[1]
Ekpo, E.U.; Brennan, P.C.; Mello-Thoms, C.; McEntee, M.F. Relationship between breast density and selective estrogen-receptor modulators, aromatase inhibitors, physical activity, and diet: A systematic review. Integr. Cancer Ther., 2016, 15(2), 127-144. [http://dx.doi.org/10.1177/1534735416628343]. [PMID: 27130722].
[2]
Advani, P.; Moreno-Aspitia, A. Current strategies for the prevention of breast cancer. Breast Cancer (Dove Med. Press), 2014, 6, 59-71. [PMID: 24833917].
[3]
Spillane, A.J. What is new in the surgical management and prevention of breast cancer? Med. J. Aust., 2016, 204(8), 311-314. [http://dx.doi.org/10.5694/mja16.00002]. [PMID: 27125805].
[4]
Vorobiof, D.A. Recent advances in the medical treatment of breast cancer. F1000 Res., 2016, 5, 2786. [http://dx.doi.org/10.12688/f1000research.9619.1]. [PMID: 27990275].
[5]
Jia, M.; Dahlman-Wright, K.; Gustafsson, J.A. Estrogen receptor alpha and beta in health and disease. Best Pract. Res. Clin. Endocrinol. Metab., 2015, 29(4), 557-568. [http://dx.doi.org/10.1016/j.beem.2015.04.008]. [PMID: 26303083].
[6]
Liang, J.; Shang, Y. Estrogen and cancer. Annu. Rev. Physiol., 2013, 75, 225-240. [http://dx.doi.org/10.1146/annurev-physiol-030212-183708]. [PMID: 23043248].
[7]
Mann, M.; Cortez, V.; Vadlamudi, R.K. Epigenetics of estrogen receptor signaling: role in hormonal cancer progression and therapy. Cancers (Basel), 2011, 3(3), 1691-1707. [http://dx.doi.org/10.3390/cancers3021691]. [PMID: 21814622].
[8]
Awan, A.; Esfahani, K. Endocrine therapy for breast cancer in the primary care setting. Curr. Oncol., 2018, 25(4), 285-291. [http://dx.doi.org/10.3747/co.25.4139]. [PMID: 30111969].
[9]
Lumachi, F.; Santeufemia, D.A.; Basso, S.M. Current medical treatment of estrogen receptor-positive breast cancer. World J. Biol. Chem., 2015, 6(3), 231-239. [http://dx.doi.org/10.4331/wjbc.v6.i3.231]. [PMID: 26322178].
[10]
Muluhngwi, P.; Klinge, C.M. Roles for miRNAs in endocrine resistance in breast cancer. Endocr. Relat. Cancer, 2015, 22(5), R279-R300. [http://dx.doi.org/10.1530/ERC-15-0355]. [PMID: 26346768].
[11]
Luqmani, Y.A.; Alam-Eldin, N. Overcoming resistance to endocrine therapy in breast cancer: New approaches to a nagging problem. Med. Princ. Pract., 2016, 25(Suppl. 2), 28-40. [http://dx.doi.org/10.1159/000444451]. [PMID: 26849149].
[12]
Maximov, P.Y.; Lee, T.M.; Jordan, V.C. The discovery and development of selective estrogen receptor modulators (SERMs) for clinical practice. Curr. Clin. Pharmacol., 2013, 8(2), 135-155. [http://dx.doi.org/10.2174/1574884711308020006]. [PMID: 23062036].
[13]
Wardell, S.E.; Nelson, E.R.; McDonnell, D.P. From empirical to mechanism-based discovery of clinically useful selective estrogen receptor modulators (SERMs). Steroids, 2014, 90, 30-38. [http://dx.doi.org/10.1016/j.steroids.2014.07.013]. [PMID: 25084324].
[14]
Kaklamani, V.G.; Gradishar, W.J. Endocrine therapy in the current management of postmenopausal estrogen receptor-positive metastatic breast cancer. Oncologist, 2017, 22(5), 507-517. [http://dx.doi.org/10.1634/theoncologist.2015-0464]. [PMID: 28314835].
[15]
Burstein, H.J.; Temin, S.; Anderson, H.; Buchholz, T.A.; Davidson, N.E.; Gelmon, K.E.; Giordano, S.H.; Hudis, C.A.; Rowden, D.; Solky, A.J.; Stearns, V.; Winer, E.P.; Griggs, J.J. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: american society of clinical oncology clinical practice guideline focused update. J. Clin. Oncol., 2014, 32(21), 2255-2269. [http://dx.doi.org/10.1200/JCO.2013.54.2258]. [PMID: 24868023].
[16]
Vogel, V.G. Ongoing data from the breast cancer prevention trials: opportunity for breast cancer risk reduction. BMC Med., 2015, 13, 63. [http://dx.doi.org/10.1186/s12916-015-0300-0]. [PMID: 25888872].
[17]
Jameera Begam, A.; Jubie, S.; Nanjan, M.J. Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review. Bioorg. Chem., 2017, 71, 257-274. [http://dx.doi.org/10.1016/j.bioorg.2017.02.011]. [PMID: 28274582].
[18]
Godefa, Y.; Debeb, B.A.B. Review on the role of estrogen receptors in breast cancer. Int. J. Pharm. Sci. Res., 2015, 6(8), 1100-1104.
[19]
Deitcher, S.R.; Gomes, M.P. The risk of venous thromboembolic disease associated with adjuvant hormone therapy for breast carcinoma: A systematic review. Cancer, 2004, 101(3), 439-449. [http://dx.doi.org/10.1002/cncr.20347]. [PMID: 15274057].
[20]
Lukong, K.E. Understanding breast cancer-The long and winding road. BBA Clin., 2017, 7, 64-77. [http://dx.doi.org/10.1016/j.bbacli.2017.01.001]. [PMID: 28194329].
[21]
Patel, H.K.; Bihani, T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Ther., 2018, 186, 1-24. [http://dx.doi.org/10.1016/j.pharmthera.2017.12.012]. [PMID: 29289555].
[22]
Fan, W.; Chang, J.; Fu, P. Endocrine therapy resistance in breast cancer: current status, possible mechanisms and overcoming strategies. Future Med. Chem., 2015, 7(12), 1511-1519. [http://dx.doi.org/10.4155/fmc.15.93]. [PMID: 26306654].
[23]
Yue, W.; Fan, P.; Wang, J.; Li, Y.; Santen, R.J. Mechanisms of acquired resistance to endocrine therapy in hormone-dependent breast cancer cells. J. Steroid Biochem. Mol. Biol., 2007, 106(1-5), 102-110. [http://dx.doi.org/10.1016/j.jsbmb.2007.05.008]. [PMID: 17616457].
[24]
Chuffa, L.G.; Lupi-Júnior, L.A.; Costa, A.B.; Amorim, J.P.; Seiva, F.R. The role of sex hormones and steroid receptors on female reproductive cancers. Steroids, 2017, 118, 93-108. [http://dx.doi.org/10.1016/j.steroids.2016.12.011]. [PMID: 28041951].
[25]
Gutierrez, M.C.; Detre, S.; Johnston, S.; Mohsin, S.K.; Shou, J.; Allred, D.C.; Schiff, R.; Osborne, C.K.; Dowsett, M. Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J. Clin. Oncol., 2005, 23(11), 2469-2476. [http://dx.doi.org/10.1200/JCO.2005.01.172]. [PMID: 15753463].
[26]
Gottardis, M.M.; Robinson, S.P.; Satyaswaroop, P.G.; Jordan, V.C. Contrasting actions of tamoxifen on endometrial and breast tumor growth in the athymic mouse. Cancer Res., 1988, 48(4), 812-815. [PMID: 3338079].
[27]
Martinkovich, S.; Shah, D.; Planey, S.L.; Arnott, J.A. Selective estrogen receptor modulators: Tissue specificity and clinical utility. Clin. Interv. Aging, 2014, 9, 1437-1452. [PMID: 25210448].
[28]
Farzaneh, S.; Zarghi, A. Estrogen receptor ligands: A review (2013-2015). Sci. Pharm., 2016, 84(3), 409-427. [http://dx.doi.org/10.3390/scipharm84030409]. [PMID: 28117309].
[29]
Katzenellenbogen, B.S.; Katzenellenbogen, J.A. Estrogen receptor transcription and transactivation: Estrogen receptor alpha and estrogen receptor beta: regulation by selective estrogen receptor modulators and importance in breast cancer. Breast Cancer Res., 2000, 2(5), 335-344. [http://dx.doi.org/10.1186/bcr78]. [PMID: 11250726].
[30]
Sun, A.; Moore, T.W.; Gunther, J.R.; Kim, M.S.; Rhoden, E.; Du, Y.; Fu, H.; Snyder, J.P.; Katzenellenbogen, J.A. Discovering small-molecule estrogen receptor α/coactivator binding inhibitors: high-throughput screening, ligand development, and models for enhanced potency. ChemMedChem, 2011, 6(4), 654-666. [http://dx.doi.org/10.1002/cmdc.201000507]. [PMID: 21365764].
[31]
Reid, G.S.D.; Kos, M.; Gannon, F. Human estrogen receptor-a: Regulation by synthesis,modification and degradation. Cell. Mol. Life Sci., 2002, 59, 821-831. [http://dx.doi.org/10.1007/s00018-002-8470-2]. [PMID: 12088282].
[32]
Jensen, E.V.; Jordan, V.C. The estrogen receptor: A model for molecular medicine. Clin. Cancer Res., 2003, 9(6), 1980-1989. [PMID: 12796359].
[33]
Ng, H.W.; Perkins, R.; Tong, W.; Hong, H. Versatility or promiscuity: The estrogen receptors, control of ligand selectivity and an update on subtype selective ligands. Int. J. Environ. Res. Public Health, 2014, 11(9), 8709-8742. [http://dx.doi.org/10.3390/ijerph110908709]. [PMID: 25162709].
[34]
Jordan, V.C. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 2. Clinical considerations and new agents. J. Med. Chem., 2003, 46(7), 1081-1111. [http://dx.doi.org/10.1021/jm020450x]. [PMID: 12646017].
[35]
Craig Jordan, V.; McDaniel, R.; Agboke, F.; Maximov, P.Y. The evolution of nonsteroidal antiestrogens to become selective estrogen receptor modulators. Steroids, 2014, 90, 3-12. [http://dx.doi.org/10.1016/j.steroids.2014.06.009]. [PMID: 24949934].
[36]
Swaby, R.F.; Sharma, C.G.; Jordan, V.C. SERMs for the treatment and prevention of breast cancer. Rev. Endocr. Metab. Disord., 2007, 8(3), 229-239. [http://dx.doi.org/10.1007/s11154-007-9034-4]. [PMID: 17440819].
[37]
Committee on Gynecologic Practice Tamoxifen and Uterine Cancer. American College of Obstetricians and Gynecologists, 2014, 123(6), 1395-1397.
[38]
Gotfredsen, A.; Christiansen, C.; Palshof, T. The effect of tamoxifen on bone mineral content in premenopausal women with breast cancer. Cancer, 1984, 53(4), 853-857. [http://dx.doi.org/10.1002/1097-0142(19840215)53:4<853:AID-CNCR2820530406>3.0.CO;2-M]. [PMID: 6692287].
[39]
Love, R.R.; Mazess, R.B.; Barden, H.S.; Epstein, S.; Newcomb, P.A.; Jordan, V.C.; Carbone, P.P.; DeMets, D.L. Effects of yamoxifen on bone mineraldensity in postmenopausal women with breast cancer. N. Engl. J. Med., 1992, 326(13), 852-856. [http://dx.doi.org/10.1056/NEJM199203263261302]. [PMID: 1542321].
[40]
Meiser, B.; Wong, W.K.T.; Peate, M.; Julian-Reynier, C.; Kirk, J.; Mitchell, G. Motivators and barriers of tamoxifen use as risk-reducing medication amongst women at increased breast cancer risk: A systematic literature review. Hered. Cancer Clin. Pract., 2017, 15, 14. [http://dx.doi.org/10.1186/s13053-017-0075-8]. [PMID: 28943990].
[41]
Xu, B.; Lovre, D.; Mauvais-Jarvis, F. The effect of selective estrogen receptor modulators on type 2 diabetes onset in women: Basic and clinical insights. J. Diabetes Complications, 2017, 31(4), 773-779. [http://dx.doi.org/10.1016/j.jdiacomp.2016.12.010]. [PMID: 28185712].
[43]
Wallace, O.B.; Lauwers, K.S.; Jones, S.A.; Dodge, J.A. Tetrahydroquinoline-based selective estrogen receptor modulators (SERMs). Bioorg. Med. Chem. Lett., 2003, 13(11), 1907-1910. [http://dx.doi.org/10.1016/S0960-894X(03)00306-8]. [PMID: 12749895].
[44]
Wang, X.; Chen, X.; Yang, X.; Gao, W.; He, B.; Dai, W.; Zhang, H.; Wang, X.; Wang, J.; Zhang, X.; Dai, Z.; Zhang, Q. A nanomedicine based combination therapy based on QLPVM peptide functionalized liposomal tamoxifen and doxorubicin against Luminal A breast cancer. Nanomedicine (Lond.), 2016, 12(2), 387-397. [http://dx.doi.org/10.1016/j.nano.2015.12.360]. [PMID: 26711969].
[45]
Kaur, G.; Mahajan, M.P.; Pandey, M.K.; Singh, P.; Ramisetti, S.R.; Sharma, A.K. Design, synthesis, and anti-breast cancer evaluation of new triarylethylene analogs bearing short alkyl- and polar amino-/amido-ethyl chains. Bioorg. Med. Chem. Lett., 2016, 26(8), 1963-1969. [http://dx.doi.org/10.1016/j.bmcl.2016.03.008]. [PMID: 26972118].
[46]
Misawa, T.; Tanaka, K.; Demizu, Y.; Kurihara, M. Efficient synthesis of a multi-substituted diphenylmethane skeleton as a steroid mimetic. Bioorg. Med. Chem. Lett., 2017, 27(11), 2590-2593. [http://dx.doi.org/10.1016/j.bmcl.2017.03.066]. [PMID: 28400239].
[47]
Luo, G.; Chen, M.; Lyu, W.; Zhao, R.; Xu, Q.; You, Q.; Xiang, H. Design, synthesis, biological evaluation and molecular docking studies of novel 3-aryl-4-anilino-2H-chromen-2-one derivatives targeting ERα as anti-breast cancer agents. Bioorg. Med. Chem. Lett., 2017, 27(12), 2668-2673. [http://dx.doi.org/10.1016/j.bmcl.2017.04.029]. [PMID: 28460819].
[48]
Jha, A.; Yadav, Y.; Naidu, A.B.; Rao, V.K.; Kumar, A.; Parmar, V.S.; MacDonald, W.J.; Too, C.K.; Balzarini, J.; Barden, C.J.; Cameron, T.S. Design, synthesis and bioevaluation of novel 6-(4-Hydroxypiperidino)naphthalen-2-ol-based potential selective estrogen receptor modulators for breast cancer. Eur. J. Med. Chem., 2015, 92, 103-114. [http://dx.doi.org/10.1016/j.ejmech.2014.12.037]. [PMID: 25544690].
[49]
Zhang, C.; Zhong, Q.; Zhang, Q.; Zheng, S.; Miele, L.; Wang, G. Boronic prodrug of endoxifen as an effective hormone therapy for breast cancer. Breast Cancer Res. Treat., 2015, 152(2), 283-291. [http://dx.doi.org/10.1007/s10549-015-3461-9]. [PMID: 26071758].
[50]
Kojima, T.; Ogawa, T.; Kitao, S.; Sato, M.; Oda, A.; Ohta, K.; Endo, Y. Estrogenic activity of bis(4-hydroxyphenyl)methanes with cyclic hydrophobic structure. Bioorg. Med. Chem., 2015, 23(21), 6900-6911. [http://dx.doi.org/10.1016/j.bmc.2015.09.046]. [PMID: 26462053].
[51]
Torikai, K.; Koga, R.; Liu, X.; Umehara, K.; Kitano, T.; Watanabe, K.; Oishi, T.; Noguchi, H.; Shimohigashi, Y. Design and synthesis of benzoacridines as estrogenic and anti-estrogenic agents. Bioorg. Med. Chem., 2017, 25(20), 5216-5237. [http://dx.doi.org/10.1016/j.bmc.2017.07.067]. [PMID: 28882502].
[52]
Singla, R.; Gupta, K.B.; Upadhyay, S.; Dhiman, M.; Jaitak, V. Design, synthesis and biological evaluation of novel indole-xanthendione hybrids as selective estrogen receptor modulators. Bioorg. Med. Chem., 2018, 26(1), 266-277. [http://dx.doi.org/10.1016/j.bmc.2017.11.040]. [PMID: 29198894].
[53]
Zhou, H.B.; Nettles, K.W.; Bruning, J.B.; Kim, Y.; Joachimiak, A.; Sharma, S.; Carlson, K.E.; Stossi, F.; Katzenellenbogen, B.S.; Greene, G.L.; Katzenellenbogen, J.A. Elemental isomerism: a boron-nitrogen surrogate for a carbon-carbon double bond increases the chemical diversity of estrogen receptor ligands. Chem. Biol., 2007, 14(6), 659-669. [http://dx.doi.org/10.1016/j.chembiol.2007.04.009]. [PMID: 17584613].
[54]
Xiong, R.; Patel, H.K.; Gutgesell, L.M.; Zhao, J.; Delgado-Rivera, L.; Pham, T.N.D.; Zhao, H.; Carlson, K.; Martin, T.; Katzenellenbogen, J.A.; Moore, T.W.; Tonetti, D.A.; Thatcher, G.R.J. Selective human estrogen receptor partial agonists (ShERPAs) for tamoxifen-resistant breast cancer. J. Med. Chem., 2016, 59(1), 219-237. [http://dx.doi.org/10.1021/acs.jmedchem.5b01276]. [PMID: 26681208].
[55]
Keely, N.O.; Carr, M.; Yassin, B.; Ana, G.; Lloyd, D.G.; Zisterer, D.; Meegan, M.J. Design, synthesis and biochemical evaluation of novel selective estrogen receptor ligand conjugates incorporating an endoxifen-combretastatin hybrid scaffold. Biomedicines, 2016, 4(3)E15 [http://dx.doi.org/10.3390/biomedicines4030015]. [PMID: 28536383].
[56]
Bhatnagar, S.; Soni, A.; Kaushik, S.; Rikhi, M.; Santhoshkumar, T.R.; Jayaram, B. Nonsteroidal estrogen receptor isoform-selective biphenyls. Chem. Biol. Drug Des., 2018, 91(2), 620-630. [http://dx.doi.org/10.1111/cbdd.13126]. [PMID: 29052968].
[57]
Kim, H.I.; Kim, T.; Kim, J.E.; Lee, J.; Heo, J.; Lee, N.R.; Kim, N.J.; Inn, K.S. NJK14013, a novel synthetic estrogen receptor-α agonist, exhibits estrogen receptor-independent, tumor cell-specific cytotoxicity. Int. J. Oncol., 2015, 47(1), 280-286. [http://dx.doi.org/10.3892/ijo.2015.3002]. [PMID: 25964080].
[58]
Zhou, H-B.; Sheng, S.; Compton, D.R.; Kim, Y.; Joachimiak, A.; Sharma, S.; Carlson, K.E.; Katzenellenbogen, B.S.; Nettles, K.W.; Greene, G.L.; Katzenellenbogen, J.A. Structure-guided optimization of estrogen receptor binding affinity and antagonist potency of pyrazolopyrimidines with basic side chains. J. Med. Chem., 2007, 50(2), 399-403. [http://dx.doi.org/10.1021/jm061035y]. [PMID: 17228884].
[59]
Min, J.; Wang, P.; Srinivasan, S.; Nwachukwu, J.C.; Guo, P.; Huang, M.; Carlson, K.E.; Katzenellenbogen, J.A.; Nettles, K.W.; Zhou, H.B. Thiophene-core estrogen receptor ligands having superagonist activity. J. Med. Chem., 2013, 56(8), 3346-3366. [http://dx.doi.org/10.1021/jm400157e]. [PMID: 23586645].
[60]
Liao, Z.Q.; Dong, C.; Carlson, K.E.; Srinivasan, S.; Nwachukwu, J.C.; Chesnut, R.W.; Sharma, A.; Nettles, K.W.; Katzenellenbogen, J.A.; Zhou, H.B. Triaryl-substituted Schiff bases are high-affinity subtype-selective ligands for the estrogen receptor. J. Med. Chem., 2014, 57(8), 3532-3545. [http://dx.doi.org/10.1021/jm500268j]. [PMID: 24708493].
[61]
Wang, L.; Wang, Y.; Du, H.; Jiang, Y.; Tang, Z.; Liu, H.; Xiang, H.; Xiao, H. Impact of ER520, a candidate of selective estrogen receptor modulators, on in vitro cell growth, migration, invasion, angiogenesis and in vivo tumor xenograft of human breast cancer cells. Cancer Chemother. Pharmacol., 2015, 76(6), 1247-1257. [http://dx.doi.org/10.1007/s00280-015-2838-0]. [PMID: 26464351].
[62]
Balasubramanyam, P.; Ashraf-Khorassani, M.; Josan, J.S. Separation of stereoisomers of 7-oxa-bicyclo[2.2.1]heptene sulfonate (OBHS), a selective estrogen receptor modulator (SERM), via chiral stationary phases using SFC/UV and SFC/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1092, 279-285. [http://dx.doi.org/10.1016/j.jchromb.2018.06.019]. [PMID: 29933221].
[63]
Sharma, N.; Carlson, K.E.; Nwachukwu, J.C.; Srinivasan, S.; Sharma, A.; Nettles, K.W.; Katzenellenbogen, J.A. Exploring the structural compliancy versus specificity of the estrogen receptor using isomeric three-dimensional ligands. ACS Chem. Biol., 2017, 12(2), 494-503. [http://dx.doi.org/10.1021/acschembio.6b00918]. [PMID: 28032978].
[64]
Zheng, Y.; Wang, C.; Li, C.; Qiao, J.; Zhang, F.; Huang, M.; Ren, W.; Dong, C.; Huang, J.; Zhou, H.B. Discovery of novel SERMs with a ferrocenyl entity based on the oxabicyclo[2.2.1]heptene scaffold and evaluation of their antiproliferative effects in breast cancer cells. Org. Biomol. Chem., 2012, 10(48), 9689-9699. [http://dx.doi.org/10.1039/c2ob26226f]. [PMID: 23149805].
[65]
Carr, M.; Knox, A. J.; Lloyd, D. G.; Zisterer, D. M.; Meegan, M. J. Development of the beta-lactam type molecular scaffold for selective estrogen receptor alpha modulator action: synthesis and cytotoxic effects in MCF-7 breast cancer cells. J. Enzyme Inhib. Med. Chem, 2016, 31(sup3). , 117-130.
[66]
Wang, P.; Min, J.; Nwachukwu, J.C.; Cavett, V.; Carlson, K.E.; Guo, P.; Zhu, M.; Zheng, Y.; Dong, C.; Katzenellenbogen, J.A.; Nettles, K.W.; Zhou, H.B. Identification and structure-activity relationships of a novel series of estrogen receptor ligands based on 7-thiabicyclo[2.2.1]hept-2-ene-7-oxide. J. Med. Chem., 2012, 55(5), 2324-2341. [http://dx.doi.org/10.1021/jm201556r]. [PMID: 22283328].
[67]
Ning, W.; Hu, Z.; Tang, C.; Yang, L.; Zhang, S.; Dong, C.; Huang, J.; Zhou, H.B. Novel hybrid conjugates with dual suppression of estrogenic and inflammatory activities display significantly improved potency against breast cancer. J. Med. Chem., 2018, 61(18), 8155-8173. [http://dx.doi.org/10.1021/acs.jmedchem.8b00224]. [PMID: 30053783].
[68]
Scherbakov, A.M.; Komkov, A.V.; Komendantova, A.S.; Yastrebova, M.A.; Andreeva, O.E.; Shirinian, V.Z.; Hajra, A.; Zavarzin, I.V.; Volkova, Y.A. Steroidal pyrimidines and dihydrotriazines as novel classes of anticancer agents against hormone-dependent breast cancer cells. Front. Pharmacol., 2018, 8, 979. [http://dx.doi.org/10.3389/fphar.2017.00979]. [PMID: 29375380].
[69]
Liu, J.T.; Do, T.J.; Simmons, C.J.; Lynch, J.C.; Gu, W.; Ma, Z.X.; Xu, W.; Tang, W. Total synthesis of diptoindonesin G and its analogues as selective modulators of estrogen receptors. Org. Biomol. Chem., 2016, 14(38), 8927-8930. [http://dx.doi.org/10.1039/C6OB01657J]. [PMID: 27714255].
[70]
Li, S.; Wang, H.; Hong, L.; Liu, W.; Huang, F.; Wang, J.; Wang, P.; Zhang, X.; Zhou, J. Cryptotanshinone inhibits breast cancer cell growth by suppressing estrogen receptor signaling. Cancer Biol. Ther., 2015, 16(1), 176-184. [http://dx.doi.org/10.4161/15384047.2014.962960]. [PMID: 25482936].
[71]
Boonmuen, N.; Gong, P.; Ali, Z.; Chittiboyina, A.G.; Khan, I.; Doerge, D.R.; Helferich, W.G.; Carlson, K.E.; Martin, T.; Piyachaturawat, P.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Licorice root components in dietary supplements are selective estrogen receptor modulators with a spectrum of estrogenic and anti-estrogenic activities. Steroids, 2016, 105, 42-49. [http://dx.doi.org/10.1016/j.steroids.2015.11.006]. [PMID: 26631549].
[72]
Zhang, T.; Zhong, S.; Hou, L.; Li, T.; Xing, X.; Guan, T.; Zhang, J.; Wang, Y. Estrogenic properties of coumarins and meroterpene from the fruits of Cullen corylifolium: Experimental and computational studies. Phytochemistry, 2018, 152, 148-153. [http://dx.doi.org/10.1016/j.phytochem.2018.05.010]. [PMID: 29772410].
[73]
van de Schans, M.G.; Vincken, J.P.; de Waard, P.; Hamers, A.R.; Bovee, T.F.; Gruppen, H. Glyceollins and dehydroglyceollins isolated from soybean act as SERMs and ER subtype-selective phytoestrogens. J. Steroid Biochem. Mol. Biol., 2016, 156, 53-63. [http://dx.doi.org/10.1016/j.jsbmb.2015.11.020]. [PMID: 26655113].
[74]
Abdullah, A.S.; Mohammed, A.S.; Rasedee, A.; Mirghani, M.E. Oxidative stress-mediated apoptosis induced by ethanolic mango seed extract in cultured estrogen receptor positive breast cancer MCF-7 cells. Int. J. Mol. Sci., 2015, 16(2), 3528-3536. [http://dx.doi.org/10.3390/ijms16023528]. [PMID: 25664859].
[75]
Wijayaratne, A.L.; McDonnell, D.P. The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J. Biol. Chem., 2001, 276(38), 35684-35692. [http://dx.doi.org/10.1074/jbc.M101097200]. [PMID: 11473106].
[76]
Robertson, J.F.; Osborne, C.K.; Howell, A.; Jones, S.E.; Mauriac, L.; Ellis, M.; Kleeberg, U.R.; Come, S.E.; Vergote, I.; Gertler, S.; Buzdar, A.; Webster, A.; Morris, C. Fulvestrant versus anastrozole for the treatment of advanced breast carcinoma in postmenopausal women: A prospective combined analysis of two multicenter trials. Cancer, 2003, 98(2), 229-238. [http://dx.doi.org/10.1002/cncr.11468]. [PMID: 12872340].
[77]
Callis, R.; Rabow, A.; Tonge, M.; Bradbury, R.; Challinor, M.; Roberts, K.; Jones, K.; Walker, G. A Screening assay cascade to identify and characterize novel selective estrogen receptor downregulators (SERDs). J. Biomol. Screen., 2015, 20(6), 748-759. [http://dx.doi.org/10.1177/1087057115580298]. [PMID: 25851036].
[78]
Franco, S.; Perez, A.; Tan-Chiu, E.; Frankel, C.; Vogel, C. Fulvestrant (Faslodex (R)) demonstrates clinical benefit in heavily pretreated postmenopausal women with advanced breast cancer: a single-center experience. Breast Cancer Res. Treat., 2003, 82, S105-S105.
[79]
Osborne, C.K.; Pippen, J.; Jones, S.E.; Parker, L.M.; Ellis, M.; Come, S.; Gertler, S.Z.; May, J.T.; Burton, G.; Dimery, I.; Webster, A.; Morris, C.; Elledge, R.; Buzdar, A. Double-blind, randomized trial comparing the efficacy and tolerability of fulvestrant versus anastrozole in postmenopausal women with advanced breast cancer progressing on prior endocrine therapy: Results of a North American trial. J. Clin. Oncol., 2002, 20(16), 3386-3395. [http://dx.doi.org/10.1200/JCO.2002.10.058]. [PMID: 12177098].
[80]
Bross, P.F.; Baird, A.; Chen, G.; Jee, J.M.; Lostritto, R.T.; Morse, D.E.; Rosario, L.A.; Williams, G.M.; Yang, P.; Rahman, A.; Williams, G.; Pazdur, R. Fulvestrant in postmenopausal women with advanced breast cancer. Clin. Cancer Res., 2003, 9(12), 4309-4317. [PMID: 14555500].
[81]
Mauriac, L.; Pippen, J.E.; Quaresma Albano, J.; Gertler, S.Z.; Osborne, C.K. Fulvestrant (Faslodex) versus anastrozole for the second-line treatment of advanced breast cancer in subgroups of postmenopausal women with visceral and non-visceral metastases: combined results from two multicentre trials. Eur. J. Cancer, 2003, 39(9), 1228-1233. [http://dx.doi.org/10.1016/S0959-8049(03)00199-0]. [PMID: 12763210].
[82]
Robertson, J.F. Fulvestrant (Faslodex) -- How to make a good drug better. Oncologist, 2007, 12(7), 774-784. [http://dx.doi.org/10.1634/theoncologist.12-7-774]. [PMID: 17673609].
[83]
Lai, A.; Kahraman, M.; Govek, S.; Nagasawa, J.; Bonnefous, C.; Julien, J.; Douglas, K.; Sensintaffar, J.; Lu, N.; Lee, K.J.; Aparicio, A.; Kaufman, J.; Qian, J.; Shao, G.; Prudente, R.; Moon, M.J.; Joseph, J.D.; Darimont, B.; Brigham, D.; Grillot, K.; Heyman, R.; Rix, P.J.; Hager, J.H.; Smith, N.D. Identification of GDC-0810 (ARN-810), An orally bioavailable selective estrogen receptor degrader (SERD) that demonstrates robust activity in tamoxifen-resistant breast cancer xenografts. J. Med. Chem., 2015, 58(12), 4888-4904. [http://dx.doi.org/10.1021/acs.jmedchem.5b00054]. [PMID: 25879485].
[84]
Suzuki, N.; Liu, X.; Laxmi, Y.R.; Okamoto, K.; Kim, H.J.; Zhang, G.; Chen, J.J.; Okamoto, Y.; Shibutani, S. Anti-breast cancer potential of SS5020, a novel benzopyran antiestrogen. Int. J. Cancer, 2011, 128(4), 974-982. [http://dx.doi.org/10.1002/ijc.25659]. [PMID: 20824696].
[85]
McDonnell, D.P.; Wardell, S.E.; Norris, J.D. Oral selective estrogen receptor downregulators (SERDs), A breakthrough endocrine therapy for breast cancer. J. Med. Chem., 2015, 58(12), 4883-4887. [http://dx.doi.org/10.1021/acs.jmedchem.5b00760]. [PMID: 26039356].
[86]
Osborne, C.K.; Wakeling, A.; Nicholson, R.I. Fulvestrant: An oestrogen receptor antagonist with a novel mechanism of action. Br. J. Cancer, 2004, 90(Suppl. 1), S2-S6. [http://dx.doi.org/10.1038/sj.bjc.6601629]. [PMID: 15094757].
[87]
Shoda, T.; Kato, M.; Harada, R.; Fujisato, T.; Okuhira, K.; Demizu, Y.; Inoue, H.; Naito, M.; Kurihara, M. Synthesis and evaluation of tamoxifen derivatives with a long alkyl side chain as selective estrogen receptor down-regulators. Bioorg. Med. Chem., 2015, 23(13), 3091-3096. [http://dx.doi.org/10.1016/j.bmc.2015.05.002]. [PMID: 26003343].
[88]
Shoda, T.; Kato, M.; Fujisato, T.; Misawa, T.; Demizu, Y.; Inoue, H.; Naito, M.; Kurihara, M. Synthesis and evaluation of raloxifene derivatives as a selective estrogen receptor down-regulator. Bioorg. Med. Chem., 2016, 24(13), 2914-2919. [http://dx.doi.org/10.1016/j.bmc.2016.04.068]. [PMID: 27185013].
[89]
Degorce, S.L.; Bailey, A.; Callis, R.; De Savi, C.; Ducray, R.; Lamont, G.; MacFaul, P.; Maudet, M.; Martin, S.; Morgentin, R.; Norman, R.A.; Peru, A.; Pink, J.H.; Plé, P.A.; Roberts, B.; Scott, J.S. Investigation of (E)-3-[4-(2-Oxo-3-aryl-chromen-4-yl)oxy-phenyl]acrylic acids as oral selective estrogen receptor down-regulators. J. Med. Chem., 2015, 58(8), 3522-3533. [http://dx.doi.org/10.1021/acs.jmedchem.5b00066]. [PMID: 25790336].
[90]
Lim, N.K.; Cravillion, T.; Savage, S.; McClory, A.; Han, C.; Zhang, H.; DiPasquale, A.; Gosselin, F. Synthesis of a selective estrogen receptor degrader via a stereospecific elimination approach. Org. Lett., 2018, 20(4), 1114-1117. [http://dx.doi.org/10.1021/acs.orglett.8b00035]. [PMID: 29397753].
[91]
De Savi, C.; Bradbury, R.H.; Rabow, A.A.; Norman, R.A.; de Almeida, C.; Andrews, D.M.; Ballard, P.; Buttar, D.; Callis, R.J.; Currie, G.S.; Curwen, J.O.; Davies, C.D.; Donald, C.S.; Feron, L.J.; Gingell, H.; Glossop, S.C.; Hayter, B.R.; Hussain, S.; Karoutchi, G.; Lamont, S.G.; MacFaul, P.; Moss, T.A.; Pearson, S.E.; Tonge, M.; Walker, G.E.; Weir, H.M.; Wilson, Z. Optimization of a novel binding motif to (E)-3-(3,5-Difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (AZD9496), A potent and orally bioavailable selective estrogen receptor downregulator and antagonist. J. Med. Chem., 2015, 58(20), 8128-8140. [http://dx.doi.org/10.1021/acs.jmedchem.5b00984]. [PMID: 26407012].
[92]
Liu, J.; Zheng, S.; Akerstrom, V.L.; Yuan, C.; Ma, Y.; Zhong, Q.; Zhang, C.; Zhang, Q.; Guo, S.; Ma, P.; Skripnikova, E.V.; Bratton, M.R.; Pannuti, A.; Miele, L.; Wiese, T.E.; Wang, G. Fulvestrant-3 boronic acid (ZB716): An orally bioavailable selective estrogen receptor downregulator (SERD). J. Med. Chem., 2016, 59(17), 8134-8140. [http://dx.doi.org/10.1021/acs.jmedchem.6b00753]. [PMID: 27529700].
[93]
Xiong, R.; Zhao, J.; Gutgesell, L.M.; Wang, Y.; Lee, S.; Karumudi, B.; Zhao, H.; Lu, Y.; Tonetti, D.A.; Thatcher, G.R. Novel selective estrogen receptor downregulators (SERDs) developed against treatment-resistant breast cancer. J. Med. Chem., 2017, 60(4), 1325-1342. [http://dx.doi.org/10.1021/acs.jmedchem.6b01355]. [PMID: 28117994].
[94]
Dragovich, P.S.; Blake, R.A.; Chen, C.; Chen, J.; Chuh, J.; den Besten, W.; Fan, F.; Fourie, A.; Hartman, S.J.; He, C.; He, J.; Ingalla, E.R.; Kozak, K.R.; Leong, S.R.; Lu, J.; Ma, Y.; Meng, L.; Nannini, M.; Oeh, J.; Ohri, R.; Lewis Phillips, G.; Pillow, T.H.; Rowntree, R.K.; Sampath, D.; Vandlen, R.; Vollmar, B.; Wai, J.; Wertz, I.E.; Xu, K.; Xu, Z.; Zhang, D. Conjugation of indoles to antibodies through a novel self-immolating linker. Chemistry, 2018, 24(19), 4830-4834. [http://dx.doi.org/10.1002/chem.201800859]. [PMID: 29493023].
[95]
Wardell, S.E.; Nelson, E.R.; Chao, C.A.; Alley, H.M.; McDonnell, D.P. Evaluation of the pharmacological activities of RAD1901, a selective estrogen receptor degrader. Endocr. Relat. Cancer, 2015, 22(5), 713-724. [http://dx.doi.org/10.1530/ERC-15-0287]. [PMID: 26162914].
[96]
Fanning, S.W.; Hodges-Gallagher, L.; Myles, D.C.; Sun, R.; Fowler, C.E.; Plant, I.N.; Green, B.D.; Harmon, C.L.; Greene, G.L.; Kushner, P.J. Specific stereochemistry of OP-1074 disrupts estrogen receptor alpha helix 12 and confers pure antiestrogenic activity. Nat. Commun., 2018, 9(1), 2368. [http://dx.doi.org/10.1038/s41467-018-04413-3]. [PMID: 29915250].
[97]
Akhtar, M.; Wright, J.N.; Lee-Robichaud, P. A review of mechanistic studies on aromatase (CYP19) and 17α-hydroxylase-17,20-lyase (CYP17). J. Steroid Biochem. Mol. Biol., 2011, 125(1-2), 2-12. [http://dx.doi.org/10.1016/j.jsbmb.2010.11.003]. [PMID: 21094255].
[98]
Amarneh, B.; Corbin, C.J.; Peterson, J.A.; Simpson, E.R.; Graham-Lorence, S. Functional domains of human aromatase cytochrome P450 characterized by linear alignment and site-directed mutagenesis. Mol. Endocrinol., 1993, 7(12), 1617-1624. [PMID: 8145767].
[99]
Harada, N. Aberrant expression of aromatase in breast cancer tissues. J. Steroid Biochem. Mol. Biol., 1997, 61(3-6), 175-184. [http://dx.doi.org/10.1016/S0960-0760(97)80010-6]. [PMID: 9365188].
[100]
Santen, R.J. Introduction to the conference, Aromatase: New perspectives for breast cancer. Cancer Res., 1982, 42(8)(Suppl.), 3268s-3268s. [PMID: 7083183].
[101]
Santen, R.J.; Brodie, H.; Simpson, E.R.; Siiteri, P.K.; Brodie, A. History of aromatase: Saga of an important biological mediator and therapeutic target. Endocr. Rev., 2009, 30(4), 343-375. [http://dx.doi.org/10.1210/er.2008-0016]. [PMID: 19389994].
[102]
Usluogullari, B.; Duvan, C.; Usluogullari, C. Use of aromatase inhibitors in practice of gynecology. J. Ovarian Res., 2015, 8, 4. [http://dx.doi.org/10.1186/s13048-015-0131-9]. [PMID: 25824050].
[103]
Chen, D.; Reierstad, S.; Lu, M.; Lin, Z.; Ishikawa, H.; Bulun, S.E. Regulation of breast cancer-associated aromatase promoters. Cancer Lett., 2009, 273(1), 15-27. [http://dx.doi.org/10.1016/j.canlet.2008.05.038]. [PMID: 18614276].
[104]
Chumsri, S.; Howes, T.; Bao, T.; Sabnis, G.; Brodie, A. Aromatase, aromatase inhibitors, and breast cancer. J. Steroid Biochem. Mol. Biol., 2011, 125(1-2), 13-22. [http://dx.doi.org/10.1016/j.jsbmb.2011.02.001]. [PMID: 21335088].
[105]
Subramanian, A.; Salhab, M.; Mokbel, K. Oestrogen producing enzymes and mammary carcinogenesis: a review. Breast Cancer Res. Treat., 2008, 111(2), 191-202. [http://dx.doi.org/10.1007/s10549-007-9788-0]. [PMID: 17934808].
[106]
Chan, H.J.; Petrossian, K.; Chen, S. Structural and functional characterization of aromatase, estrogen receptor, and their genes in endocrine-responsive and -resistant breast cancer cells. J. Steroid Biochem. Mol. Biol., 2016, 161, 73-83. [http://dx.doi.org/10.1016/j.jsbmb.2015.07.018]. [PMID: 26277097].
[107]
Mokbel, K. The evolving role of aromatase inhibitors in breast cancer. Int. J. Clin. Oncol., 2002, 7(5), 279-283. [PMID: 12402060].
[108]
Early Breast Cancer Trialist Collaborative Group (EBCTCG) Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. Lancet, 2015, 386(10001), 1341-1352. [http://dx.doi.org/10.1016/S0140-6736(15)61074-1]. [PMID: 26211827].
[109]
Geisler, J.; Haynes, B.; Anker, G.; Dowsett, M.; Lønning, P.E. Influence of letrozole and anastrozole on total body aromatization and plasma estrogen levels in postmenopausal breast cancer patients evaluated in a randomized, cross-over study. J. Clin. Oncol., 2002, 20(3), 751-757. [http://dx.doi.org/10.1200/JCO.2002.20.3.751]. [PMID: 11821457].
[110]
Goss, P.E.; Ingle, J.N.; Pritchard, K.I.; Robert, N.J.; Muss, H.; Gralow, J.; Gelmon, K.; Whelan, T.; Strasser-Weippl, K.; Rubin, S.; Sturtz, K.; Wolff, A.C.; Winer, E.; Hudis, C.; Stopeck, A.; Beck, J.T.; Kaur, J.S.; Whelan, K.; Tu, D.; Parulekar, W.R. Extending Aromatase-Inhibitor Adjuvant Therapy to 10 Years. N. Engl. J. Med., 2016, 375(3), 209-219. [http://dx.doi.org/10.1056/NEJMoa1604700]. [PMID: 27264120].
[111]
Sainsbury, R. Aromatase inhibition in the treatment of advanced breast cancer: is there a relationship between potency and clinical efficacy? Br. J. Cancer, 2004, 90(9), 1733-1739. [http://dx.doi.org/10.1038/sj.bjc.6601731]. [PMID: 15150604].
[112]
Ghosh, D.; Lo, J.; Egbuta, C. Recent progress in the discovery of next generation inhibitors of aromatase from the structure-function perspective. J. Med. Chem., 2016, 59(11), 5131-5148. [http://dx.doi.org/10.1021/acs.jmedchem.5b01281]. [PMID: 26689671].
[113]
Zhao, L.M.; Jin, H.S.; Liu, J.; Skaar, T.C.; Ipe, J.; Lv, W.; Flockhart, D.A.; Cushman, M. A new Suzuki synthesis of triphenylethylenes that inhibit aromatase and bind to estrogen receptors α and β. Bioorg. Med. Chem., 2016, 24(21), 5400-5409. [http://dx.doi.org/10.1016/j.bmc.2016.08.064]. [PMID: 27647367].
[114]
Ninomiya, K.; Shibatani, K.; Sueyoshi, M.; Chaipech, S.; Pongpiriyadacha, Y.; Hayakawa, T.; Muraoka, O.; Morikawa, T. Aromatase inhibitory activity of geranylated coumarins, mammeasins C and D, Isolated from the flowers of Mammea siamensis. Chem. Pharm. Bull. (Tokyo), 2016, 64(7), 880-885. [http://dx.doi.org/10.1248/cpb.c16-00218]. [PMID: 27373643].
[115]
Lv, W.; Liu, J.; Skaar, T.C.; O’Neill, E.; Yu, G.; Flockhart, D.A.; Cushman, M. Synthesis of Triphenylethylene Bisphenols as aromatase inhibitors that also modulate estrogen receptors. J. Med. Chem., 2016, 59(1), 157-170. [http://dx.doi.org/10.1021/acs.jmedchem.5b01677]. [PMID: 26704594].
[116]
Niinivehmas, S.; Postila, P.A.; Rauhamäki, S.; Manivannan, E.; Kortet, S.; Ahinko, M.; Huuskonen, P.; Nyberg, N.; Koskimies, P.; Lätti, S.; Multamäki, E.; Juvonen, R.O.; Raunio, H.; Pasanen, M.; Huuskonen, J.; Pentikäinen, O.T. Blocking oestradiol synthesis pathways with potent and selective coumarin derivatives. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 743-754. [http://dx.doi.org/10.1080/14756366.2018.1452919]. [PMID: 29620427].
[117]
Di Matteo, M.; Ammazzalorso, A.; Andreoli, F.; Caffa, I.; De Filippis, B.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Nencioni, A.; Parenti, M.D.; Soncini, D.; Del Rio, A.; Amoroso, R. Synthesis and biological characterization of 3-(imidazol-1-ylmethyl)piperidine sulfonamides as aromatase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(13), 3192-3194. [http://dx.doi.org/10.1016/j.bmcl.2016.04.078]. [PMID: 27161804].
[118]
Blass, B.E.; Iyer, P.; Abou-Gharbia, M.; Childers, W.E.; Gordon, J.C.; Ramanjulu, M.; Morton, G.; Arumugam, P.; Boruwa, J.; Ellingboe, J.; Mitra, S.; Reddy Nimmareddy, R.; Paliwal, S.; Rajasekhar, J.; Shivakumar, S.; Srivastava, P.; Tangirala, R.S.; Venkataramanaiah, K.; Bobbala, R.; Yanamandra, M.; Krishnakanth Reddy, L. Design and synthesis of functionalized piperazin-1yl-(E)-stilbenes as inhibitors of 17α-hydroxylase-C17,20-lyase (Cyp17). Bioorg. Med. Chem. Lett., 2018, 28(13), 2270-2274. [http://dx.doi.org/10.1016/j.bmcl.2018.05.040]. [PMID: 29803730].
[119]
Pingaew, R.; Prachayasittikul, V.; Anuwongcharoen, N.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and molecular docking of N,N′-disubstituted thiourea derivatives as novel aromatase inhibitors. Bioorg. Chem., 2018, 79, 171-178. [http://dx.doi.org/10.1016/j.bioorg.2018.05.002]. [PMID: 29758407].
[120]
Pingaew, R.; Prachayasittikul, V.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and molecular docking of 1,2,3-triazole-based sulfonamides as aromatase inhibitors. Bioorg. Med. Chem., 2015, 23(13), 3472-3480. [http://dx.doi.org/10.1016/j.bmc.2015.04.036]. [PMID: 25934226].
[121]
Abdelsamie, A.S.; van Koppen, C.J.; Bey, E.; Salah, M.; Börger, C.; Siebenbürger, L.; Laschke, M.W.; Menger, M.D.; Frotscher, M. Treatment of estrogen-dependent diseases: Design, synthesis and profiling of a selective 17β-HSD1 inhibitor with sub-nanomolar IC50 for a proof-of-principle study. Eur. J. Med. Chem., 2017, 127, 944-957. [http://dx.doi.org/10.1016/j.ejmech.2016.11.004]. [PMID: 27852458].
[122]
Ghorab, M.M.; Alsaid, M.S.; Samir, N.; Abdel-Latif, G.A.; Soliman, A.M.; Ragab, F.A.; Abou El Ella, D.A. Aromatase inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and molecular modeling studies of novel phenothiazine derivatives carrying sulfonamide moiety as hybrid molecules. Eur. J. Med. Chem., 2017, 134, 304-315. [http://dx.doi.org/10.1016/j.ejmech.2017.04.028]. [PMID: 28427017].
[123]
Pingaew, R.; Mandi, P.; Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, molecular docking, and QSAR study of sulfonamide-based indoles as aromatase inhibitors. Eur. J. Med. Chem., 2018, 143, 1604-1615. [http://dx.doi.org/10.1016/j.ejmech.2017.10.057]. [PMID: 29137864].
[124]
Yi, X.J.; El-Idreesy, T.T.; Eldebss, T.M.; Farag, A.M.; Abdulla, M.M.; Hassan, S.A.; Mabkhot, Y.N. Synthesis, biological evaluation, and molecular docking studies of new pyrazol-3-one derivatives with aromatase inhibition activities. Chem. Biol. Drug Des., 2016, 88(6), 832-843. [http://dx.doi.org/10.1111/cbdd.12812]. [PMID: 27565954].
[126]
Lv, W.; Liu, J.; Skaar, T.C.; Flockhart, D.A.; Cushman, M. Design and synthesis of norendoxifen analogues with dual aromatase inhibitory and estrogen receptor modulatory activities. J. Med. Chem., 2015, 58(6), 2623-2648. [http://dx.doi.org/10.1021/jm501218e]. [PMID: 25751283].
[127]
Bacsa, I.; Herman, B.E.; Jójárt, R.; Herman, K.S.; Wölfling, J.; Schneider, G.; Varga, M.; Tömböly, C.; Rižner, T.L.; Szécsi, M.; Mernyák, E. Synthesis and structure-activity relationships of 2- and/or 4-halogenated 13β- and 13α-estrone derivatives as enzyme inhibitors of estrogen biosynthesis. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1271-1282. [http://dx.doi.org/10.1080/14756366.2018.1490731]. [PMID: 30230387].
[128]
Amaral, C.; Varela, C.L.; Maurício, J.; Sobral, A.F.; Costa, S.C.; Roleira, F.M.F.; Tavares-da-Silva, E.J.; Correia-da-Silva, G.; Teixeira, N. Anti-tumor efficacy of new 7α-substituted androstanes as aromatase inhibitors in hormone-sensitive and resistant breast cancer cells. J. Steroid Biochem. Mol. Biol., 2017, 171, 218-228. [http://dx.doi.org/10.1016/j.jsbmb.2017.04.002]. [PMID: 28396197].
[129]
Nikolić, A.R.; Petri, E.T.; Klisurić, O.R.; Ćelić, A.S.; Jakimov, D.S.; Djurendić, E.A.; Penov Gaši, K.M.; Sakač, M.N. Synthesis and anticancer cell potential of steroidal 16,17-seco-16,17a-dinitriles: identification of a selective inhibitor of hormone-independent breast cancer cells. Bioorg. Med. Chem., 2015, 23(4), 703-711. [http://dx.doi.org/10.1016/j.bmc.2014.12.069]. [PMID: 25619894].
[130]
Tang, C.; Li, C.; Zhang, S.; Hu, Z.; Wu, J.; Dong, C.; Huang, J.; Zhou, H.B. Novel bioactive hybrid compound dual targeting estrogen receptor and histone deacetylase for the treatment of breast cancer. J. Med. Chem., 2015, 58(11), 4550-4572. [http://dx.doi.org/10.1021/acs.jmedchem.5b00099]. [PMID: 25993269].
[131]
Kucinska, M.; Giron, M.D.; Piotrowska, H.; Lisiak, N.; Granig, W.H.; Lopez-Jaramillo, F.J.; Salto, R.; Murias, M.; Erker, T. Novel promising estrogenic receptor modulators: Cytotoxic and estrogenic activity of Benzanilides and Dithiobenzanilides. PLoS One, 2016, 11(1)e0145615 [http://dx.doi.org/10.1371/journal.pone.0145615]. [PMID: 26730945].
[132]
Kelly, P.M.; Keely, N.O.; Bright, S.A.; Yassin, B.; Ana, G.; Fayne, D.; Zisterer, D.M.; Meegan, M.J. Novel selective estrogen receptor ligand conjugates incorporating endoxifen-combretastatin and cyclofenil-combretastatin hybrid scaffolds: synthesis and biochemical evaluation. Molecules, 2017, 22(9)E1440 [http://dx.doi.org/10.3390/molecules22091440]. [PMID: 28858267].
[133]
El-Gamal, M.I.; Semreen, M.H.; Foster, P.A.; Potter, B.V. Design, synthesis, and biological evaluation of new arylamide derivatives possessing sulfonate or sulfamate moieties as steroid sulfatase enzyme inhibitors. Bioorg. Med. Chem., 2016, 24(12), 2762-2767. [http://dx.doi.org/10.1016/j.bmc.2016.04.040]. [PMID: 27143133].
[134]
Scott, S.A.; Spencer, C.T.; O’Reilly, M.C.; Brown, K.A.; Lavieri, R.R.; Cho, C.H.; Jung, D.I.; Larock, R.C.; Brown, H.A.; Lindsley, C.W. Discovery of desketoraloxifene analogues as inhibitors of mammalian, Pseudomonas aeruginosa, and NAPE phospholipase D enzymes. ACS Chem. Biol., 2015, 10(2), 421-432. [http://dx.doi.org/10.1021/cb500828m]. [PMID: 25384256].
[135]
Catarro, M.; Serrano, J.; Cavalheiro, E.; Ramos, S.; Santos, A.O.; Silvestre, S.; Almeida, P. Novel 4-acetamide-2-alkylthio-N-acetanilides resembling nimesulide: Synthesis, cell viability evaluation and in silico studies. Bioorg. Med. Chem., 2017, 25(16), 4304-4313. [http://dx.doi.org/10.1016/j.bmc.2017.06.009]. [PMID: 28666860].
[136]
Ho, L.A.; Thomas, E.; McLaughlin, R.A.; Flematti, G.R.; Fuller, R.O. A new selective fluorescent probe based on tamoxifen. Bioorg. Med. Chem. Lett., 2016, 26(20), 4879-4883. [http://dx.doi.org/10.1016/j.bmcl.2016.09.028]. [PMID: 27662800].
[137]
Ohta, K.; Ogawa, T.; Endo, Y. Design and synthesis of iodocarborane-containing ligands with high affinity and selectivity toward ERβ. Bioorg. Med. Chem. Lett., 2017, 27(17), 4030-4033. [http://dx.doi.org/10.1016/j.bmcl.2017.07.053]. [PMID: 28778470].
[138]
Kang, Z.S.; Wang, C.; Han, X.L.; Wang, B.; Yuan, H.L.; Hou, S.Y.; Hao, M.X.; Du, J.J.; Li, Y.Y.; Zhou, A.W.; Zhang, C. Sulfonyl-containing phenyl-pyrrolyl pentane analogues: Novel non-secosteroidal vitamin D receptor modulators with favorable physicochemical properties, pharmacokinetic properties and anti-tumor activity. Eur. J. Med. Chem., 2018, 157, 1174-1191. [http://dx.doi.org/10.1016/j.ejmech.2018.08.085]. [PMID: 30193216].
[139]
Mendoza-Sanchez, R.; Cotnoir-White, D.; Kulpa, J.; Jutras, I.; Pottel, J.; Moitessier, N.; Mader, S.; Gleason, J.L. Design, synthesis and evaluation of antiestrogen and histone deacetylase inhibitor molecular hybrids. Bioorg. Med. Chem., 2015, 23(24), 7597-7606. [http://dx.doi.org/10.1016/j.bmc.2015.11.005]. [PMID: 26613635].
[140]
Banerjee, N.; Wu, T.R.; Chio, J.; Kelly, R.; Stephenson, K.A.; Forbes, J.; Allen, C.; Valliant, J.F.; Bendayan, R. (125)I-Labelled 2-Iodoestrone-3-sulfate: synthesis, characterization and OATP mediated transport studies in hormone dependent and independent breast cancer cells. Nucl. Med. Biol., 2015, 42(3), 274-282. [http://dx.doi.org/10.1016/j.nucmedbio.2014.10.011]. [PMID: 25542669].
[141]
Corzo, C.A.; Mari, Y.; Chang, M.R.; Khan, T.; Kuruvilla, D.; Nuhant, P.; Kumar, N.; West, G.M.; Duckett, D.R.; Roush, W.R.; Griffin, P.R. Antiproliferation activity of a small molecule repressor of liver receptor homolog 1. Mol. Pharmacol., 2015, 87(2), 296-304. [http://dx.doi.org/10.1124/mol.114.095554]. [PMID: 25473120].
[142]
Guichard, S.M.; Curwen, J.; Bihani, T.; D’Cruz, C.M.; Yates, J.W.; Grondine, M.; Howard, Z.; Davies, B.R.; Bigley, G.; Klinowska, T.; Pike, K.G.; Pass, M.; Chresta, C.M.; Polanska, U.M.; McEwen, R.; Delpuech, O.; Green, S.; Cosulich, S.C. AZD2014, an Inhibitor of mTORC1 and mTORC2, Is highly effective in ER+ Breast cancer when administered using intermittent or continuous schedules. Mol. Cancer Ther., 2015, 14(11), 2508-2518. [http://dx.doi.org/10.1158/1535-7163.MCT-15-0365]. [PMID: 26358751].
[143]
Ji, X.W.; Chen, G.P.; Song, Y.; Hua, M.; Wang, L.J.; Li, L.; Yuan, Y.; Wang, S.Y.; Zhou, T.Y.; Lu, W. Intratumoral estrogen sulfotransferase induction contributes to the anti-breast cancer effects of the dithiocarbamate derivative TM208. Acta Pharmacol. Sin., 2015, 36(10), 1246-1255. [http://dx.doi.org/10.1038/aps.2015.14]. [PMID: 25937633].
[144]
Aiello, F.; Carullo, G.; Giordano, F.; Spina, E.; Nigro, A.; Garofalo, A.; Tassini, S.; Costantino, G.; Vincetti, P.; Bruno, A.; Radi, M. Identification of breast cancer inhibitors specific for G protein-coupled estrogen receptor (GPER)-expressing Cells. ChemMedChem, 2017, 12(16), 1279-1285. [http://dx.doi.org/10.1002/cmdc.201700145]. [PMID: 28520140].