Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Sodium Hydrosulfide Post-conditioning Protects Hippocampal CA1 Neurons from Neuronal Cell Injury in the Rat Model of Transient Global Cerebral Ischemia Through Activation of Extracellular-regulated Kinases Signaling

Author(s): ChengPing Bai* and ChenLiang Zhao

Volume 16, Issue 2, 2019

Page: [156 - 165] Pages: 10

DOI: 10.2174/1567202616666190618114250

Price: $65

Abstract

Introduction: The effect of hydrogen sulfide (H2S) on global cerebral ischemia remains partially understood. This study aimed to investigate the neuroprotective effect of sodium hydrosulfide (NaHS, a donor of H2S) post-conditioning and its underlying mechanism in a transient global cerebral ischemia (tGCI) model.

Materials & Methods: The tGCI rat model was established by the four-vessel occlusion method. Wistar rats were randomly assigned into 6 groups: sham, tGCI, tGCI +NaHS, tGCI+vehicle, tGCI+U0126 and tGCI+U0126+NaHS groups. Neurons survival was assessed by Nissl staining and NeuN immunostaining. Levels of extracellular extracellular-regulated kinases (ERK)1/2 and p-ERK1/2 were determined by western blot and immunohistochemistry (IHC). Intraperitoneal injection of NaHS (24 µmol/kg) at 24 h post-tGCI attenuated tGCI-induced decrease of the survival and NeuN-positive neurons in the hippocampal CA1 subregion.

Results: Compared to the sham group, tGCI significantly up-regulated p-ERK1/2 protein at 26 and 48 h post-tGCI. NaHS post-conditioning further enhanced the phosphorylation of ERK1/2 at 26, 48 and 168 h post-tGCI. Nevertheless, U0126 (an inhibitor of MEK1/2) pre-treatment reduced the p-ERK1/2 level in both the tGCI+ U0126 group and the tGCI+ U0126+ NaHS group. IHC staining revealed that p-ERK1/2-positive cell could be observed in several hippocampal subregions of the rats receiving NaHS post-conditioning. Immunofluorescence staining showed that some neurons were double-stained with p-ERK1/2 and NeuN. Furthermore, U0126 pre-treatment significantly attenuated the protective effect of NaHS post-conditioning on the neurons survival and NeuNpositive neurons in CA1 subregion.

Conclusion: These results suggested that NaHS post-conditioning can protect hippocampal CA1 neurons from tGCI-induced injury, at least partially, through activation of ERK1/2 signaling.

Keywords: Hydrogen sulfide, neuroprotection, transient global cerebral ischemia (tGCI), ischemic stroke, extracellular signalregulated kinases 1 and 2 (ERK1/2).

[1]
Lee JM, Grabb MC, Zipfel GJ, Choi DW. Brain tissue responses to ischemia. J Clin Invest 2000; 106(6): 723-31. [http://dx.doi.org/10.1172/JCI11003]. [PMID: 10995780].
[2]
Benjamin EJ, Virani SS, Callaway CW, et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation 2018; 137(12): e67-e492. [http://dx.doi.org/10.1161/CIR.0000000000000558]. [PMID: 29386200].
[3]
Wu X, Zhu B, Fu L, et al. Prevalence, incidence, and mortality of stroke in the chinese island populations: A systematic review. PLoS One 2013; 8(11)e78629 [http://dx.doi.org/10.1371/journal.pone.0078629]. [PMID: 24250804].
[4]
Lee M, Schwab C, Yu S, McGeer E, McGeer PL. Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide. Neurobiol Aging 2009; 30(10): 1523-34. [http://dx.doi.org/10.1016/j.neurobiolaging.2009.06.001]. [PMID: 19631409].
[5]
Zhang X, Bian JS. Hydrogen sulfide: A neuromodulator and neuroprotectant in the central nervous system. ACS Chem Neurosci 2014; 5(10): 876-83. [http://dx.doi.org/10.1021/cn500185g]. [PMID: 25230373].
[6]
Li XJ, Li CK, Wei LY, et al. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats. Neural Regen Res 2015; 10(6): 932-7. [http://dx.doi.org/10.4103/1673-5374.158353]. [PMID: 26199610].
[7]
Lambert JP, Nicholson CK, Amin H, Amin S, Calvert JW. Hydrogen sulfide provides cardioprotection against myocardial/ischemia reperfusion injury in the diabetic state through the activation of the RISK pathway. Med Gas Res 2014; 4(1): 20. [http://dx.doi.org/10.1186/s13618-014-0020-0]. [PMID: 25525500].
[8]
Snijder PM, de Boer RA, Bos EM, et al. Gaseous hydrogen sulfide protects against myocardial ischemia-reperfusion injury in mice partially independent from hypometabolism. PLoS One 2013; 8(5)e63291 [http://dx.doi.org/10.1371/journal.pone.0063291]. [PMID: 23675473].
[9]
Tay AS, Hu LF, Lu M, Wong PT, Bian JS. Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein 90 pathway. Neuroscience 2010; 167(2): 277-86. [http://dx.doi.org/10.1016/j.neuroscience.2010.02.006]. [PMID: 20149843].
[10]
Yu Q, Lu Z, Tao L, et al. ROS-dependent neuroprotective effects of NaHS in ischemia brain injury involves the PARP/AIF pathway. Cell Physiol Biochem 2015; 36(4): 1539-51. [http://dx.doi.org/10.1159/000430317]. [PMID: 26159361].
[11]
Xuan A, Long D, Li J, et al. Hydrogen sulfide attenuates spatial memory impairment and hippocampal neuroinflammation in β-amyloid rat model of Alzheimer’s disease. J Neuroinflammation 2012; 9: 202. [http://dx.doi.org/10.1186/1742-2094-9-202]. [PMID: 22898621].
[12]
Tyagi N, Moshal KS, Sen U, et al. H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid Redox Signal 2009; 11(1): 25-33. [http://dx.doi.org/10.1089/ars.2008.2073]. [PMID: 18837652].
[13]
Gheibi S, Aboutaleb N, Khaksari M, et al. Hydrogen sulfide protects the brain against ischemic reperfusion injury in a transient model of focal cerebral ischemia. J Mol Neurosci 2014; 54(2): 264-70. [http://dx.doi.org/10.1007/s12031-014-0284-9]. [PMID: 24643521].
[14]
Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011; 75(1): 50-83. [http://dx.doi.org/10.1128/MMBR.00031-10]. [PMID: 21372320].
[15]
Hu Y, Duan M, Liang S, Wang Y, Feng Y. Senkyunolide I protects rat brain against focal cerebral ischemia-reperfusion injury by up-regulating p-Erk1/2, Nrf2/HO-1 and inhibiting caspase 3. Brain Res 2015; 1605: 39-48. [http://dx.doi.org/10.1016/j.brainres.2015.02.015]. [PMID: 25698615].
[16]
Liu C, Du Q, Zhang X, Tang Z, Ji H, Li Y. Clematichinenoside serves as a neuroprotective agent against ischemic stroke: The synergistic action of ERK1/2 and cPKC pathways. Front Cell Neurosci 2016; 9: 517. [http://dx.doi.org/10.3389/fncel.2015.00517]. [PMID: 26793066].
[17]
Jiang C, Yu K, Wu Y, et al. Enriched environment enhances poststroke neurological function recovery on rat: Involvement of p-ERK1/2. J Stroke Cerebrovasc Dis 2016; 25(7): 1590-8. [http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2016.03.004]. [PMID: 27068861].
[18]
Zhou H, Yang WS, Li Y, et al. Oleoylethanolamide attenuates apoptosis by inhibiting the TLR4/NF-κB and ERK1/2 signaling pathways in mice with acute ischemic stroke. Naunyn Schmiedebergs Arch Pharmacol 2017; 390(1): 77-84. [http://dx.doi.org/10.1007/s00210-016-1309-4]. [PMID: 27738712].
[19]
Zheng YQ, Liu JX, Wang JN, Xu L. Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res 2007; 1138: 86-94. [http://dx.doi.org/10.1016/j.brainres.2006.12.064]. [PMID: 17274961].
[20]
Sawe N, Steinberg G, Zhao H. Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res 2008; 86(8): 1659-69. [http://dx.doi.org/10.1002/jnr.21604]. [PMID: 18189318].
[21]
Bai CP, Zhao C, Shen L. Post-treatment with a hydrogen sulfide donor limits neuronal injury and modulates potassium voltage-gated channel subfamily D member 2 (Kv4.2) and Potassium Channel Interacting Protein 3 (KChIP3) during transient global cerebral ischemia. Curr Neurovasc Res 2017; 14(4): 397-405. [http://dx.doi.org/10.2174/1567202614666171108113447]. [PMID: 29119925].
[22]
Li Z, Wang Y, Xie Y, Yang Z, Zhang T. Protective effects of exogenous hydrogen sulfide on neurons of hippocampus in a rat model of brain ischemia. Neurochem Res 2011; 36(10): 1840-9. [http://dx.doi.org/10.1007/s11064-011-0502-6]. [PMID: 21603936].
[23]
Wei X, Zhang B, Cheng L, et al. Hydrogen sulfide induces neuroprotection against experimental stroke in rats by down-regulation of AQP4 via activating PKC. Brain Res 2015; 1622: 292-9. [http://dx.doi.org/10.1016/j.brainres.2015.07.001]. [PMID: 26168888].
[24]
Kimura Y, Goto Y, Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal 2010; 12(1): 1-13. [http://dx.doi.org/10.1089/ars.2008.2282]. [PMID: 19852698].
[25]
Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH. Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 1999; 19(22): RC39. [http://dx.doi.org/10.1523/JNEUROSCI.19-22-j0002.1999]. [PMID: 10559429].
[26]
Ren C, Du A, Li D, Sui J, Mayhan WG, Zhao H. Dynamic change of hydrogen sulfide during global cerebral ischemia-reperfusion and its effect in rats. Brain Res 2010; 1345: 197-205. [http://dx.doi.org/10.1016/j.brainres.2010.05.017]. [PMID: 20478278].
[27]
Irving EA, Barone FC, Reith AD, Hadingham SJ, Parsons AA. Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Brain Res Mol Brain Res 2000; 77(1): 65-75. [http://dx.doi.org/10.1016/S0169-328X(00)00043-7]. [PMID: 10814833].
[28]
Lee CH, Yoo KY, Park OK, et al. Phosphorylated extracellular signal-regulated kinase 1/2 immunoreactivity and its protein levels in the gerbil hippocampus during normal aging. Mol Cells 2010; 29(4): 373-8. [http://dx.doi.org/10.1007/s10059-010-0046-7]. [PMID: 20213312].
[29]
Hu X, Wu X, Xu J, Zhou J, Han X, Guo J. Src kinase up-regulates the ERK cascade through inactivation of protein phosphatase 2A following cerebral ischemia. BMC Neurosci 2009; 10: 74. [http://dx.doi.org/10.1186/1471-2202-10-74]. [PMID: 19602257].
[30]
Zhan L, Yan H, Zhou H, Sun W, Hou Q, Xu E. Hypoxic preconditioning attenuates neuronal cell death by preventing MEK/ERK signaling pathway activation after transient global cerebral ischemia in adult rats. Mol Neurobiol 2013; 48(1): 109-19. [http://dx.doi.org/10.1007/s12035-013-8436-4]. [PMID: 23519519].
[31]
Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 2005; 288(2): H971-6. [http://dx.doi.org/10.1152/ajpheart.00374.2004]. [PMID: 15358610].
[32]
Nozaki K, Nishimura M, Hashimoto N. Mitogen-activated protein kinases and cerebral ischemia. Mol Neurobiol 2001; 23(1): 1-19. [http://dx.doi.org/10.1385/MN:23:1:01]. [PMID: 11642541].
[33]
Wang S, Wei H, Cai M, et al. Genistein attenuates brain damage induced by transient cerebral ischemia through up-regulation of ERK activity in ovariectomized mice. Int J Biol Sci 2014; 10(4): 457-65. [http://dx.doi.org/10.7150/ijbs.7562]. [PMID: 24719563].
[34]
Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H. A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal 2009; 11(2): 205-14. [http://dx.doi.org/10.1089/ars.2008.2132]. [PMID: 18754702].
[35]
Jang H, Oh MY, Kim YJ, et al. Hydrogen sulfide treatment induces angiogenesis after cerebral ischemia. J Neurosci Res 2014; 92(11): 1520-8. [http://dx.doi.org/10.1002/jnr.23427]. [PMID: 24939171].
[36]
Schrader LA, Birnbaum SG, Nadin BM, et al. ERK/MAPK regulates the Kv4.2 potassium channel by direct phosphorylation of the pore-forming subunit. Am J Physiol Cell Physiol 2006; 290(3): C852-61. [http://dx.doi.org/10.1152/ajpcell.00358.2005]. [PMID: 16251476].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy