Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Review Article

Synthetic Opioid Use and Common Injection-associated Viruses: Expanding the Translational Research Agenda

Author(s): Jason T. Blackard*, Jennifer L. Brown and Michael S. Lyons

Volume 17, Issue 2, 2019

Page: [94 - 101] Pages: 8

DOI: 10.2174/1570162X17666190618154534

Price: $65

Abstract

The US is in the midst of a major epidemic of opioid addiction and related comorbidities. People with opioid use disorder (OUD) are at significant risk for transmission of several blood-borne pathogens including the human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV). Commonly abused opioids and their receptors promote viral replication and virus-mediated pathology. However, most studies demonstrating an adverse effect of drugs of abuse have been conducted in vitro, the specific effects of synthetic opioids on viral replication have been poorly characterized, and the evaluation of opioid-virus interactions in clinically relevant populations is rare. Rigorous characterization of the interactions among synthetic opioids, host cells, and common injection-associated viral infections will require an interdisciplinary research approach and translational studies conducted on humans. Such research promises to improve clinical management paradigms for difficult-to-treat populations, facilitate rational public health policies given severely strained resources, and reveal additional pathways for novel target-specific therapeutic interventions. This mini-review examines the published literature on the effects of opioids on HIV, HBV, and HCV pathogenesis and proposes a series of scientific questions and considerations to establish a translational research agenda focused on opioid-virus interactions.

Keywords: HIV, hepatitis B virus (HBV), hepatitis C virus (HCV), drug use, opioid, pathogenesis.

[1]
O’Donnell JK, Gladden RM, Seth P. Trends in deaths involving heroin and synthetic opioids excluding methadone, and law enforcement drug product reports, by census region - United States, 2006-2015. MMWR Morb Mortal Wkly Rep 2017; 66(34): 897-903.
[http://dx.doi.org/10.15585/mmwr.mm6634a2] [PMID: 28859052]
[2]
Rudd RA, Seth P, David F, Scholl L. Increases in drug and opioid-involved overdose deaths - United States, 2010-2015. MMWR Morb Mortal Wkly Rep 2016; 65(50-51): 1445-52.
[http://dx.doi.org/10.15585/mmwr.mm655051e1] [PMID: 28033313]
[3]
Rudd RA, Aleshire N, Zibbell JE, Gladden RM. Increases in drug and opioid overdose deaths--United States, 2000-2014. MMWR Morb Mortal Wkly Rep 2016; 64(50-51): 1378-82.
[http://dx.doi.org/10.15585/mmwr.mm6450a3] [PMID: 26720857]
[4]
Gladden RM, Martinez P, Seth P. Fentanyl law enforcement submissions and increases in synthetic opioid-involved overdose deaths - 27 states, 2013-2014. MMWR Morb Mortal Wkly Rep 2016; 65(33): 837-43.
[http://dx.doi.org/10.15585/mmwr.mm6533a2] [PMID: 27560775]
[5]
Peterson AB, Gladden RM, Delcher C, et al. Increases in fentanyl-related overdose deaths - Florida and Ohio, 2013-2015. MMWR Morb Mortal Wkly Rep 2016; 65(33): 844-9.
[http://dx.doi.org/10.15585/mmwr.mm6533a3] [PMID: 27560948]
[6]
Daniulaityte R, Juhascik MP, Strayer KE, et al. Overdose deaths related to fentanyl and its analogs - Ohio, January-February 2017. MMWR Morb Mortal Wkly Rep 2017; 66(34): 904-8.
[http://dx.doi.org/10.15585/mmwr.mm6634a3] [PMID: 28859050]
[7]
Centers for Disease Control and Prevention. HIV in the United States: at a glance 2015.http://www.cdc.gov/hiv/statistics/basics/ataglance.html
[8]
Talu A, Rajaleid K, Abel-Ollo K, et al. HIV infection and risk behaviour of primary fentanyl and amphetamine injectors in Tallinn, Estonia: Implications for intervention. Int J Drug Policy 2010; 21(1): 56-63.
[http://dx.doi.org/10.1016/j.drugpo.2009.02.007] [PMID: 19395249]
[9]
Cranston K, Alpren C, John B, et al. HIV diagnoses among persons who inject drugs - Northeastern Massachusetts, 2015-2018. MMWR Morb Mortal Wkly Rep 2019; 68(10): 253-4.
[http://dx.doi.org/10.15585/mmwr.mm6810a6] [PMID: 30870405]
[10]
Altice FL, Kamarulzaman A, Soriano VV, Schechter M, Friedland GH. Treatment of medical, psychiatric, and substance-use comorbidities in people infected with HIV who use drugs. Lancet 2010; 376(9738): 367-87.
[http://dx.doi.org/10.1016/S0140-6736(10)60829-X] [PMID: 20650518]
[11]
Wasley A, Grytdal S, Gallagher K. Surveillance for acute viral hepatitis--United States, 2006. MMWR Surveill Summ 2008; 57(2): 1-24.
[PMID: 18354374]
[12]
Garfein RS, Vlahov D, Galai N, Doherty MC, Nelson KE. Viral infections in short-term injection drug users: The prevalence of the hepatitis C, hepatitis B, human immunodeficiency, and human T-lymphotropic viruses. Am J Public Health 1996; 86(5): 655-61.
[http://dx.doi.org/10.2105/AJPH.86.5.655] [PMID: 8629715]
[13]
Levine OS, Vlahov D, Nelson KE. Epidemiology of hepatitis B virus infections among injecting drug users: Seroprevalence, risk factors, and viral interactions. Epidemiol Rev 1994; 16(2): 418-36.
[http://dx.doi.org/10.1093/oxfordjournals.epirev.a036161] [PMID: 7713187]
[14]
López-Zetina J, Kerndt P, Ford W, Woerhle T, Weber M. Prevalence of HIV and hepatitis B and self-reported injection risk behavior during detention among street-recruited injection drug users in Los Angeles County, 1994-1996. Addiction 2001; 96(4): 589-95.
[PMID: 11300962]
[15]
Harris AM, Iqbal K, Schillie S, et al. Increases in acute hepatitis B virus infections - Kentucky, Tennessee, and West Virginia, 2006-2013. MMWR Morb Mortal Wkly Rep 2016; 65(3): 47-50.
[http://dx.doi.org/10.15585/mmwr.mm6503a2] [PMID: 26821369]
[16]
Comer M, Matthias J, Nicholson G, Asher A, Holmberg S, Wilson C. Increase in acute hepatitis B infections - Pasco County, Florida, 2011-2016. MMWR Morb Mortal Wkly Rep 2018; 67(7): 230-1.
[http://dx.doi.org/10.15585/mmwr.mm6707a6] [PMID: 29470456]
[17]
Nelson PK, Mathers BM, Cowie B, et al. Global epidemiology of hepatitis B and hepatitis C in people who inject drugs: Results of systematic reviews. Lancet 2011; 378(9791): 571-83.
[http://dx.doi.org/10.1016/S0140-6736(11)61097-0] [PMID: 21802134]
[18]
Centers for Disease Control and Prevention. Hepatitis C questions and answers for health professionals 2019.https://www.cdc. gov/hepatitis/hcv/hcvfaq.htm#a2
[19]
Branson BM, Handsfield HH, Lampe MA, et al. Revised recommendations for HIV testing of adults, adolescents, and pregnant women in health-care settings. MMWR Recomm Rep 2006; 55(RR-14): 1-17.
[PMID: 16988643]
[20]
Moyer VA, Force UPST. Screening for hepatitis C virus infection in adults: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2013; 159(5): 349-57.
[http://dx.doi.org/10.7326/0003-4819-159-5-201309030-00672] [PMID: 23798026]
[21]
Moyer VA, Force UPST. Screening for HIV: U.S. Preventive Services Task Force Recommendation Statement. Ann Intern Med 2013; 159(1): 51-60.
[http://dx.doi.org/10.7326/0003-4819-159-1-201307020-00645] [PMID: 23698354]
[22]
Mitchell AE, Colvin HM, Palmer Beasley R. Institute of Medicine recommendations for the prevention and control of hepatitis B and C. Hepatology 2010; 51(3): 729-33.
[http://dx.doi.org/10.1002/hep.23561] [PMID: 20186842]
[23]
HIV screening and access to care: health care system capacity for increased HIV testing and provision of care. Washington, DC 2011.
[24]
Yehia BR, Schranz AJ, Umscheid CA, Lo Re V III. The treatment cascade for chronic hepatitis C virus infection in the United States: a systematic review and meta-analysis. PLoS One 2014; 9(7): e101554.
[http://dx.doi.org/10.1371/journal.pone.0101554] [PMID: 24988388]
[25]
Bachhuber MA, Cunningham CO. Changes in testing for human immunodeficiency virus, sexually transmitted infections, and hepatitis C virus in opioid treatment programs. JAMA 2013; 310(24): 2671-2.
[http://dx.doi.org/10.1001/jama.2013.278456] [PMID: 24368468]
[26]
D’Aunno T, Pollack HA, Jiang L, Metsch LR, Friedmann PD. HIV testing in the nation’s opioid treatment programs, 2005-2011: The role of state regulations. Health Serv Res 2014; 49(1): 230-48.
[http://dx.doi.org/10.1111/1475-6773.12094] [PMID: 23855724]
[27]
Gardner EM, McLees MP, Steiner JF, Del Rio C, Burman WJ. The spectrum of engagement in HIV care and its relevance to test-and-treat strategies for prevention of HIV infection. Clin Infect Dis 2011; 52(6): 793-800.
[http://dx.doi.org/10.1093/cid/ciq243] [PMID: 21367734]
[28]
Mugavero MJ, Amico KR, Horn T, Thompson MA. The state of engagement in HIV care in the United States: From cascade to continuum to control. Clin Infect Dis 2013; 57(8): 1164-71.
[http://dx.doi.org/10.1093/cid/cit420] [PMID: 23797289]
[29]
Springer SA, Di Paola A, Azar MM, et al. Extended-release naltrexone improves viral suppression among incarcerated persons living with HIV with opioid use disorders transitioning to the community: results of a double-blind, placebo-controlled randomized trial. J Acquir Immune Defic Syndr 2018; 78(1): 43-53.
[http://dx.doi.org/10.1097/QAI.0000000000001634] [PMID: 29373393]
[30]
Macías J, Morano LE, Téllez F, et al. Response to direct-acting antiviral therapy among ongoing drug users and people receiving opioid substitution therapy J Hepatol 2019; S0168-8278(19): 30133-.
[http://dx.doi.org/10.1016/j.jhep.2019.02.018] [PMID: 30853642]
[31]
Banerjee A, Strazza M, Wigdahl B, Pirrone V, Meucci O, Nonnemacher MR. Role of mu-opioids as cofactors in human immunodeficiency virus type 1 disease progression and neuropathogenesis. J Neurovirol 2011; 17(4): 291-302.
[http://dx.doi.org/10.1007/s13365-011-0037-2] [PMID: 21735315]
[32]
Tahamtan A, Tavakoli-Yaraki M, Mokhtari-Azad T, et al. Opioids and viral infections: a double-edged sword. Front Microbiol 2016; 7: 970.
[http://dx.doi.org/10.3389/fmicb.2016.00970] [PMID: 27446011]
[33]
Stevens CW. The evolution of vertebrate opioid receptors. Front Biosci 2009; 14: 1247-69.
[http://dx.doi.org/10.2741/3306] [PMID: 19273128]
[34]
Stein C. Opioid Receptors. Annu Rev Med 2016; 67: 433-51.
[http://dx.doi.org/10.1146/annurev-med-062613-093100] [PMID: 26332001]
[35]
Law PY, Wong YH, Loh HH. Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 2000; 40: 389-430.
[http://dx.doi.org/10.1146/annurev.pharmtox.40.1.389] [PMID: 10836142]
[36]
Kraus J, Börner C, Giannini E, Höllt V. The role of nuclear factor kappaB in tumor necrosis factor-regulated transcription of the human mu-opioid receptor gene. Mol Pharmacol 2003; 64(4): 876-84.
[http://dx.doi.org/10.1124/mol.64.4.876] [PMID: 14500744]
[37]
Tang B, Li Y, Yuan S, Tomlinson S, He S. Upregulation of the δ opioid receptor in liver cancer promotes liver cancer progression both in vitro and in vivo. Int J Oncol 2013; 43(4): 1281-90.
[http://dx.doi.org/10.3892/ijo.2013.2046] [PMID: 23903826]
[38]
Lu J, Liu Z, Zhao L, Tian H, Liu X, Yuan C. In vivo and in vitro inhibition of human liver cancer progress by downregulation of the μ-opioid receptor and relevant mechanisms. Oncol Rep 2013; 30(4): 1731-8.
[http://dx.doi.org/10.3892/or.2013.2640] [PMID: 23900681]
[39]
Tang B, Zhang Y, Liang R, et al. Activation of the δ-opioid receptor inhibits serum deprivation-induced apoptosis of human liver cells via the activation of PKC and the mitochondrial pathway. Int J Mol Med 2011; 28(6): 1077-85.
[PMID: 21874227]
[40]
Jia K, Sun D, Ling S, et al. Activated δ-opioid receptors inhibit hydrogen peroxide-induced apoptosis in liver cancer cells through the PKC/ERK signaling pathway. Mol Med Rep 2014; 10(2): 839-47.
[http://dx.doi.org/10.3892/mmr.2014.2301] [PMID: 24912447]
[41]
De Minicis S, Candelaresi C, Marzioni M, et al. Role of endogenous opioids in modulating HSC activity in vitro and liver fibrosis in vivo. Gut 2008; 57(3): 352-64.
[http://dx.doi.org/10.1136/gut.2007.120303] [PMID: 17989109]
[42]
Jaume M, Jacquet S, Cavaillès P, et al. Opioid receptor blockade reduces Fas-induced hepatitis in mice. Hepatology 2004; 40(5): 1136-43.
[http://dx.doi.org/10.1002/hep.20428] [PMID: 15389866]
[43]
Ebrahimkhani MR, Kiani S, Oakley F, et al. Naltrexone, an opioid receptor antagonist, attenuates liver fibrosis in bile duct ligated rats. Gut 2006; 55(11): 1606-16.
[http://dx.doi.org/10.1136/gut.2005.076778] [PMID: 16543289]
[44]
Peterson PK, Sharp BM, Gekker G, Portoghese PS, Sannerud K Jr, Balfour HH Jr. Morphine promotes the growth of HIV-1 in human peripheral blood mononuclear cell cocultures. AIDS 1990; 4(9): 869-73.
[http://dx.doi.org/10.1097/00002030-199009000-00006] [PMID: 2174676]
[45]
Bagasra O, Pomerantz RJ. Human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells in the presence of cocaine. J Infect Dis 1993; 168(5): 1157-64.
[http://dx.doi.org/10.1093/infdis/168.5.1157] [PMID: 8228349]
[46]
Peterson PK, Gekker G, Chao CC, Schut R, Molitor TW Jr, Balfour HH Jr. Cocaine potentiates HIV-1 replication in human peripheral blood mononuclear cell cocultures. Involvement of transforming growth factor-beta. J Immunol 1991; 146(1): 81-4.
[PMID: 1984454]
[47]
Nair MP, Chadha KC, Hewitt RG, Mahajan S, Sweet A, Schwartz SA. Cocaine differentially modulates chemokine production by mononuclear cells from normal donors and human immunodeficiency virus type 1-infected patients. Clin Diagn Lab Immunol 2000; 7(1): 96-100.
[PMID: 10618285]
[48]
Sahu G, Farley K, El-Hage N, et al. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR. Virology 2015; 483: 185-202.
[http://dx.doi.org/10.1016/j.virol.2015.03.036] [PMID: 25980739]
[49]
Swepson C, Ranjan A, Balasubramaniam M, Pandhare J, Dash C. Cocaine enhances HIV-1 transcription in macrophages by inducing p38 MAPK phosphorylation. Front Microbiol 2016; 7: 823.
[http://dx.doi.org/10.3389/fmicb.2016.00823] [PMID: 27375565]
[50]
Tyagi M, Bukrinsky M, Simon GL. Mechanisms of HIV transcriptional regulation by drugs of abuse. Curr HIV Res 2016; 14(5): 442-54.
[http://dx.doi.org/10.2174/1570162X14666160324124736] [PMID: 27009097]
[51]
Dhillon NK, Williams R, Peng F, et al. Cocaine-mediated enhancement of virus replication in macrophages: Implications for human immunodeficiency virus-associated dementia. J Neurovirol 2007; 13(6): 483-95.
[http://dx.doi.org/10.1080/13550280701528684] [PMID: 18097880]
[52]
Napuri J, Pilakka-Kanthikeel S, Raymond A, et al. Cocaine enhances HIV-1 infectivity in monocyte derived dendritic cells by suppressing microRNA-155. PLoS One 2013; 8(12): e83682.
[http://dx.doi.org/10.1371/journal.pone.0083682] [PMID: 24391808]
[53]
Prasad A, Kulkarni R, Jiang S, Groopman JE. Cocaine enhances DC to T-cell HIV-1 transmission by activating DC-SIGN/LARG/LSP1 complex and facilitating infectious synapse formation. Sci Rep 2017; 7: 40648.
[http://dx.doi.org/10.1038/srep40648] [PMID: 28094782]
[54]
Squinto SP, Mondal D, Block AL, Prakash O. Morphine-induced transactivation of HIV-1 LTR in human neuroblastoma cells. AIDS Res Hum Retroviruses 1990; 6(10): 1163-8.
[http://dx.doi.org/10.1089/aid.1990.6.1163] [PMID: 2252636]
[55]
Steele AD, Henderson EE, Rogers TJ. Mu-opioid modulation of HIV-1 coreceptor expression and HIV-1 replication. Virology 2003; 309(1): 99-107.
[http://dx.doi.org/10.1016/S0042-6822(03)00015-1] [PMID: 12726730]
[56]
Guo CJ, Li Y, Tian S, Wang X, Douglas SD, Ho WZ. Morphine enhances HIV infection of human blood mononuclear phagocytes through modulation of beta-chemokines and CCR5 receptor. J Investig Med 2002; 50(6): 435-42.
[http://dx.doi.org/10.1136/jim-50-06-03] [PMID: 12425430]
[57]
Li Y, Merrill JD, Mooney K, et al. Morphine enhances HIV infection of neonatal macrophages. Pediatr Res 2003; 54(2): 282-8.
[http://dx.doi.org/10.1203/01.PDR.0000074973.83826.4C] [PMID: 12736382]
[58]
Mahajan SD, Aalinkeel R, Reynolds JL, et al. Morphine exacerbates HIV-1 viral protein gp120 induced modulation of chemokine gene expression in U373 astrocytoma cells. Curr HIV Res 2005; 3(3): 277-88.
[http://dx.doi.org/10.2174/1570162054368048] [PMID: 16022659]
[59]
Wang X, Ye L, Zhou Y, Liu MQ, Zhou DJ, Ho WZ. Inhibition of anti-HIV microRNA expression: a mechanism for opioid-mediated enhancement of HIV infection of monocytes. Am J Pathol 2011; 178(1): 41-7.
[http://dx.doi.org/10.1016/j.ajpath.2010.11.042] [PMID: 21224041]
[60]
Homan JW, Steele AD, Martinand-Mari C, et al. Inhibition of morphine-potentiated HIV-1 replication in peripheral blood mononuclear cells with the nuclease-resistant 2-5A agonist analog, 2-5A(N6B). J Acquir Immune Defic Syndr 2002; 30(1): 9-20.
[http://dx.doi.org/10.1097/00042560-200205010-00002] [PMID: 12048358]
[61]
Prottengeier J, Koutsilieri E, Scheller C. The effects of opioids on HIV reactivation in latently-infected T-lymphoblasts. AIDS Res Ther 2014; 11: 17.
[http://dx.doi.org/10.1186/1742-6405-11-17] [PMID: 25013451]
[62]
Li Y, Wang X, Tian S, Guo CJ, Douglas SD, Ho WZ. Methadone enhances human immunodeficiency virus infection of human immune cells. J Infect Dis 2002; 185(1): 118-22.
[http://dx.doi.org/10.1086/338011] [PMID: 11756991]
[63]
Suzuki S, Carlos MP, Chuang LF, Torres JV, Doi RH, Chuang RY. Methadone induces CCR5 and promotes AIDS virus infection. FEBS Lett 2002; 519(1-3): 173-7.
[http://dx.doi.org/10.1016/S0014-5793(02)02746-1] [PMID: 12023039]
[64]
Peterson PK, Gekker G, Hu S, Lokensgard J, Portoghese PS, Chao CC. Endomorphin-1 potentiates HIV-1 expression in human brain cell cultures: Implication of an atypical mu-opioid receptor. Neuropharmacology 1999; 38(2): 273-8.
[http://dx.doi.org/10.1016/S0028-3908(98)00167-1] [PMID: 10218868]
[65]
Sundar KS, Kamaraju LS, Dingfelder J, et al. beta-Endorphin enhances the replication of neurotropic human immunodeficiency virus in fetal perivascular microglia. J Neuroimmunol 1995; 61(1): 97-104.
[http://dx.doi.org/10.1016/0165-5728(95)00089-K] [PMID: 7560019]
[66]
Chao CC, Gekker G, Sheng WS, Hu S, Portoghese PS, Peterson PK. Endogenous opioid peptides suppress cytokine-mediated upregulation of HIV-1 expression in the chronically infected promonocyte clone U1. Adv Exp Med Biol 1995; 373: 65-72.
[http://dx.doi.org/10.1007/978-1-4615-1951-5_10] [PMID: 7668162]
[67]
Chao CC, Gekker G, Hu S, Sheng WS, Portoghese PS, Peterson PK. Upregulation of HIV-1 expression in cocultures of chronically infected promonocytes and human brain cells by dynorphin. Biochem Pharmacol 1995; 50(5): 715-22.
[http://dx.doi.org/10.1016/0006-2952(95)00176-Z] [PMID: 7669075]
[68]
Ho WZ, Guo CJ, Yuan CS, Douglas SD, Moss J. Methylnaltrexone antagonizes opioid-mediated enhancement of HIV infection of human blood mononuclear phagocytes. J Pharmacol Exp Ther 2003; 307(3): 1158-62.
[http://dx.doi.org/10.1124/jpet.103.056697] [PMID: 14560041]
[69]
Wang X, Tan N, Douglas SD, Zhang T, Wang YJ, Ho WZ. Morphine inhibits CD8+ T cell-mediated, noncytolytic, anti-HIV activity in latently infected immune cells. J Leukoc Biol 2005; 78(3): 772-6.
[http://dx.doi.org/10.1189/jlb.0305167] [PMID: 16000393]
[70]
Wang X, Ma TC, Li JL, et al. Heroin inhibits HIV-restriction miRNAs and enhances HIV infection of macrophages. Front Microbiol 2015; 6: 1230.
[http://dx.doi.org/10.3389/fmicb.2015.01230] [PMID: 26583016]
[71]
Liang H, Wang X, Chen H, et al. Methamphetamine enhances HIV infection of macrophages. Am J Pathol 2008; 172(6): 1617-24.
[http://dx.doi.org/10.2353/ajpath.2008.070971] [PMID: 18458095]
[72]
Nair MP, Saiyed ZM. Effect of methamphetamine on expression of HIV coreceptors and CC-chemokines by dendritic cells. Life Sci 2011; 88(21-22): 987-94.
[http://dx.doi.org/10.1016/j.lfs.2010.09.019] [PMID: 20932494]
[73]
Nair MP, Saiyed ZM, Nair N, et al. Methamphetamine enhances HIV-1 infectivity in monocyte derived dendritic cells. J Neuroimmune Pharmacol 2009; 4(1): 129-39.
[http://dx.doi.org/10.1007/s11481-008-9128-0] [PMID: 18958626]
[74]
Wang X, Wang Y, Ye L, et al. Modulation of intracellular restriction factors contributes to methamphetamine-mediated enhancement of acquired immune deficiency syndrome virus infection of macrophages. Curr HIV Res 2012; 10(5): 407-14.
[http://dx.doi.org/10.2174/157016212802138797] [PMID: 22591364]
[75]
Cen P, Ye L, Su QJ, et al. Methamphetamine inhibits Toll-like receptor 9-mediated anti-HIV activity in macrophages. AIDS Res Hum Retroviruses 2013; 29(8): 1129-37.
[http://dx.doi.org/10.1089/aid.2012.0264] [PMID: 23751096]
[76]
Skowronska M, McDonald M, Velichkovska M, Leda AR, Park M, Toborek M. Methamphetamine increases HIV infectivity in neural progenitor cells. J Biol Chem 2018; 293(1): 296-311.
[http://dx.doi.org/10.1074/jbc.RA117.000795] [PMID: 29158267]
[77]
Jiang J, Wang M, Liang B, et al. In vivo effects of methamphetamine on HIV-1 replication: A population-based study. Drug Alcohol Depend 2016; 159: 246-54.
[http://dx.doi.org/10.1016/j.drugalcdep.2015.12.027] [PMID: 26790825]
[78]
Ellis RJ, Childers ME, Cherner M, Lazzaretto D, Letendre S, Grant I. Increased human immunodeficiency virus loads in active methamphetamine users are explained by reduced effectiveness of antiretroviral therapy. J Infect Dis 2003; 188(12): 1820-6.
[http://dx.doi.org/10.1086/379894] [PMID: 14673760]
[79]
Ma K, Ma P, Lu H, Liu S, Cao Q. Fentanyl suppresses the survival of CD4+ T cells isolated from human umbilical cord blood through inhibition of IKKs-mediated NF-κB activation. Scand J Immunol 2017; 85(5): 343-9.
[http://dx.doi.org/10.1111/sji.12538] [PMID: 28199730]
[80]
Delogu G, Moretti S, Antonucci A, et al. Apoptogenic effect of fentanyl on freshly isolated peripheral blood lymphocytes. J Trauma 2004; 57(1): 75-81.
[http://dx.doi.org/10.1097/01.TA.0000075349.66640.3E] [PMID: 15284552]
[81]
Wang Y, Chen M. Fentanyl ameliorates severe acute pancreatitis-induced myocardial injury in rats by regulating NF-κB signaling pathway. Med Sci Monit 2017; 23: 3276-83.
[http://dx.doi.org/10.12659/MSM.902245] [PMID: 28680032]
[82]
Kocak N, Ozen F, Yildirim IH, Duran Y. Fentanyl inhibits tumorigenesis from human breast stem cells by inducing apoptosis. Asian Pac J Cancer Prev 2017; 18(3): 735-9.
[PMID: 28441707]
[83]
Purohit V, Rapaka RS, Rutter J, Shurtleff D. Do opioids activate latent HIV-1 by down-regulating anti-HIV microRNAs? J Neuroimmune Pharmacol 2012; 7(3): 519-23.
[http://dx.doi.org/10.1007/s11481-012-9356-1] [PMID: 22527633]
[84]
Mantri CK, Pandhare Dash J, Mantri JV, Dash CC. Cocaine enhances HIV-1 replication in CD4+ T cells by down-regulating MiR-125b. PLoS One 2012; 7(12): e51387.
[http://dx.doi.org/10.1371/journal.pone.0051387] [PMID: 23251514]
[85]
Zhou Y, Sun L, Wang X, et al. Heroin use promotes HCV infection and dysregulates HCV-related circulating microRNAs. J Neuroimmune Pharmacol 2015; 10(1): 102-10.
[http://dx.doi.org/10.1007/s11481-014-9577-6] [PMID: 25572448]
[86]
Li Y, Zhang T, Douglas SD, et al. Morphine enhances hepatitis C virus (HCV) replicon expression. Am J Pathol 2003; 163(3): 1167-75.
[http://dx.doi.org/10.1016/S0002-9440(10)63476-1] [PMID: 12937158]
[87]
Li Y, Ye L, Peng JS, et al. Morphine inhibits intrahepatic interferon- alpha expression and enhances complete hepatitis C virus replication. J Infect Dis 2007; 196(5): 719-30.
[http://dx.doi.org/10.1086/520093] [PMID: 17674315]
[88]
Wang CQ, Li Y, Douglas SD, et al. Morphine withdrawal enhances hepatitis C virus replicon expression. Am J Pathol 2005; 167(5): 1333-40.
[http://dx.doi.org/10.1016/S0002-9440(10)61220-5] [PMID: 16251417]
[89]
Ye L, Peng JS, Wang X, Wang YJ, Luo GX, Ho WZ. Methamphetamine enhances Hepatitis C virus replication in human hepatocytes. J Viral Hepat 2008; 15(4): 261-70.
[http://dx.doi.org/10.1111/j.1365-2893.2007.00940.x] [PMID: 18307590]
[90]
Zhu H, Geng Y, He Q, Li M. miRNAs regulate immune response and signaling during hepatitis C virus infection. Eur J Med Res 2018; 23(1): 19.
[http://dx.doi.org/10.1186/s40001-018-0317-x] [PMID: 29669594]
[91]
National Institute of Drug Abuse, National Institutes of Health. 2016-2020 NIDA Strategic Plan: Advancing Addiction Science/. 2015.
[92]
Blackard JT, Rouster SD, Shata MT, Sherman KE, Kong L, Eds. The synthetic opioid fentanyl enhances viral replication in vitro. Conference on Retroviruses and Opportunistic Infections. 2019 March 4-7, 2019; Seattle, WA.
[93]
Nolan S, Walley AY, Heeren TC, et al. HIV-infected individuals who use alcohol and other drugs, and virologic suppression. AIDS Care 2017; 29(9): 1129-36.
[http://dx.doi.org/10.1080/09540121.2017.1327646] [PMID: 28513200]
[94]
Turner AN, Maierhofer C, Funderburg NT, et al. High levels of self-reported prescription opioid use by HIV-positive individuals. AIDS Care 2016; 28(12): 1559-65.
[http://dx.doi.org/10.1080/09540121.2016.1198746] [PMID: 27320493]
[95]
Yehia BR, Ketner E, Momplaisir F, et al. Location of HIV diagnosis impacts linkage to medical care. J Acquir Immune Defic Syndr 2015; 68(3): 304-9.
[http://dx.doi.org/10.1097/QAI.0000000000000459] [PMID: 25469529]
[96]
Rich KM, Bia J, Altice FL, Feinberg J. Integrated models of care for individuals with opioid use disorder: How do we prevent HIV and HCV? Curr HIV/AIDS Rep 2018; 15(3): 266-75.
[http://dx.doi.org/10.1007/s11904-018-0396-x] [PMID: 29774442]
[97]
Pilakka-Kanthikeel S, Nair MP. Interaction of drugs of abuse and microRNA with HIV: A brief review. Front Microbiol 2015; 6: 967.
[http://dx.doi.org/10.3389/fmicb.2015.00967] [PMID: 26483757]
[98]
Jannetto PJ, Helander A, Garg U, Janis GC, Goldberger B, Ketha H. The fentanyl epidemic and evolution of fentanyl analogs in the United States and the European Union. Clin Chem 2018; 64(10): 1-12.
[PMID: 30305277]
[99]
Olkkola KT, Palkama VJ, Neuvonen PJ. Ritonavir’s role in reducing fentanyl clearance and prolonging its half-life. Anesthesiology 1999; 91(3): 681-5.
[http://dx.doi.org/10.1097/00000542-199909000-00020] [PMID: 10485779]
[100]
Toussi SS, Joseph A, Zheng JH, Dutta M, Santambrogio L, Goldstein H. Short communication: Methamphetamine treatment increases in vitro and in vivo HIV replication. AIDS Res Hum Retroviruses 2009; 25(11): 1117-21.
[http://dx.doi.org/10.1089/aid.2008.0282] [PMID: 19895343]
[101]
King WD, Larkins S, Hucks-Ortiz C, et al. Factors associated with HIV viral load in a respondent driven sample in Los Angeles. AIDS Behav 2009; 13(1): 145-53.
[http://dx.doi.org/10.1007/s10461-007-9337-1] [PMID: 18064555]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy