Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Anti-Inflammatory Effects of Novel Standardized Platelet Rich Plasma Releasates on Knee Osteoarthritic Chondrocytes and Cartilage in vitro

Author(s): Lucía Gato-Calvo, Tamara Hermida-Gómez, Cristina R. Romero, Elena F. Burguera* and Francisco J. Blanco

Volume 20, Issue 11, 2019

Page: [920 - 933] Pages: 14

DOI: 10.2174/1389201020666190619111118

Price: $65

Abstract

Background: Platelet Rich Plasma (PRP) has recently emerged as a potential treatment for osteoarthritis (OA), but composition heterogeneity hampers comparison among studies, with the result that definite conclusions on its efficacy have not been reached.

Objectives: 1) To develop a novel methodology to prepare a series of standardized PRP releasates (PRP-Rs) with known absolute platelet concentrations, and 2) To evaluate the influence of this standardization parameter on the anti-inflammatory properties of these PRP-Rs in an in vitro and an ex vivo model of OA.

Methods: A series of PRPs was prepared using the absolute platelet concentration as the standardization parameter. Doses of platelets ranged from 0% (platelet poor plasma, PPP) to 1.5·105 platelets/µl. PRPs were then activated with CaCl2 to obtain releasates (PRP-R). Chondrocytes were stimulated with 10% of each PRP-R in serum-free culture medium for 72 h to assess proliferation and viability. Cells were co-stimulated with interleukin (IL)-1β (5 ng/ml) and 10% of each PRP-R for 48 h to determine the effects on gene expression, secretion and intra-cellular content of common markers associated with inflammation, catabolism and oxidative stress in OA. OA cartilage explants were co-stimulated with IL-1β (5 ng/ml) and 10% of either PRP-R with 0.75·105 platelets/µl or PRP-R with 1.5·105 platelets/µl for 21 days to assess matrix inflammatory degradation.

Results: Chondrocyte viability was not affected, and proliferation was dose-dependently increased. The gene expression of all pro-inflammatory mediators was significantly and dose-independently reduced, except for that of IL-1β and IL-8. Immunoblotting corroborated this effect for inducible NO synthase (NOS2). Secreted matrix metalloproteinase-13 (MMP-13) was reduced to almost basal levels by the PRP-R from PPP. Increasing platelet dosage led to progressive loss to this anti-catabolic ability. Safranin O and toluidine blue stains supported the beneficial effect of low platelet dosage on cartilage matrix preservation.

Conclusion: We have developed a methodology to prepare PRP releasates using the absolute platelet concentration as the standardization parameter. Using this approach, the composition of the resulting PRP derived product is independent of the donor initial basal platelet count, thereby allowing the evaluation of its effects objectively and reproducibly. In our OA models, PRP-Rs showed antiinflammatory, anti-oxidant and anti-catabolic properties. Platelet enrichment could favor chondrocyte proliferation but is not necessary for the above effects and could even be counter-productive.

Keywords: Platelet rich plasma, standardization, osteoarthritis, inflammation, knee, chondrocytes.

Graphical Abstract

[1]
Kraus, V.B.; Blanco, F.J.; Englund, M.; Karsdal, M.A.; Lohmander, L.S. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthritis Cartil, 2015, 23(8), 1233-1241.
[http://dx.doi.org/10.1016/j.joca.2015.03.036] [PMID: 25865392]
[2]
Wojdasiewicz, P.; Poniatowski, L.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm., 2014.2014561459
[http://dx.doi.org/10.1155/2014/561459] [PMID: 24876674]
[3]
Goldring, M.B.; Otero, M.; Plumb, D.A.; Dragomir, C.; Favero, M.; El Hachem, K.; Hashimoto, K.; Roach, H.I.; Olivotto, E.; Borzì, R.M.; Marcu, K.B. Roles of inflammatory and anabolic cytokines in cartilage metabolism: Signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur. Cell. Mater., 2011, 21, 202-220.
[http://dx.doi.org/10.22203/eCM.v021a16] [PMID: 21351054]
[4]
Weinberg, J.B.; Fermor, B.; Guilak, F. Nitric oxide synthase and cyclooxygenase interactions in cartilage and meniscus: Relationships to joint physiology, arthritis, and tissue repair. Subcell. Biochem., 2007, 42, 31-62.
[http://dx.doi.org/10.1007/1-4020-5688-5_2] [PMID: 17612045]
[5]
Kobayashi, M.; Squires, G.R.; Mousa, A.; Tanzer, M.; Zukor, D.J.; Antoniou, J.; Feige, U.; Poole, A.R. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum., 2005, 52(1), 128-135.
[http://dx.doi.org/10.1002/art.20776] [PMID: 15641080]
[6]
Woolf, A.D.; Pfleger, B. Burden of major musculoskeletal conditions. Bull. World Health Organ., 2003, 81(9), 646-656.
[PMID: 14710506]
[7]
Salmon, J.H.; Rat, A.C.; Sellam, J.; Michel, M.; Eschard, J.P.; Guillemin, F.; Jolly, D.; Fautrel, B. Economic impact of lower-limb osteoarthritis worldwide: A systematic review of cost-of-illness studies. Osteoarthritis Cartilage, 2016, 24(9), 1500-1508.
[http://dx.doi.org/10.1016/j.joca.2016.03.012] [PMID: 27034093]
[8]
Reginster, J.Y. Introduction: historical and current perspectives on osteoarthritis. Atlas of Osteoarthritis; Arden, N.; Blanco, F.J.; Bruyère, O.; Cooper, C.; Guermazi, A.; Hayashi, D.; Hunter, D.; Javaid, M.K.; Rannou, F.; Reginster, J.Y; Roemer, F.W., Ed.; Springer Healthcare Ltd.: London, 2014, pp. 11-19.
[http://dx.doi.org/10.1007/978-1-910315-16-3_1]
[9]
Hochberg, M.C. Osteoarthritis year 2012 in review: clinical. Osteoarthritis Cartilage, 2012, 20(12), 1465-1469.
[http://dx.doi.org/10.1016/j.joca.2012.07.022] [PMID: 22885568]
[10]
Bruyère, O.; Cooper, C.; Pelletier, J.P.; Branco, J.; Luisa Brandi, M.; Guillemin, F.; Hochberg, M.C.; Kanis, J.A.; Kvien, T.K.; Martel-Pelletier, J.; Rizzoli, R.; Silverman, S.; Reginster, J.Y. An algorithm recommendation for the management of knee osteoarthritis in Europe and internationally: A report from a task force of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin. Arthritis Rheum., 2014, 44(3), 253-263.
[http://dx.doi.org/10.1016/j.semarthrit.2014.05.014] [PMID: 24953861]
[11]
Marx, R.E.; Carlson, E.R.; Eichstaedt, R.M.; Schimmele, S.R.; Strauss, J.E.; Georgeff, K.R. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 1998, 85(6), 638-646.
[http://dx.doi.org/10.1016/S1079-2104(98)90029-4] [PMID: 9638695]
[12]
Di Michele, M.; Van Geet, C.; Freson, K. Recent advances in platelet proteomics. Expert Rev. Proteomics, 2012, 9(4), 451-466.
[http://dx.doi.org/10.1586/epr.12.31] [PMID: 22967081]
[13]
Mihaylova, Z.; Mitev, V.; Stanimirov, P.; Isaeva, A.; Gateva, N.; Ishkitiev, N. Use of platelet concentrates in oral and maxillofacial surgery: an overview. Acta Odontol. Scand., 2017, 75(1), 1-11.
[http://dx.doi.org/10.1080/00016357.2016.1236985] [PMID: 27669885]
[14]
Hesseler, M.J.; Shyam, N. Platelet-rich plasma and its utility in medical dermatology - A systematic review. J. Am. Acad. Dermatol., 2019.
[15]
Alser, O.H.; Goutos, I. The evidence behind the use of platelet-rich plasma (PRP) in scar management: A literature review. Scars Burn Heal, 2018, 42059513118808773
[http://dx.doi.org/10.1177/2059513118808773]] [PMID: 30479843]
[16]
Anitua, E.; Muruzabal, F.; de la Fuente, M.; Merayo, J.; Durán, J.; Orive, G. Plasma rich in growth factors for the treatment of ocular surface diseases. Curr. Eye Res., 2016, 41(7), 875-882.
[http://dx.doi.org/10.3109/02713683.2015.1104362] [PMID: 26828610]
[17]
Mlynarek, R.A.; Kuhn, A.W.; Bedi, A. Platelet-rich plasma (PRP) in orthopedic sports medicine. Am. J. Orthop., 2016, 45(5), 290-326.
[PMID: 27552452]
[18]
Zhu, Y.; Yuan, M.; Meng, H.Y.; Wang, A.Y.; Guo, Q.Y.; Wang, Y.; Peng, J. Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: A review. Osteoarthritis Cartilage, 2013, 21(11), 1627-1637.
[http://dx.doi.org/10.1016/j.joca.2013.07.017] [PMID: 23933379]
[19]
Fice, M.P.; Miller, J.C.; Christian, R.; Hannon, C.P.; Smyth, N.; Murawski, C.D.; Cole, B.J.; Kennedy, J.G. The role of platelet-rich plasma in cartilage pathology: An updated systematic review of the basic science evidence. Arthroscopy, 2019, 35(3), 961-976.
[http://dx.doi.org/10.1016/j.arthro.2018.10.125] [PMID: 30733026]
[20]
Gato-Calvo, L.; Magalhaes, J.; Ruiz-Romero, C.; Blanco, F.J.; Burguera, E.F. Platelet-rich plasma in osteoarthritis treatment: Review of current evidence. Ther. Adv. Chronic Dis., 2019, 102040622319825567
[http://dx.doi.org/10.1177/2040622319825567] [PMID: 30815245]
[21]
Han, Y.; Huang, H.; Pan, J.; Lin, J.; Zeng, L.; Liang, G.; Yang, W.; Liu, J. Meta-analysis comparing platelet-rich plasma vs hyaluronic acid injection in patients with knee osteoarthritis. Pain Med., 2019, •••pnz011
[http://dx.doi.org/10.1093/pm/pnz011] [PMID: 30849177]
[22]
Le, A.D.K.; Enweze, L.; DeBaun, M.R.; Dragoo, J.L. Platelet-rich plasma. Clin. Sports Med., 2019, 38(1), 17-44.
[http://dx.doi.org/10.1016/j.csm.2018.08.001] [PMID: 30466721]
[23]
Fitzpatrick, J.; Bulsara, M.K.; McCrory, P.R.; Richardson, M.D.; Zheng, M.H. Analysis of platelet-rich plasma extraction: Variations in platelet and blood components between 4 common commercial kits. Orthop. J. Sports Med., 2017, 5(1)2325967116675272
[http://dx.doi.org/10.1177/2325967116675272] [PMID: 28210651]
[24]
Marques, L.F.; Stessuk, T.; Camargo, I.C.; Sabeh, Junior N.; dos Santos, L.; Ribeiro-Paes, J.T. Platelet-rich plasma (PRP): Methodological aspects and clinical applications. Platelets, 2015, 26(2), 101-113.
[http://dx.doi.org/10.3109/09537104.2014.881991] [PMID: 24512369]
[25]
Magalon, J.; Chateau, A.L.; Bertrand, B.; Louis, M.L.; Silvestre, A.; Giraudo, L.; Veran, J.; Sabatier, F. DEPA classification: a proposal for standardising PRP use and a retrospective application of available devices. BMJ Open Sport Exerc. Med., 2016, 2(1)e000060
[http://dx.doi.org/10.1136/bmjsem-2015-000060] [PMID: 27900152]
[26]
Lana, J.F.S.D.; Purita, J.; Paulus, C.; Huber, S.C.; Rodrigues, B.L.; Rodrigues, A.A.; Santana, M.H.; Madureira, J.L., Jr; Malheiros Luzo, Â.C.; Belangero, W.D.; Annichino-Bizzacchi, J.M. Contributions for classification of platelet rich plasma - proposal of a new classification: MARSPILL. Regen. Med., 2017, 12(5), 565-574.
[http://dx.doi.org/10.2217/rme-2017-0042] [PMID: 28758836]
[27]
Blanco, F.J.; Lotz, M. IL-1-induced nitric oxide inhibits chondrocyte proliferation via PGE2. Exp. Cell Res., 1995, 218(1), 319-325.
[http://dx.doi.org/10.1006/excr.1995.1161] [PMID: 7537695]
[28]
Anitua, E.; Sánchez, M.; Orive, G.; Andía, I. Delivering growth factors for therapeutics. Trends Pharmacol. Sci., 2008, 29(1), 37-41.
[http://dx.doi.org/10.1016/j.tips.2007.10.010] [PMID: 18037168]
[29]
Moussa, M.; Lajeunesse, D.; Hilal, G.; El Atat, O.; Haykal, G.; Serhal, R.; Chalhoub, A.; Khalil, C.; Alaaeddine, N. Platelet rich plasma (PRP) induces chondroprotection via increasing autophagy, anti-inflammatory markers, and decreasing apoptosis in human osteoarthritic cartilage. Exp. Cell Res., 2017, 352(1), 146-156.
[http://dx.doi.org/10.1016/j.yexcr.2017.02.012] [PMID: 28202394]
[30]
Cavallo, C.; Filardo, G.; Mariani, E.; Kon, E.; Marcacci, M.; Pereira Ruiz, M.T.; Facchini, A.; Grigolo, B. Comparison of platelet-rich plasma formulations for cartilage healing: An in vitro study. J. Bone Joint Surg. Am., 2014, 96(5), 423-429.
[http://dx.doi.org/10.2106/JBJS.M.00726] [PMID: 24599205]
[31]
Tong, S.; Zhang, C.; Liu, J. Platelet-rich plasma exhibits beneficial effects for rheumatoid arthritis mice by suppressing inflammatory factors. Mol. Med. Rep., 2017, 16(4), 4082-4088.
[http://dx.doi.org/10.3892/mmr.2017.7091] [PMID: 28765945]
[32]
Tohidnezhad, M.; Bayer, A.; Rasuo, B.; Hock, J.V.P.; Kweider, N.; Fragoulis, A.; Sönmez, T.T.; Jahr, H.; Pufe, T.; Lippross, S. Platelet-released growth factors modulate the secretion of cytokines in synoviocytes under inflammatory joint disease. Mediators Inflamm., 2017, 20171046438
[http://dx.doi.org/10.1155/2017/1046438] [PMID: 29348703]
[33]
Andía, I.; Rubio-Azpeitia, E.; Maffulli, N. Platelet-rich plasma modulates the secretion of inflammatory/angiogenic proteins by inflamed tenocytes. Clin. Orthop. Relat. Res., 2015, 473(5), 1624-1634.
[http://dx.doi.org/10.1007/s11999-015-4179-z] [PMID: 25670657]
[34]
Xie, X.; Ulici, V.; Alexander, P.G.; Jiang, Y.; Zhang, C.; Tuan, R.S. Platelet-rich plasma inhibits mechanically induced injury in chondrocytes. Arthroscopy, 2015, 31(6), 1142-1150.
[http://dx.doi.org/10.1016/j.arthro.2015.01.007] [PMID: 25769480]
[35]
Bendinelli, P.; Matteucci, E.; Dogliotti, G.; Corsi, M.M.; Banfi, G.; Maroni, P.; Desiderio, M.A. Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: Mechanisms of NF-κB inhibition via HGF. J. Cell. Physiol., 2010, 225(3), 757-766.
[http://dx.doi.org/10.1002/jcp.22274] [PMID: 20568106]
[36]
van Buul, G.M.; Koevoet, W.L.; Kops, N.; Bos, P.K.; Verhaar, J.A.; Weinans, H.; Bernsen, M.R.; van Osch, G.J. Platelet-rich plasma releasate inhibits inflammatory processes in osteoarthritic chondrocytes. Am. J. Sports Med., 2011, 39(11), 2362-2370.
[http://dx.doi.org/10.1177/0363546511419278] [PMID: 21856929]
[37]
Muto, T.; Kokubu, T.; Mifune, Y.; Inui, A.; Sakata, R.; Harada, Y.; Takase, F.; Kurosaka, M. Effects of platelet-rich plasma and triamcinolone acetonide on interleukin-1ß-stimulated human rotator cuff-derived cells. Bone Joint Res., 2016, 5(12), 602-609.
[http://dx.doi.org/10.1302/2046-3758.512.2000582] [PMID: 27965219]
[38]
Marini, M.G.; Perrini, C.; Esposti, P.; Corradetti, B.; Bizzaro, D.; Riccaboni, P.; Fantinato, E.; Urbani, G.; Gelati, G.; Cremonesi, F.; Lange-Consiglio, A. Effects of platelet-rich plasma in a model of bovine endometrial inflammation in vitro. Reprod. Biol. Endocrinol., 2016, 14(1), 58.
[http://dx.doi.org/10.1186/s12958-016-0195-4] [PMID: 27619959]
[39]
Pereira, R.C.; Scaranari, M.; Benelli, R.; Strada, P.; Reis, R.L.; Cancedda, R.; Gentili, C. Dual effect of platelet lysate on human articular cartilage: a maintenance of chondrogenic potential and a transient proinflammatory activity followed by an inflammation resolution. Tissue Eng. Part A, 2013, 19(11-12), 1476-1488.
[http://dx.doi.org/10.1089/ten.tea.2012.0225] [PMID: 23360471]
[40]
Rahmati, M.; Mobasheri, A.; Mozafari, M. Inflammatory mediators in osteoarthritis: A critical review of the state-of-the-art, current prospects, and future challenges. Bone, 2016, 85, 81-90.
[http://dx.doi.org/10.1016/j.bone.2016.01.019] [PMID: 26812612]
[41]
Blanco, F.J.; Ochs, R.L.; Schwarz, H.; Lotz, M. Chondrocyte apoptosis induced by nitric oxide. Am. J. Pathol., 1995, 146(1), 75-85.
[PMID: 7856740]
[42]
Osterman, C.; McCarthy, M.B.; Cote, M.P.; Beitzel, K.; Bradley, J.; Polkowski, G.; Mazzocca, A.D. Platelet-rich plasma increases anti-inflammatory markers in a human coculture model for osteoarthritis. Am. J. Sports Med., 2015, 43(6), 1474-1484.
[http://dx.doi.org/10.1177/0363546515570463] [PMID: 25716226]
[43]
Mueller, M.B.; Tuan, R.S. Anabolic/Catabolic balance in pathogenesis of osteoarthritis: identifying molecular targets. PM R, 2011, 3(6)(Suppl. 1), S3-S11.
[http://dx.doi.org/10.1016/j.pmrj.2011.05.009] [PMID: 21703577]
[44]
Woodell-May, J.; Matuska, A.; Oyster, M.; Welch, Z.; O’Shaughnessey, K.; Hoeppner, J. Autologous protein solution inhibits MMP-13 production by IL-1β and TNFα-stimulated human articular chondrocytes. J. Orthop. Res., 2011, 29(9), 1320-1326.
[http://dx.doi.org/10.1002/jor.21384] [PMID: 21437966]
[45]
Gilbertie, J.M.; Long, J.M.; Schubert, A.G.; Berglund, A.K.; Schaer, T.P.; Schnabel, L.V. Pooled platelet-rich plasma lysate therapy increases synoviocyte proliferation and hyaluronic acid production while protecting chondrocytes from synoviocyte-derived inflammatory mediators. Front. Vet. Sci., 2018, 5, 150.
[http://dx.doi.org/10.3389/fvets.2018.00150] [PMID: 30023361]
[46]
Yin, W.; Xu, H.; Sheng, J.; Xu, Z.; Xie, X.; Zhang, C. Comparative evaluation of the effects of plateletrich plasma formulations on extracellular matrix formation and the NFκB signaling pathway in human articular chondrocytes. Mol. Med. Rep., 2017, 15(5), 2940-2948.
[http://dx.doi.org/10.3892/mmr.2017.6365] [PMID: 28339078]
[47]
Lee, H.R.; Shon, O.J.; Park, S.I.; Kim, H.J.; Kim, S.; Ahn, M.W.; Do, S.H. Platelet-rich plasma increases the levels of catabolic molecules and cellular dedifferentiation in the meniscus of a rabbit model. Int. J. Mol. Sci., 2016, 17(1), 120.
[http://dx.doi.org/10.3390/ijms17010120] [PMID: 26784189]
[48]
Kisiday, J.D.; McIlwraith, C.W.; Rodkey, W.G.; Frisbie, D.D.; Steadman, J.R. Effects of platelet-rich plasma composition on anabolic and catabolic activities in equine cartilage and meniscal explants. Cartilage, 2012, 3(3), 245-254.
[http://dx.doi.org/10.1177/1947603511433181] [PMID: 26069637]
[49]
Simental-Mendía, M.; Vilchez-Cavazos, F.; García-Garza, R.; Lara-Arias, J.; Montes-de-Oca-Luna, R.; Said-Fernández, S.; Martínez-Rodríguez, H.G. The matrix synthesis and anti-inflammatory effect of autologous leukocyte-poor platelet rich plasma in human cartilage explants. Histol. Histopathol., 2018, 33(6), 609-618.
[PMID: 29313321]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy