Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Docking and 3D-QSAR Studies of Hydrazone and Triazole Derivatives for Selective Inhibition of GRK2 over ROCK2

Author(s): Seketoulie Keretsu, Swapnil Pandurang Bhujbal and Seung Joo Cho*

Volume 17, Issue 5, 2020

Page: [618 - 632] Pages: 15

DOI: 10.2174/1570180816666190618105320

Price: $65

Abstract

Introduction: G protein-coupled receptor kinase 2 (GRK2) is known to be implicated in heart failure, and therefore serves as an important drug target. GRK2 belongs to the protein kinase A, G, and C family and shares high sequence similarity with its closely related protein, the Rhoassociated coiled-coil protein kinase 2 (ROCK2). Therefore, selective inhibition of GRK2 over ROCK2 is considered crucial for heart failure therapy.

Objective: To understand the structural factors for enhancing the inhibitory activity for GRK2 and selectivity over ROCK2, we analyzed and compared molecular interactions using the same set of ligands against both receptors.

Methods: We have performed molecular docking and three-dimensional quantitative structure activity relationship (3D-QSAR) studies on a series of hydrazone and triazole derivatives.

Results: The presence of hydrophobic substituents at the triazole ring, electronegative substituents between the pyridine and triazole ring and hydrophobic substituents near the benzene ring increases the activity of both kinases. Whereas, having non-bulky substituents near the triazole ring, bulky and hydrophobic substations at the benzene ring and electronegative and H-bond acceptor substituents at the triazole ring showed a higher inhibitory preference for GRK2 over ROCK2.

Conclusion: The outcome of this study may be used in the future development of potent GRK2 inhibitors having ROCK2 selectivity.

Keywords: GRK2 Kinase, ROCK2 Kinase, CoMFA, CoMSIA, 3D-QSAR, molecular docking.

Graphical Abstract

[1]
Braunwald, E. Heart failure. JACC Heart Fail., 2013, 1(1), 1-20.
[http://dx.doi.org/10.1016/j.jchf.2012.10.002] [PMID: 24621794]
[2]
Braunwald, E. The war against heart failure: the Lancet lecture. Lancet, 2015, 385(9970), 812-824.
[http://dx.doi.org/10.1016/S0140-6736(14)61889-4] [PMID: 25467564]
[3]
Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Després, J.P.; Fullerton, H.J.; Howard, V.J.; Huffman, M.D.; Isasi, C.R.; Jiménez, M.C.; Judd, S.E.; Kissela, B.M.; Lichtman, J.H.; Lisabeth, L.D.; Liu, S.; Mackey, R.H.; Magid, D.J.; McGuire, D.K.; Mohler, E.R., III; Moy, C.S.; Muntner, P.; Mussolino, M.E.; Nasir, K.; Neumar, R.W.; Nichol, G.; Palaniappan, L.; Pandey, D.K.; Reeves, M.J.; Rodriguez, C.J.; Rosamond, W.; Sorlie, P.D.; Stein, J.; Towfighi, A.; Turan, T.N.; Virani, S.S.; Woo, D.; Yeh, R.W.; Turner, M.B. Executive summary: Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation, 2016, 133(4), 447-454.
[http://dx.doi.org/10.1161/CIR.0000000000000366] [PMID: 26811276]
[4]
Lefkowitz, R.J.; Stadel, J.M.; Caron, M.G. Adenylate cyclase-coupled beta-adrenergic receptors: structure and mechanisms of activation and desensitization. Annu. Rev. Biochem., 1983, 52(1), 159-186.
[http://dx.doi.org/10.1146/annurev.bi.52.070183.001111] [PMID: 6137187]
[5]
Sutherland, E.W.; Robison, G.A.; Butcher, R.W. Some aspects of the biological role of adenosine 3′, 5′-monophosphate (cyclic AMP). Circulation, 1968, 37(2), 279-306.
[http://dx.doi.org/10.1161/01.CIR.37.2.279]
[6]
Lymperopoulos, A.; Rengo, G.; Funakoshi, H.; Eckhart, A.D.; Koch, W.J. Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat. Med., 2007, 13(3), 315-323.
[http://dx.doi.org/10.1038/nm1553] [PMID: 17322894]
[7]
Pearce, L.R.; Komander, D.; Alessi, D.R. The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol., 2010, 11(1), 9-22.
[http://dx.doi.org/10.1038/nrm2822] [PMID: 20027184]
[8]
Bouley, R.; Waldschmidt, H. V.; Cato, M. C.; Cannavo, A.; Song, J.; Cheung, J. Y.; Yao, X.-Q.; Koch, W. J.; Larsen, S. D.; Tesmer, J. J. structural determinants influencing the potency and selectivity of indazole-paroxetine hybrid g protein-coupled receptor kinase 2 inhibitors Mol. Pharmacol., 2017, 92(62), 117.110130.
[9]
Matkovich, S.J.; Diwan, A.; Klanke, J.L.; Hammer, D.J.; Marreez, Y.; Odley, A.M.; Brunskill, E.W.; Koch, W.J.; Schwartz, R.J.; Dorn, G.W., II Cardiac-specific ablation of G-protein receptor kinase 2 redefines its roles in heart development and β-adrenergic signaling. Circ. Res., 2006, 99(9), 996-1003.
[http://dx.doi.org/10.1161/01.RES.0000247932.71270.2c] [PMID: 17008600]
[10]
Waldschmidt, H.V.; Homan, K.T.; Cato, M.C.; Cruz-Rodríguez, O.; Cannavo, A.; Wilson, M.W.; Song, J.; Cheung, J.Y.; Koch, W.J.; Tesmer, J.J.; Larsen, S.D. Structure-based design of highly selective and potent G protein-coupled receptor kinase 2 inhibitors based on paroxetine. J. Med. Chem., 2017, 60(7), 3052-3069.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00112] [PMID: 28323425]
[11]
Dzimiri, N.; Muiya, P.; Andres, E.; Al-Halees, Z. Differential functional expression of human myocardial G protein receptor kinases in center ventricular cardiac diseases. Eur. J. Pharmacol., 2004, 489(3), 167-177.
[http://dx.doi.org/10.1016/j.ejphar.2004.03.015] [PMID: 15087239]
[12]
Guccione, M.; Ettari, R.; Taliani, S.; Da Settimo, F.; Zappalà, M.; Grasso, S. G-protein-coupled receptor kinase 2 (GRK2) inhibitors: current trends and future perspectives. J. Med. Chem., 2016, 59(20), 9277-9294.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01939] [PMID: 27362616]
[13]
Montó, F.; Oliver, E.; Vicente, D.; Rueda, J.; Agüero, J.; Almenar, L.; Ivorra, M.D.; Barettino, D.; D’Ocon, P. Different expression of adrenoceptors and GRKs in the human myocardium depends on heart failure etiology and correlates to clinical variables. Am. J. Physiol. Heart Circ. Physiol., 2012, 303(3), H368-H376.
[http://dx.doi.org/10.1152/ajpheart.01061.2011] [PMID: 22685168]
[14]
Boureux, A.; Vignal, E.; Faure, S.; Fort, P. Evolution of the Rho family of RAS-like GTPases in eukaryotes. Mol. Biol. Evol., 2007, 24(1), 203-216.
[http://dx.doi.org/10.1093/molbev/msl145] [PMID: 17035353]
[15]
Homan, K.T.; Tesmer, J.J. Molecular basis for small molecule inhibition of G protein-coupled receptor kinases. ACS Chem. Biol., 2015, 10(1), 246-256.
[http://dx.doi.org/10.1021/cb5003976] [PMID: 24984143]
[16]
Kulanthaivel, P.; Hallock, Y.F.; Boros, C.; Hamilton, S.M.; Janzen, W.P.; Ballas, L.M.; Loomis, C.R.; Jiang, J.B.; Katz, B. Balanol: A novel and potent inhibitor of protein kinase C from the fungus Verticillium balanoides. J. Am. Chem. Soc., 1993, 115(14), 6452-6453.
[http://dx.doi.org/10.1021/ja00067a087]
[17]
Ikeda, S.; Keneko, M.; Fujiwara, S. Cardiotonic agent comprising GRK inhibitor US Patent 2007.
[18]
Mayer, G.; Wulffen, B.; Huber, C.; Brockmann, J.; Flicke, B.; Neumann, L.; Hafenbradl, D.; Klebl, B.M.; Lohse, M.J.; Krasel, C.; Blind, M. An RNA molecule that specifically inhibits G-protein-coupled receptor kinase 2 in vitro. RNA, 2008, 14(3), 524-534.
[http://dx.doi.org/10.1261/rna.821908] [PMID: 18230760]
[19]
Thal, D.M.; Homan, K.T.; Chen, J.; Wu, E.K.; Hinkle, P.M.; Huang, Z.M.; Chuprun, J.K.; Song, J.; Gao, E.; Cheung, J.Y.; Sklar, L.A.; Koch, W.J.; Tesmer, J.J. Paroxetine is a direct inhibitor of g protein-coupled receptor kinase 2 and increases myocardial contractility. ACS Chem. Biol., 2012, 7(11), 1830-1839.
[http://dx.doi.org/10.1021/cb3003013] [PMID: 22882301]
[20]
Homan, K.T.; Larimore, K.M.; Elkins, J.M.; Szklarz, M.; Knapp, S.; Tesmer, J.J. Identification and structure-function analysis of subfamily selective G protein-coupled receptor kinase inhibitors. ACS Chem. Biol., 2015, 10(1), 310-319.
[http://dx.doi.org/10.1021/cb5006323] [PMID: 25238254]
[21]
Yuriev, E.; Ramsland, P.A. Latest developments in molecular docking: 2010-2011 in review. J. Mol. Recognit., 2013, 26(5), 215-239.
[http://dx.doi.org/10.1002/jmr.2266] [PMID: 23526775]
[22]
Kubinyi, H. QSAR and 3D QSAR in drug design Part 1: Methodology. Drug Discov. Today, 1997, 2(11), 457-467.
[http://dx.doi.org/10.1016/S1359-6446(97)01079-9]
[23]
Keretsu, S.; Balasubramanian, P.K.; Bhujbal, S.P.; Cho, S.J. Receptor-guided 3D-Quantitative structure-activity relationship and docking studies of 6-Substituted 2-arylaminopurines as CDK2 kinase inhibitors. Bull. Korean Chem. Soc., 2017, 38(11), 1275-1284.
[http://dx.doi.org/10.1002/bkcs.11280]
[24]
Bhujbal, S.P.; Balasubramanian, P.K.; Cho, S.J. In silico studies on 2-substituted phenol quinazoline derivatives as RET receptor tyrosine kinase antagonists. Med. Chem. Res., 2017, 26(12), 3228-3239.
[http://dx.doi.org/10.1007/s00044-017-2016-5]
[25]
Okawa, T.; Aramaki, Y.; Yamamoto, M.; Kobayashi, T.; Fukumoto, S.; Toyoda, Y.; Henta, T.; Hata, A.; Ikeda, S.; Kaneko, M.; Hoffman, I.D.; Sang, B.C.; Zou, H.; Kawamoto, T. Design, synthesis, and evaluation of the highly selective and potent G-protein-coupled receptor kinase 2 (GRK2) inhibitor for the potential treatment of heart failure. J. Med. Chem., 2017, 60(16), 6942-6990.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00443] [PMID: 28699740]
[26]
Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110(18), 5959-5967.
[http://dx.doi.org/10.1021/ja00226a005] [PMID: 22148765]
[27]
Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem., 1994, 37(24), 4130-4146.
[http://dx.doi.org/10.1021/jm00050a010] [PMID: 7990113]
[28]
Li, Y-P.; Weng, X.; Ning, F-X.; Ou, J-B.; Hou, J-Q.; Luo, H-B.; Li, D.; Huang, Z-S.; Huang, S-L.; Gu, L-Q. 3D-QSAR studies of azaoxoisoaporphine, oxoaporphine, and oxoisoaporphine derivatives as anti-AChE and anti-AD agents by the CoMFA method. J. Mol. Graph. Model., 2013, 41, 61-67.
[http://dx.doi.org/10.1016/j.jmgm.2013.02.003] [PMID: 23500628]
[29]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[30]
Akama, T.; Dong, C.; Virtucio, C.; Sullivan, D.; Zhou, Y.; Zhang, Y-K.; Rock, F.; Freund, Y.; Liu, L.; Bu, W.; Wu, A.; Fan, X.Q.; Jarnagin, K. Linking phenotype to kinase: identification of a novel benzoxaborole hinge-binding motif for kinase inhibition and development of high-potency rho kinase inhibitors. J. Pharmacol. Exp. Ther., 2013, 347(3), 615-625.
[http://dx.doi.org/10.1124/jpet.113.207662] [PMID: 24049062]
[31]
Cramer, R.D., III; Bunce, J.D.; Patterson, D.E.; Frank, I.E. Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant. Struct.-. Act. Rel., 1988, 7(1), 18-25.
[http://dx.doi.org/10.1002/qsar.19880070105]
[32]
Green, S.M.; Marshall, G.R. 3D-QSAR: a current perspective. Trends Pharmacol. Sci., 1995, 16(9), 285-291.
[http://dx.doi.org/10.1016/S0165-6147(00)89052-5] [PMID: 7482991]
[33]
Kubinyi, H.; Martin, Y.C.; Folkers, G. 3D QSAR in drug design: volume 1: Theory methods and applications; Springer Science & Business Media, 1993, 1.
[34]
Gramatica, P. Principles of QSAR models validation: Internal and external. QSAR Comb. Sci., 2007, 26(5), 694-701.
[http://dx.doi.org/10.1002/qsar.200610151]
[35]
Tesmer, J.J.; Tesmer, V.M.; Lodowski, D.T.; Steinhagen, H.; Huber, J. Structure of human G protein-coupled receptor kinase 2 in complex with the kinase inhibitor balanol. J. Med. Chem., 2010, 53(4), 1867-1870.
[http://dx.doi.org/10.1021/jm9017515] [PMID: 20128603]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy