosteric modulation, unlike full agonism, does not result in GABAB receptor desensitization. Neuropharmacology, 2008, 55(8), 1293-1299.
[http://dx.doi.org/10.1016/j.neuropharm.2008.08.008] [PMID: 18775443]
[152]
Svensson, K.A.; Heinz, B.A.; Schaus, J.M.; Beck, J.P.; Hao, J.; Krushinski, J.H.; Reinhard, M.R.; Cohen, M.P.; Hellman, S.L.; Getman, B.G.; Wang, X.; Menezes, M.M.; Maren, D.L.; Falcone, J.F.; Anderson, W.H.; Wright, R.A.; Morin, S.M.; Knopp, K.L.; Adams, B.L.; Rogovoy, B.; Okun, I.; Suter, T.M.; Statnick, M.A.; Gehlert, D.R.; Nelson, D.L.; Lucaites, V.L.; Emkey, R.; DeLapp, N.W.; Wiernicki, T.R.; Cramer, J.W.; Yang, C.R.; Bruns, R.F. An allosteric potentiator of the dopamine D1 receptor increases locomotor activity in human D1 knock-in mice without causing stereotypy or tachyphylaxis. J. Pharmacol. Exp. Ther., 2017, 360(1), 117-128.
[http://dx.doi.org/10.1124/jpet.116.236372] [PMID: 27811173]
[153]
Bruns, R.F.; Mitchell, S.N.; Wafford, K.A.; Harper, A.J.; Shanks, E.A.; Carter, G.; O’Neill, M.J.; Murray, T.K.; Eastwood, B.J.; Schaus, J.M.; Beck, J.P.; Hao, J.; Witkin, J.M.; Li, X.; Chernet, E.; Katner, J.S.; Wang, H.; Ryder, J.W.; Masquelin, M.E.; Thompson, L.K.; Love, P.L.; Maren, D.L.; Falcone, J.F.; Menezes, M.M.; Zhang, L.; Yang, C.R.; Svensson, K.A. Preclinical profile of a dopamine D1 potentiator suggests therapeutic utility in neurological and psychiatric disorders. Neuropharmacology, 2018, 128, 351-365.
[http://dx.doi.org/10.1016/j.neuropharm.2017.10.032] [PMID: 29102759]
[154]
Jutkiewicz, E.M.; Bergman, J. Effects of dopamine D1 ligands on eye blinking in monkeys: efficacy, antagonism, and D1/D2 interactions. J. Pharmacol. Exp. Ther., 2004, 311(3), 1008-1015.
[http://dx.doi.org/10.1124/jpet.104.071092] [PMID: 15292458]
[155]
Giorgioni, G.; Piergentili, A.; Ruggieri, S.; Quaglia, W. Dopamine D5 receptors: A challenge to medicinal chemists. Mini Rev. Med. Chem., 2008, 8(10), 976-995.
[http://dx.doi.org/10.2174/138955708785740661] [PMID: 18782049]
[156]
Damsma, G.; Tham, C.S.; Robertson, G.S.; Fibiger, H.C. Dopamine D1 receptor stimulation increases striatal acetylcholine release in the rat. Eur. J. Pharmacol., 1990, 186(2-3), 335-338.
[http://dx.doi.org/10.1016/0014-2999(90)90456-G] [PMID: 1981190]
[157]
Consolo, S.; Girotti, P.; Russi, G.; Di Chiara, G. Endogenous dopamine facilitates striatal in vivo acetylcholine release by acting on D1 receptors localized in the striatum. J. Neurochem., 1992, 59(4), 1555-1557.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb08473.x] [PMID: 1402904]
[158]
Day, J.; Fibiger, H.C. Dopaminergic regulation of cortical acetylcholine release: Effects of dopamine receptor agonists. Neuroscience, 1993, 54(3), 643-648.
[http://dx.doi.org/10.1016/0306-4522(93)90235-8] [PMID: 8101359]
[159]
Luderman, K.D.; Conroy, J.L.; Free, R.B.; Southall, N.; Ferrer, M.; Sanchez-Soto, M.; Moritz, A.E.; Willette, B.K.A.; Fyfe, T.J.; Jain, P.; Titus, S.; Hazelwood, L.A.; Aubé, J.; Lane, J.R.; Frankowski, K.J.; Sibley, D.R. Identification of positive allosteric modulators of the D1 dopamine receptor that act at diverse binding sites. Mol. Pharmacol., 2018, 94(4), 1197-1209.
[http://dx.doi.org/10.1124/mol.118.113175] [PMID: 30068735]
[160]
Shiraki, R.; Tobe, T. Heterocyclic Acetamide Compound. US Patent 8,937,087 B2, October 23, 2014.
[161]
Hall, A.; Provins, L.; Valade, A. Novel strategies to activate the dopamine d1 receptor: recent advances in orthosteric agonism and positive allosteric modulation. J. Med. Chem., 2019, 62(1), 128-140.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01767] [PMID: 30525590]
[162]
Skolc, D.; Ates, A. Isoindoline derivatives. international patent: PCT/EP2015/073057 (WO2016055482), April 14, 2016.
[163]
Creese, I.; Sibley, D.R.; Hamblin, M.W.; Leff, S.E. The classification of dopamine receptors: Relationship to radioligand binding. Annu. Rev. Neurosci., 1983, 6, 43-71.
[http://dx.doi.org/10.1146/annurev.ne.06.030183.000355] [PMID: 6220666]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy