Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Can Wogonin be Used in Controlling Diabetic Cardiomyopathy?

Author(s): Shahzad Khan* and Mohammad A. Kamal

Volume 25, Issue 19, 2019

Page: [2171 - 2177] Pages: 7

DOI: 10.2174/1381612825666190708173108

Price: $65

Abstract

Diabetes Mellitus (DM) is now a well-known factor which initiates many metabolic derangements in various tissues and organs including liver, muscle, pancreas, adipose tissue, cardiovascular and nervous system. Cardiovascular complications are the most crucial , and their effects are so intensive that their derangement leads to cardiac failure even in the absence of ischemic heart diseases. This entity of cardiac pathology in DM is often regarded as diabetic cardiomyopathy (DCM). Recently, many plant-derived drugs have been tested to control and alleviate DCM. Wogonin is one of the drugs the characteristics of which have been deeply studied. Wogonin is a flavonoid having yellow color pigment in their leaves and is obtained from the roots of plant Scutellaria Baicalensis Georgi. Wogonin has long been used as an active anti-cancer drug in Chinese medicine practice. In recent past wogonin has shown to possess notable anti-inflammatory, and anti-allergic properties. Wogonin has demonstrated to possess anti-oxidant, anti-viral, anti-inflammatory and also anti-thrombotic properties.

Wogonin has shown to alleviate apoptosis, and ER stress in the cells and this property can also be used in the treatment of cardiovascular diseases. Notably, wogonin has been documented to have an extensive margin of safety as well as displays little or no organ toxicity following extended intravenous administration. In this review, we discuss recently discovered therapeutic potential of wogonin in the treatment of DCM.

Keywords: Diabetic cardiomyopathy, wogonin, inflammation, diabetes mellitus, hyperglycemia, ER stress.

[1]
Chang Y-L, Shen J-J, Wung B-S, Cheng J-J, Wang DL. Chinese herbal remedy wogonin inhibits monocyte chemotactic protein-1 gene expression in human endothelial cells. Mol Pharmacol 2001; 60(3): 507-13.
[PMID: 11502881]
[2]
Li-Weber M. Targeting apoptosis pathways in cancer by Chinese medicine. Cancer Lett 2013; 332(2): 304-12.
[http://dx.doi.org/10.1016/j.canlet.2010.07.015] [PMID: 20685036]
[3]
Enomoto R, Koshiba C, Suzuki C, Lee E. Wogonin potentiates the antitumor action of etoposide and ameliorates its adverse effects. Cancer Chemother Pharmacol 2011; 67(5): 1063-72.
[http://dx.doi.org/10.1007/s00280-010-1396-8] [PMID: 20658136]
[4]
Lee W, Ku SK, Bae JS. Anti-inflammatory effects of Baicalin, Baicalein, and Wogonin in vitro and in vivo. Inflammation 2015; 38(1): 110-25.
[http://dx.doi.org/10.1007/s10753-014-0013-0] [PMID: 25249339]
[5]
Maisch B, Alter P, Pankuweit S. Diabetic cardiomyopathy--fact or fiction? Herz 2011; 36(2): 102-15.
[http://dx.doi.org/10.1007/s00059-011-3429-4] [PMID: 21424347]
[6]
Bodiga VL, Eda SR, Bodiga S. Advanced glycation end products: Role in pathology of diabetic cardiomyopathy. Heart Fail Rev 2014; 19(1): 49-63.
[http://dx.doi.org/10.1007/s10741-013-9374-y] [PMID: 23404649]
[7]
Bidasee KR, Zhang Y, Shao CH, et al. Diabetes increases formation of advanced glycation end products on Sarco(endo)plasmic reticulum Ca2+-ATPase. Diabetes 2004; 53(2): 463-73.
[http://dx.doi.org/10.2337/diabetes.53.2.463] [PMID: 14747299]
[8]
Xie J, Méndez JD, Méndez-Valenzuela V, Aguilar-Hernández MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 2013; 25(11): 2185-97.
[http://dx.doi.org/10.1016/j.cellsig.2013.06.013] [PMID: 23838007]
[9]
Jadhav A, Tiwari S, Lee P, Ndisang JF. The heme oxygenase system selectively enhances the anti-inflammatory macrophage-M2 phenotype, reduces pericardial adiposity, and ameliorated cardiac injury in diabetic cardiomyopathy in Zucker diabetic fatty rats. J Pharmacol Exp Ther 2013; 345(2): 239-49.
[http://dx.doi.org/10.1124/jpet.112.200808] [PMID: 23442249]
[10]
Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res 2000; 87(12): 1123-32.
[http://dx.doi.org/10.1161/01.RES.87.12.1123] [PMID: 11110769]
[11]
Kajstura J, Fiordaliso F, Andreoli AM, et al. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 2001; 50(6): 1414-24.
[http://dx.doi.org/10.2337/diabetes.50.6.1414] [PMID: 11375343]
[12]
Singh VP, Le B, Khode R, Baker KM, Kumar R. Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes 2008; 57(12): 3297-306.
[http://dx.doi.org/10.2337/db08-0805] [PMID: 18829990]
[13]
Brown L, Wall D, Marchant C, Sernia C. Tissue-specific changes in angiotensin II receptors in streptozotocin-diabetic rats. J Endocrinol 1997; 154(2): 355-62.
[http://dx.doi.org/10.1677/joe.0.1540355] [PMID: 9291846]
[14]
Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 2014; 57(4): 660-71.
[http://dx.doi.org/10.1007/s00125-014-3171-6] [PMID: 24477973]
[15]
Serpillon S, Floyd BC, Gupte RS, et al. Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH. Am J Physiol Heart Circ Physiol 2009; 297(1): H153-62.
[http://dx.doi.org/10.1152/ajpheart.01142.2008] [PMID: 19429815]
[16]
Liu Z-W, Zhu H-T, Chen K-L, et al. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy. Cardiovasc Diabetol 2013; 12(1): 158.
[http://dx.doi.org/10.1186/1475-2840-12-158] [PMID: 24180212]
[17]
Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr Metab (Lond) 2015; 12(1): 60.
[http://dx.doi.org/10.1186/s12986-015-0057-7] [PMID: 26705405]
[18]
Lin C-C, Shieh D-E. The anti-inflammatory activity of Scutellaria rivularis extracts and its active components, baicalin, baicalein and wogonin. Am J Chin Med 1996; 24(1): 31-6.
[http://dx.doi.org/10.1142/S0192415X96000050] [PMID: 8739179]
[19]
Baumann S, Fas SC, Giaisi M, et al. Wogonin preferentially kills malignant lymphocytes and suppresses T-cell tumor growth by inducing PLCgamma1- and Ca2+-dependent apoptosis. Blood 2008; 111(4): 2354-63.
[http://dx.doi.org/10.1182/blood-2007-06-096198] [PMID: 18070986]
[20]
Khan MI, Pichna BA, Shi Y, Bowes AJ, Werstuck GH. Evidence supporting a role for endoplasmic reticulum stress in the development of atherosclerosis in a hyperglycaemic mouse model. Antioxid Redox Signal 2009; 11(9): 2289-9.
[http://dx.doi.org/10.1089/ars.2009.2569]
[21]
Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem Pharmacol 1999; 58(5): 759-65.
[http://dx.doi.org/10.1016/S0006-2952(99)00160-4] [PMID: 10449184]
[22]
Yao J, Zhao L, Zhao Q, et al. NF-κB and Nrf2 signaling pathways contribute to wogonin-mediated inhibition of inflammation-associated colorectal carcinogenesis. Cell Death Dis 2014; 5e1283
[http://dx.doi.org/10.1038/cddis.2014.221] [PMID: 24901054]
[23]
Huang YQ, Wang X, Kong W. Diabetic cardiomyopathy. Sheng Li Ke Xue Jin Zhan 2010; 41(1): 31-6.
[PMID: 21417012]
[24]
Enomoto R, Sugahara C, Suzuki C, et al. Wogonin prevents glucocorticoid-induced thymocyte apoptosis without diminishing its anti-inflammatory action. J Pharmacol Sci 2007; 104(4): 355-65.
[http://dx.doi.org/10.1254/jphs.FP0061501] [PMID: 17690528]
[25]
Lee D-H, Lee TH, Jung CH, Kim Y-H. Wogonin induces apoptosis by activating the AMPK and p53 signaling pathways in human glioblastoma cells. Cell Signal 2012; 24(11): 2216-25.
[http://dx.doi.org/10.1016/j.cellsig.2012.07.019] [PMID: 22846543]
[26]
Liu YM, Wang X, Nawaz A, et al. Wogonin ameliorates lipotoxicity-induced apoptosis of cultured vascular smooth muscle cells via interfering with DAG-PKC pathway. Acta Pharmacol Sin 2011; 32(12): 1475-82.
[http://dx.doi.org/10.1038/aps.2011.120] [PMID: 21986573]
[27]
Chang Y-L, Shen J-J, Wung B-S, Cheng J-J, Wang DL. Chinese herbal remedy wogonin inhibits monocyte chemotactic protein-1 gene expression in human endothelial cells. Mol Pharmacol 2001; 60(3): 507-13.
[PMID: 11502881]
[28]
García-Lafuente A, Guillamón E, Villares A, Rostagno MA, Martínez JA. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm Res 2009; 58(9): 537-52.
[http://dx.doi.org/10.1007/s00011-009-0037-3] [PMID: 19381780]
[29]
Wu CY, Hsieh HL, Jou MJ, Yang CM. Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-kappa B in interleukin-1beta-induced matrix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem 2004; 90(6): 1477-88.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02682.x] [PMID: 15341531]
[30]
Oche B, Chen L, Ma YK, et al. Cryptotanshinone and wogonin up-regulate eNOS in vascular endothelial cells via ERα and down-regulate iNOS in LPS stimulated vascular smooth muscle cells via ERβ. Arch Pharm Res 2016; 39(2): 249-58.
[http://dx.doi.org/10.1007/s12272-015-0671-y] [PMID: 26481132]
[31]
Lee Y-M, Cheng P-Y, Chen S-Y, Chung M-T, Sheu J-R. Wogonin suppresses arrhythmias, inflammatory responses, and apoptosis induced by myocardial ischemia/reperfusion in rats. J Cardiovasc Pharmacol 2011; 58(2): 133-42.
[http://dx.doi.org/10.1097/FJC.0b013e31821a5078] [PMID: 21436723]
[32]
Ouyang C, You J, Xie Z. The interplay between autophagy and apoptosis in the diabetic heart. J Mol Cell Cardiol 2014; 71: 71-80.
[http://dx.doi.org/10.1016/j.yjmcc.2013.10.014] [PMID: 24513079]
[33]
Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr Metab (Lond) 2015; 12(1): 60.
[http://dx.doi.org/10.1186/s12986-015-0057-7] [PMID: 26705405]
[34]
Zhang YM, Li MX, Tang Z, Wang CH. Wogonin suppresses osteopontin expression in adipocytes by activating PPARα. Acta Pharmacol Sin 2015; 36(8): 987-97.
[http://dx.doi.org/10.1038/aps.2015.37] [PMID: 26073326]
[35]
Mehta NN, Sheetz M, Price K, et al. Selective PKC beta inhibition with ruboxistaurin and endothelial function in type-2 diabetes mellitus. Cardiovasc Drugs Ther 2009; 23(1): 17-24.
[http://dx.doi.org/10.1007/s10557-008-6144-5] [PMID: 18949545]
[36]
Liu YM, Wang X, Nawaz A, et al. Wogonin ameliorates lipotoxicity-induced apoptosis of cultured vascular smooth muscle cells via interfering with DAG-PKC pathway. Acta Pharmacol Sin 2011; 32(12): 1475-82.
[http://dx.doi.org/10.1038/aps.2011.120] [PMID: 21986573]
[37]
Lee DH, Kim C, Zhang L, Lee YJ. Role of p53, PUMA, and Bax in wogonin-induced apoptosis in human cancer cells. Biochem Pharmacol 2008; 75(10): 2020-33.
[http://dx.doi.org/10.1016/j.bcp.2008.02.023] [PMID: 18377871]
[38]
Oche B, Chen L, Ma YK, et al. Cryptotanshinone and wogonin up-regulate eNOS in vascular endothelial cells via ERα and down-regulate iNOS in LPS stimulated vascular smooth muscle cells via ERβ. Arch Pharm Res 2016; 39(2): 249-58.
[http://dx.doi.org/10.1007/s12272-015-0671-y] [PMID: 26481132]
[39]
Soskić SS, Dobutović BD, Sudar EM, et al. Regulation of inducible nitric oxide synthase (iNOS) and its potential role in insulin resistance, diabetes and heart failure. Open Cardiovasc Med J 2011; 5: 153-63.
[http://dx.doi.org/10.2174/1874192401105010153] [PMID: 21792376]
[40]
Xin X, Khan ZA, Chen S, Chakrabarti S. Extracellular signal-regulated kinase (ERK) in glucose-induced and endothelin-mediated fibronectin synthesis. Lab Invest 2004; 84(11): 1451-9.
[http://dx.doi.org/10.1038/labinvest.3700178] [PMID: 15448709]
[41]
Sun W, Bi Y, Liang H, et al. Inhibition of obesity-induced hepatic ER stress by early insulin therapy in obese diabetic rats. Endocrine 2011; 39(3): 235-41.
[http://dx.doi.org/10.1007/s12020-010-9429-y] [PMID: 21088934]
[42]
Zhang YM, Li MX, Tang Z, Wang CH. Wogonin suppresses osteopontin expression in adipocytes by activating PPARα. Acta Pharmacol Sin 2015; 36(8): 987-97.
[http://dx.doi.org/10.1038/aps.2015.37] [PMID: 26073326]
[43]
Wang X, Son YO, Chang Q, et al. NADPH oxidase activation is required in reactive oxygen species generation and cell transformation induced by hexavalent chromium. Toxicol Sci 2011; 123(2): 399-410.
[http://dx.doi.org/10.1093/toxsci/kfr180] [PMID: 21742780]
[44]
Tuttle KR, Bakris GL, Toto RD, McGill JB, Hu K, Anderson PW. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care 2005; 28(11): 2686-90.
[http://dx.doi.org/10.2337/diacare.28.11.2686] [PMID: 16249540]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy