Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Coumarin: A Promising Scaffold for Design and Development of Bioactive Agents

Author(s): Hanan M. Alshibl*, Ebtehal S. Al-Abdullah and Hamad M. Alkahtani

Volume 16, Issue 6, 2020

Page: [837 - 852] Pages: 16

DOI: 10.2174/1573407215666190524101510

Price: $65

Abstract

Background: As coumarin derivatives are known to prevent and treat various diseases, they have attracted the attention of medicinal chemists. They have strong potential as drugs because their benzopyrone structure can interact noncovalently with numerous enzymes and receptors.

Methods: The aim of this review was to summarize the most recently published literature on coumarin derivatives in terms of their antioxidant, antimicrobial, anti-inflammatory, anticancer, and other miscellaneous properties.

Results: Coumarin derivatives have a wide range of biological activities. They exhibit antioxidant, antimicrobial, anti-inflammatory, anticancer, anti-coagulant, and anti-Alzheimer effects.

Conclusion: The coumarin nucleus is an interesting starting point for the design and development of novel bioactive agents. The present review may help medicinal chemists design biologically active molecules based on the coumarin nucleus.

Keywords: Anticancer, anti-inflammatory, antimicrobial, antioxidant, benzopyrone, coumarin.

Graphical Abstract

[1]
Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr. Med. Chem., 2005, 12(8), 887-916.
[http://dx.doi.org/10.2174/0929867053507315] [PMID: 15853704]
[2]
Perkin, W.H. On the artificial production of coumarin and formation of its homologues. J. Chem. Soc., 1868, 21, 53-61.
[http://dx.doi.org/10.1039/JS8682100053]
[3]
Soares, V.C.D.; Alves, M.B.; Souza, E.R.; Pinto, I.O.; Rubim, J.C.; Andrade, C.K.Z.; Suarez, P.A.Z. Organo-niobate ionic liquids: Synthesis, characterization and application as acid catalyst in Pechmann reactions. Int. J. Mol. Sci., 2007, 8(5), 392-398.
[http://dx.doi.org/10.3390/i8050392]
[4]
Vahabi, V.; Hatamjafari, F. Microwave assisted convenient one-pot synthesis of coumarin derivatives via Pechmann condensation catalyzed by FeF3 under solvent-free conditions and antimicrobial activities of the products. Molecules, 2014, 19(9), 13093-13103.
[http://dx.doi.org/10.3390/molecules190913093] [PMID: 25255747]
[5]
Singh, O.M.; Devi, N.S.; Thokchom, D.S.; Sharma, G.J. Novel 3-alkanoyl/aroyl/heteroaroyl-2H-chromene-2-thiones: Synthesis and evaluation of their antioxidant activities. Eur. J. Med. Chem., 2010, 45(6), 2250-2257.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.070] [PMID: 20170989]
[6]
Belavagi, N.S.; Deshapande, N.; Sunagar, M.G.; Khazi, I.A.M. A practical one-pot synthesis of coumarins in aqueous sodium bicarbonate via intramolecular Wittig reaction at room temperature. RSC Advances, 2014, 4(75), 39667-39671.
[http://dx.doi.org/10.1039/C4RA06996J]
[7]
Peng, X.M.; Damu, G.L.V.; Zhou, C. Current developments of coumarin compounds in medicinal chemistry. Curr. Pharm. Des., 2013, 19(21), 3884-3930.
[http://dx.doi.org/10.2174/1381612811319210013] [PMID: 23438968]
[8]
Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int., 2013.2013963248
[http://dx.doi.org/10.1155/2013/963248] [PMID: 23586066]
[9]
Kontogiorgis, C.; Detsi, A.; Hadjipavlou-Litina, D. Coumarin-based drugs: A patent review. Expert Opin. Ther. Pat., 2012, 22(4), 437-454.
[http://dx.doi.org/10.1517/13543776.2012.678835] [PMID: 22475457]
[10]
Bairagi, S.H.; Salaskar, P.P.; Loke, S.D.; Surve, N.N.; Tandel, D.V.; Dusara, M.D. Medicinal significance of coumarins. Int J Pharm Res., 2012, 4, 16-19.
[11]
Benci, K.; Mandić, L.; Suhina, T.; Sedić, M.; Klobučar, M.; Kraljević Pavelić, S.; Pavelić, K.; Wittine, K.; Mintas, M. Novel coumarin derivatives containing 1,2,4-triazole, 4,5-dicyanoimidazole and purine moieties: Synthesis and evaluation of their cytostatic activity. Molecules, 2012, 17(9), 11010-11025.
[http://dx.doi.org/10.3390/molecules170911010] [PMID: 22971585]
[12]
Kostova, I.; Bhatia, S.; Grigorov, P.; Balkansky, S.; Parmar, V.S.; Prasad, A.K.; Saso, L. Coumarins as antioxidants. Curr. Med. Chem., 2011, 18(25), 3929-3951.
[http://dx.doi.org/10.2174/092986711803414395] [PMID: 21824098]
[13]
Whang, W.K.; Park, H.S.; Ham, I.; Oh, M.; Namkoong, H.; Kim, H.K.; Hwang, D.W.; Hur, S.Y.; Kim, T.E.; Park, Y.G.; Kim, J.R.; Kim, J.W. Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Exp. Mol. Med., 2005, 37(5), 436-446.
[http://dx.doi.org/10.1038/emm.2005.54] [PMID: 16264268]
[14]
Vukovic, N.; Sukdolak, S.; Solujic, S.; Niciforovic, N. Substi-tuted imino and amino derivatives of 4-hydroxycoumarins as novel antioxidant, antibacterial and antifungal agents: Synthesis and in vitro assessments. Food Chem., 2010, 120(4), 1011-1018.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.040]
[15]
Hamdi, N.; Fischmeister, C.; Puerta, M.C.; Valerga, P. A rapid access to new coumarinyl chalcone and substituted chrome-no[4,3-c]pyrazol-4(1H)-ones and their antibacterial and DPPH radical scavenging activities. Med. Chem. Res., 2011, 20(4), 522-530.
[http://dx.doi.org/10.1007/s00044-010-9326-1]
[16]
Gacche, R.N.; Jadhav, S.G. Antioxidant activities and cytotoxicity of selected coumarin derivatives: Preliminary results of a structure–activity relationship study using com-putational tools. J Exp Amp Clin Med., 2012, 4(3), 165-169.
[http://dx.doi.org/10.1016/j.jecm.2012.04.007]
[17]
Kasumbwe, K.; Venugopala, K.N.; Mohanlall, V.; Odhav, B. Antimicrobial and antioxidant activities of substituted halo-genated coumarins. JMPR, 2014, 8(5), 274-281.
[18]
Arora, R.K.; Kaur, N.; Bansal, Y.; Bansal, G. Novel coumarin-benzimidazole derivatives as antioxidants and safer anti-inflammatory agents. Acta Pharm. Sin. B, 2014, 4(5), 368-375.
[http://dx.doi.org/10.1016/j.apsb.2014.07.001] [PMID: 26579406]
[19]
Song, X.Y.; Hu, J.F.; Sun, M.N.; Li, Z.P.; Wu, D.H.; Ji, H.J.; Yuan, Y.H.; Zhu, Z.X.; Han, N.; Liu, G.; Chen, N.H. IMM-H004, a novel coumarin derivative compound, protects against amyloid beta-induced neurotoxicity through a mitochondrial-dependent pathway. Neuroscience, 2013, 242, 28-38.
[http://dx.doi.org/10.1016/j.neuroscience.2013.02.049] [PMID: 23523945]
[20]
Song, X-Y.; Hu, J-F.; Sun, M-N.; Li, Z.P.; Zhu, Z.X.; Song, L.K.; Yuan, Y.H.; Liu, G.; Chen, N.H. IMM-H004, a novel coumarin derivative compound, attenuates the production of inflammatory mediatory mediators in lipopolysaccharide-activated BV2 microglia. Brain Res. Bull., 2014, 106, 30-38.
[http://dx.doi.org/10.1016/j.brainresbull.2014.05.002] [PMID: 24878446]
[21]
Randive, K.H.; Jaishree, V.; Patil, K.S.; Patil, K. Synthesis and biological evaluation of novel coumarin derivatives as antioxidant agents. Russ. J. Bioorganic Chem., 2015, 41(3), 324-332.
[http://dx.doi.org/10.1134/S1068162015030085]
[22]
Al-Amiery, A.A.; Al-Majedy, Y.K.; Kadhum, A.A.H.; Mohamad, A.B. Novel macromolecules derived from coumarin: Synthesis and antioxidant activity. Sci. Rep., 2015, 5, 11825.
[http://dx.doi.org/10.1038/srep11825] [PMID: 26134661]
[23]
Halawa, A.H.; Hassan, A.A.E.H.; El-Nassag, M.A.; El-All, M.M.A.; El-Jaleel, G.E.; Eliwa, E.M.; Bedair, A.H. Synthesis, reactions, antioxidant and anticancer evaluation of some novel coumarin derivatives using ethyl 2-(2-oxo-4-phenyl-2H-chromen-7-yloxy) acetate as a starting material. Eur. J. Chem., 2014, 5(1), 111-121.
[http://dx.doi.org/10.5155/eurjchem.5.1.111-121.860]
[24]
Saeedi, M.; Goli, F.; Mahdavi, M.; Dehghan, G.; Faramarzi, M.A.; Foroumadi, A.; Shafiee, A. Synthesis and biological investigation of some novel sulfonamide and amide derivatives containing coumarin moieties. Iran. J. Pharm. Res., 2014, 13(3), 881-892.
[PMID: 25276188]
[25]
Ghalehshahi, H.G.; Balalaie, S.; Aliahmadi, A. Peptides N-connected to hydroxycoumarin and cinnamic acid derivatives: Synthesis and fluorescence spectroscopic, antioxidant and an-timicrobial Properties. New J. Chem., 2018, 42(11), 8831-8842.
[http://dx.doi.org/10.1039/C8NJ00383A]
[26]
Dehkordi, M.F.; Dehghan, G.; Mahdavi, M.; Hosseinpour Feizi, M.A. Multispectral studies of DNA binding, antioxidant and cytotoxic activities of a new pyranochromene derivative. Spectrochim. Acta. Mol. Biomol. Spectrosc., 2015, 145, 353-359.
[http://dx.doi.org/10.1016/j.saa.2015.03.026] [PMID: 25795609]
[27]
Riveiro, M.E.; De Kimpe, N.; Moglioni, A.; Vázquez, R.; Monczor, F.; Shayo, C.; Davio, C. Coumarins: Old compounds with novel promising therapeutic perspectives. Curr. Med. Chem., 2010, 17(13), 1325-1338.
[http://dx.doi.org/10.2174/092986710790936284] [PMID: 20166938]
[28]
Hodák, K.; Jakesová, V.; Dadák, V. On the antibiotic effects of natural coumarins. VI. The relation of structure to the antibacterial effects of some natural coumarins and the neutralization of such effects. Cesk. Farm., 1967, 16(2), 86-91.
[PMID: 6044315]
[29]
Basile, A.; Sorbo, S.; Spadaro, V.; Bruno, M.; Maggio, A.; Faraone, N.; Rosselli, S. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules, 2009, 14(3), 939-952.
[http://dx.doi.org/10.3390/molecules14030939] [PMID: 19255552]
[30]
Erdelmeier, C.A.; Sticher, O. Coumarin derivatives from Eryngium campestre. Planta Med., 1985, 51(5), 407-409.
[http://dx.doi.org/10.1055/s-2007-969533] [PMID: 17342596]
[31]
Widelski, J.; Luca, S.V.; Skiba, A.; Chinou, I.; Marcourt, L.; Wolfender, J-L.; Skalicka-Wozniak, K. Isolation and antimicrobial activity of coumarin derivatives from fruits of Peucedanum luxurians Tamamsch. Molecules, 2018, 23(5), 1222.
[http://dx.doi.org/10.3390/molecules23051222] [PMID: 29783770]
[32]
Sahoo, J.; Kumar Mekap, S.; Sudhir Kumar, P. Synthesis, spectral characterization of some new 3-heteroaryl azo 4-hydroxy coumarin derivatives and their antimicrobial evaluation. J Taibah. Univ. Sci., 2015, 9(2), 187-195.
[http://dx.doi.org/10.1016/j.jtusci.2014.08.001]
[33]
Smyth, T.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. Int. J. Antimicrob. Agents, 2009, 33(5), 421-426.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.10.022] [PMID: 19155158]
[34]
Sahoo, S.S.; Shukla, S.; Nandy, S.; Sahoo, H. Synthesis of novel coumarin derivatives and its biological evaluations. Eur. J. Exp. Biol., 2012, 4(2), 899-908.
[35]
Kovač, T.; Kovač, M.; Strelec, I.; Nevistić, A.; Molnar, M. Antifungal and antiaflatoxigenic activities of coumarinyl thiosemicarbazides against Aspergillus flavus NRRL 3251. Arh. Hig. Rada Toksikol., 2017, 68(1), 9-15.
[http://dx.doi.org/10.1515/aiht-2017-68-2883] [PMID: 28365677]
[36]
Bedair, A.H.; El-Hady, N.A.; El-Latif, M.S.A.; Fakery, A.H.; El-Agrody, A.M. 4-Hydroxycoumarin in heterocyclic synthe-sis. Farmaco, 2000, 55(11), 708-714.
[http://dx.doi.org/10.1016/S0014-827X(00)00097-5] [PMID: 11204946]
[37]
Shi, X.; Lv, C.; Li, J.; Hou, Z.; Yang, X.; Zhang, Z.; Luo, X.; Yuan, Z.; Li, M. Synthesis, photoluminescent, antibacterial activities and theoretical studies of three novel coumarin and dihydropyran derivatives containing a triphenylamine group. Res. Chem. Intermed., 2015, 41(11), 8965-8974.
[http://dx.doi.org/10.1007/s11164-015-1941-5]
[38]
Sui, Y-P.; Huo, H-R.; Xin, J-J.; Li, J.; Li, X.J.; Du, X.L.; Ma, H.; Zhou, H.Y.; Zhan, H.D.; Wang, Z.J.; Li, C.; Sui, F.; Li, M.K. Antibacterial and antitumor activities of biscoumarin and dihydropyran derivatives. Molecules, 2015, 20(9), 17614-17626.
[http://dx.doi.org/10.3390/molecules200917614] [PMID: 26404230]
[39]
Li, J.; Sui, Y-P.; Xin, J-J.; Du, X.L.; Li, J.T.; Huo, H.R.; Ma, H.; Wang, W.H.; Zhou, H.Y.; Zhan, H.D.; Wang, Z.J.; Li, C.; Sui, F.; Li, X. Synthesis of biscoumarin and dihydropyran derivatives with promising antitumor and antibacterial activities. Bioorg. Med. Chem. Lett., 2015, 25(23), 5520-5523.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.063] [PMID: 26522947]
[40]
Li, J.; Lv, C-W.; Li, X.J.; Qu, D.; Hou, Z.; Jia, M.; Luo, X.X.; Li, X.; Li, M.K. Synthesis of biscoumarin and dihydropyran derivatives and evaluation of their antibacterial activity. Molecules, 2015, 20(9), 17469-17482.
[http://dx.doi.org/10.3390/molecules200917469] [PMID: 26393571]
[41]
Završnik, D.; Špirtović-Halilović, S.; Softić, D. Synthesis, structure and antibacterial activity of 3-substituted derivatives of 4-hydroxycoumarin. Period. Biol., 2011, 113(1), 93-97.
[42]
Onkar, A.P.; Kumar, A.S.; Kanakaraju, S.; Prasanna, P.; Pyd-isetty, Y.; Chandramouli, G.V.P.A. Molecular docking studies, synthesis and anti-bacterial properties of new Mannich bases. Int. J. Pharma Bio Sci., 2013, 4(2), 263-270.
[43]
Girgaonkar, M.V.; Shirodkar, S.G. Synthesis, characterization and Antimicrobial activity of some new Schiff’s bases de-rived from 3-acetyl-4-hydroxy-2H-chromen-2-one and pri-mary aromatic amines. J. Chem. Pharm. Res., 2012, 4(1), 260-264.
[44]
Mladenović, M.; Vuković, N.; Nićiforović, N.; Sukdolak, S.; Solujić, S. Synthesis and molecular descriptor characterization of novel 4-hydroxy-chromene-2-one derivatives as antimicrobial agents. Molecules, 2009, 14(4), 1495-1512.
[http://dx.doi.org/10.3390/molecules14041495] [PMID: 19384281]
[45]
Behrami, A. Antibacterial activity of coumarine derivatives synthesized from 4-chloro-chromen-2-one. The comparison with standard drug. Orient. J. Chem., 2014, 30(4), 1747-1752.
[http://dx.doi.org/10.13005/ojc/300433]
[46]
Kudale, S.D.; Deodhar, M.N. Synthesis and evaluation of some coumarin containing potential antimicrobial agents. E-J. Chem., 2012, 9, 2493-2500.
[http://dx.doi.org/10.1155/2012/953564]
[47]
López-Rojas, P.; Janeczko, M.; Kubiński, K.; Amesty, Á.; Masłyk, M.; Estévez-Braun, A. Synthesis and antimicrobial activity of 4-substituted 1,2,3-triazole-coumarin derivatives. Molecules, 2018, 23(1), 199.
[http://dx.doi.org/10.3390/molecules23010199] [PMID: 29346325]
[48]
Das, T.; Das, M.C.; Das, A.; Bhowmik, S.; Sandhu, P.; Akhter, Y.; Bhattacharjee, S.; De, U.C. Modulation of S. aureus and P. aeruginosa biofilm: An in vitro study with new coumarin derivatives. World J. Microbiol. Biotechnol., 2018, 34(11), 170.
[http://dx.doi.org/10.1007/s11274-018-2545-1] [PMID: 30406882]
[49]
Hu, Y.; Shen, Y.; Wu, X.; Tu, X.; Wang, G-X. Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents. Eur. J. Med. Chem., 2018, 143, 958-969.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.100] [PMID: 29232586]
[50]
Mangasuli, S.N.; Hosamani, K.M.; Satapute, P.; Joshi, S.D. Synthesis, molecular docking studies and biological evaluation of potent coumarin–carbonodithioate hybrids via micro-wave irradiation. Chem. Data Collect., 2018, 15–16, 115-125.
[http://dx.doi.org/10.1016/j.cdc.2018.04.001]
[51]
Al-Masoudi, N.A.; Mohammed, H.H.; Hamdy, A.M.; Akrawi, O.A.; Eleya, N.; Spannenberg, A.; Pannecouque, C.; Langer, P. Synthesis and anti-HIV Activity of new fused chromene derivatives derived from 2-amino-4-(1-naphthyl)-5-oxo-4h,5h-pyrano[3,2-c]chromene-3- carbonitrile Zeitsch für Naturforsch. B., 2013, 68(3), 229-238.
[52]
Serhan, C.N.; Chiang, N. Novel endogenous small molecules as the checkpoint controllers in inflammation and resolution: Entrée for resoleomics. Rheum. Dis. Clin. North Am., 2004, 30(1), 69-95.
[http://dx.doi.org/10.1016/S0889-857X(03)00117-0] [PMID: 15061569]
[53]
Serhan, C.N. Resolution phase of inflammation: Novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu. Rev. Immunol., 2007, 25, 101-137.
[http://dx.doi.org/10.1146/annurev.immunol.25.022106.141647] [PMID: 17090225]
[54]
Pynam, H.; Dharmesh, S.M. Antioxidant and anti-inflammatory properties of marmelosin from Bael (Aegle marmelos L.); Inhibition of TNF-α mediated inflammatory/tumor markers. Biomed. Pharmacother., 2018, 106, 98-108.
[http://dx.doi.org/10.1016/j.biopha.2018.06.053] [PMID: 29957472]
[55]
Sashidhara, K.V.; Kumar, M.; Modukuri, R.K.; Sonkar, R.; Bhatia, G.; Khanna, A.K.; Rai, S.; Shukla, R. Synthesis and anti-inflammatory activity of novel biscoumarin-chalcone hybrids. Bioorg. Med. Chem. Lett., 2011, 21(15), 4480-4484.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.002] [PMID: 21723119]
[56]
El-Haggar, R.; Abdel-Rasheed, O.A.; Nasr, T.; Ali, H.I.; Gou-dah, A.; Abotaleb, N. Synthesis, evaluation and molecular docking studies for the anti-inflammatory activity of novel 8-substituted-7-benzoyloxy-4-methyl-6-nitrocoumarin derivatives. Afr. J. Pharm. Pharmacol., 2014, 8(48), 1213-1227.
[57]
Melagraki, G.; Afantitis, A.; Igglessi-Markopoulou, O.; Detsi, A.; Koufaki, M.; Kontogiorgis, C.; Hadjipavlou-Litina, D.J. Synthesis and evaluation of the antioxidant and anti-inflammatory activity of novel coumarin-3-aminoamides and their alpha-lipoic acid adducts. Eur. J. Med. Chem., 2009, 44(7), 3020-3026.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.027] [PMID: 19232783]
[58]
Khode, S.; Maddi, V.; Aragade, P.; Palkar, M.; Ronad, P.K.; Mamledesai, S.; Thippeswamy, A.H.M.; Satyanarayana, D. Synthesis and pharmacological evaluation of a novel series of 5-(substituted)aryl-3-(3-coumarinyl)-1-phenyl-2-pyrazolines as novel anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2009, 44(4), 1682-1688.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.020] [PMID: 18986738]
[59]
Bylov, I.E.; Vasylyev, M.V.; Bilokin, Y.V. Synthesis and anti-inflammatory activity of N-substituted 2-oxo-2H-1-benzopyran-3-carboxamides and their 2-iminoanalogues. Eur. J. Med. Chem., 1999, 34(11), 997-1001.
[http://dx.doi.org/10.1016/S0223-5234(99)00119-1] [PMID: 10889323]
[60]
Jackson, S.A.; Sahni, S.; Lee, L.; Luo, Y.; Nieduzak, T.R.; Liang, G.; Chiang, Y.; Collar, N.; Fink, D.; He, W.; Laoui, A.; Merrill, J.; Boffey, R.; Crackett, P.; Rees, B.; Wong, M.; Guilloteau, J.P.; Mathieu, M.; Rebello, S.S. Design, synthesis and characterization of a novel class of coumarin-based inhibitors of inducible nitric oxide synthase. Bioorg. Med. Chem., 2005, 13(8), 2723-2739.
[http://dx.doi.org/10.1016/j.bmc.2005.02.036] [PMID: 15781384]
[61]
Ghate, M.; Kusanur, R.A.; Kulkarni, M.V. Synthesis and in vivo analgesic and anti-inflammatory activity of some bi heterocyclic coumarin derivatives. Eur. J. Med. Chem., 2005, 40(9), 882-887.
[http://dx.doi.org/10.1016/j.ejmech.2005.03.025] [PMID: 16140424]
[62]
Kalkhambkar, R.G.; Aridoss, G.; Kulkarni, G.M.; Bapset, R. M.; Mudaraddi, T.Y.; Premkumar, N.; Jeong, Y.T. Synthesis and biological activities of novel ethers of quino-linone linked with coumarins Monatshefte Für Chem - Chem Mon, 2011, 142(3), 305-315.
[http://dx.doi.org/10.1007/s00706-011-0460-3]
[63]
Reddy, C.; Goud, V.; Sreenivasulu, N.; Prasad, R. Design, synthesis and chemical characterization of some novel coumarin compounds and evaluation of their biological activity. Int J Pharma World Res., 2010, 1(2), 1-19.
[64]
Roussaki, M.; Kontogiorgis, C.A.; Hadjipavlou-Litina, D.; Hamilakis, S.; Detsi, A. A novel synthesis of 3-aryl coumarins and evaluation of their antioxidant and lipoxygenase inhibitory activity. Bioorg. Med. Chem. Lett., 2010, 20(13), 3889-3892.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.022] [PMID: 20627725]
[65]
Lu, X-Y.; Wang, Z-C.; Ren, S-Z.; Shen, F-Q.; Man, R-J.; Zhu, H-L. Coumarin sulfonamides derivatives as potent and selective COX-2 inhibitors with efficacy in suppressing cancer proliferation and metastasis. Bioorg. Med. Chem. Lett., 2016, 26(15), 3491-3498.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.037] [PMID: 27349331]
[66]
Sethi, P.; Bansal, Y.; Bansal, G. Synthesis and PASS-assisted evaluation of coumarin–benzimidazole derivatives as potential anti-inflammatory and anthelmintic agents. Med. Chem. Res., 2018, 27(1), 61-71.
[http://dx.doi.org/10.1007/s00044-017-2036-1]
[67]
Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Naik, N.S.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A. Green, unexpected synthesis of bis-coumarin derivatives as potent anti-bacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2018, 143, 1744-1756.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.072] [PMID: 29133055]
[68]
Kumbar, S.S.; Hosamani, K.M.; Shettar, A.K. Physicochemical properties, antioxidant and anti-inflammatory activities of coumarin-carbonodithioate hybrids. Asian Pac. J. Trop. Biomed., 2018, 8(4), 201.
[http://dx.doi.org/10.4103/2221-1691.231282]
[69]
Koparde, S.; Hosamani, K.M.; Kulkarni, V.; Joshi, S.D. Syn-thesis of coumarin-piperazine derivatives as potent anti-microbial and anti-inflammatory agents, and molecular docking studies. Chem. Data Collect., 2018, 15–16, 197-206.
[http://dx.doi.org/10.1016/j.cdc.2018.06.001]
[70]
Amir, E.; Freedman, O.C.; Seruga, B.; Evans, D.G. Assessing women at high risk of breast cancer: a review of risk assessment models. J. Natl. Cancer Inst., 2010, 102(10), 680-691.
[http://dx.doi.org/10.1093/jnci/djq088] [PMID: 20427433]
[71]
Curini, M.; Cravotto, G.; Epifano, F.; Giannone, G. Chemistry and biological activity of natural and synthetic prenyloxycoumarins. Curr. Med. Chem., 2006, 13(2), 199-222.
[http://dx.doi.org/10.2174/092986706775197890] [PMID: 16472213]
[72]
Miri, R.; Nejati, M.; Saso, L.; Khakdan, F.; Parshad, B.; Mathur, D.; Parmar, V.S.; Bracke, M.E.; Prasad, A.K.; Sharma, S.K.; Firuzi, O. Structure-activity relationship studies of 4-methylcoumarin derivatives as anticancer agents. Pharm. Biol., 2016, 54(1), 105-110.
[http://dx.doi.org/10.3109/13880209.2015.1016183] [PMID: 26017566]
[73]
Ballazhi, L.; Popovski, E.; Jashari, A.; Imeri, F.; Ibrahimi, I.; Mikhova, B.; Mladenovska, K. Potential antiproliferative effect of isoxazolo- and thiazolo coumarin derivatives on breast cancer mediated bone and lung metastases. Acta Pharm., 2015, 65(1), 53-63.
[http://dx.doi.org/10.1515/acph-2015-0002] [PMID: 25781704]
[74]
Wu, X-Q.; Huang, C.; Jia, Y-M.; Song, B-A.; Li, J.; Liu, X-H. Novel coumarin-dihydropyrazole thio-ethanone derivatives: design, synthesis and anticancer activity. Eur. J. Med. Chem., 2014, 74, 717-725.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.014] [PMID: 24119869]
[75]
Thakor, T.; Savjani, J. Synthesis and cell line study of pyra-zole substituted coumarin derivatives. Int. J. Pharm. Tech. Res., 2014, 6(4), 1397-1406.
[76]
Pingaew, R.; Saekee, A.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents. Eur. J. Med. Chem., 2014, 85, 65-76.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.087] [PMID: 25078311]
[77]
Rahimi, R.; Mahdavi, M.; Pejman, S.; Zare, P.; Balalaei, S. Inhibition of cell proliferation and induction of apoptosis in K562 human leukemia cells by the derivative (3-NpC) from dihydro-pyranochromenes family. Acta Biochim. Pol., 2015, 62(1), 83-88.
[http://dx.doi.org/10.18388/abp.2014_825] [PMID: 25750940]
[78]
Reddy, N.S.; Mallireddigari, M.R.; Cosenza, S.; Gumireddy, K.; Bell, S.C.; Reddy, E.P.; Reddy, M.V.R. Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity. Bioorg. Med. Chem. Lett., 2004, 14(15), 4093-4097.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.016] [PMID: 15225733]
[79]
Reddy, E.P.; Reddy, M.V.R. Heteroaryl sulfones and sulfonamides and therapeutic uses thereof US Patent 8143428B2, 2004.
[80]
Mohamed, H.M.; Fouda, A.M.; Khattab, E.S.A.E.H.; El-Agrody, A.M. Synthesis, molecular properties and evaluation of the antitumor activity of 2-amino-6-methoxy-4H-benzo[h]chromenes, 6-methoxy-2-oxo-2Hbenzo[h]chromene. Curr. Bioact. Compd., 2017, 13, 356-369.
[81]
Nasr, T.; Bondock, S.; Rashed, H.M.; Fayad, W.; Youns, M.; Sakr, T.M. Novel hydrazide-hydrazone and amide substituted coumarin derivatives: Synthesis, cytotoxicity screening, microarray, radiolabeling and in vivo pharmacokinetic studies. Eur. J. Med. Chem., 2018, 151, 723-739.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.014] [PMID: 29665526]
[82]
Zhang, Z.; Bai, Z.W.; Ling, Y.; He, L.Q.; Huang, P.; Gu, H.X.; Hu, R.F. Design, synthesis and biological evaluation of novel furoxan-based coumarin derivatives as antitumor agents. Med. Chem. Res., 2018, 27(4), 1198-1205.
[http://dx.doi.org/10.1007/s00044-018-2140-x]
[83]
Naik, S.D.; Hosamani, K.M.; Vootla, S.K. Microwave synthe-sis, biological screening and computational studies of pyrimidine based novel coumarin scaffolds. Chemical Data Collections, 2018, 15–16, 207-222.
[http://dx.doi.org/10.1016/j.cdc.2018.06.002]
[84]
Ayati, A.; Oghabi Bakhshaiesh, T.; Moghimi, S.; Esmaeili, R.; Majidzadeh-A, K.; Safavi, M.; Firoozpour, L.; Emami, S.; Foroumadi, A. Synthesis and biological evaluation of new coumarins bearing 2,4-diaminothiazole-5-carbonyl moiety. Eur. J. Med. Chem., 2018, 155, 483-491.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.015] [PMID: 29908441]
[85]
Bhatia, M.S.; Ingale, K.B.; Choudhari, P.B.; Bhatia, N.M.; Sawant, R.L. Application quantum and physico chemical molecular descriptors utilizing principal components to study mode of anticoagulant activity of pyridyl chromen-2-one derivatives. Bioorg. Med. Chem., 2009, 17(4), 1654-1662.
[http://dx.doi.org/10.1016/j.bmc.2008.12.055] [PMID: 19157882]
[86]
Link, K.P. The discovery of dicumarol and its sequels. Circulation, 1959, 19(1), 97-107.
[http://dx.doi.org/10.1161/01.CIR.19.1.97] [PMID: 13619027]
[87]
Holford, N.H.G. Clinical pharmacokinetics and pharmacodynamics of warfarin. Clin. Pharmacokinet., 1986, 11(6), 483-504.
[http://dx.doi.org/10.2165/00003088-198611060-00005] [PMID: 3542339]
[88]
Kaur, R.; Naaz, F.; Sharma, S.; Mehndiratta, S.; Gupta, M.K.; Bedi, P.M.S.; Nepali, K. Screening of a library of 4-aryl/heteroaryl-4H-fused pyrans for xanthine oxidase inhibi-tion: Synthesis, biological evaluation and docking studies. Med. Chem. Res., 2015, 24(8), 3334-3349.
[http://dx.doi.org/10.1007/s00044-015-1382-0]
[89]
Bouazizi, Y.; Romdhane, A.; Jannet, H.B. Synthesis of new 3,4- dihydropyrano[c]chromene derivatives and their evaluation as acetyl cholinesterase inhibitors. Eur. J. Chem., 2014, 5(3), 457-4-62.
[90]
Zhou, X.; Wang, X-B.; Wang, T.; Kong, L-Y. Design, synthesis, and acetylcholinesterase inhibitory activity of novel coumarin analogues. Bioorg. Med. Chem., 2008, 16(17), 8011-8021.
[http://dx.doi.org/10.1016/j.bmc.2008.07.068] [PMID: 18701305]
[91]
Piazzi, L.; Cavalli, A.; Colizzi, F.; Belluti, F.; Bartolini, M.; Mancini, F.; Recanatini, M.; Andrisano, V.; Rampa, A. Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorg. Med. Chem. Lett., 2008, 18(1), 423-426.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.100] [PMID: 17998161]
[92]
Chen, Y.; Lan, Y.; Wang, S.; Zhang, H.; Xu, X.; Liu, X.; Yu, M.; Liu, B.F.; Zhang, G. Synthesis and evaluation of new coumarin derivatives as potential atypical antipsychotics. Eur. J. Med. Chem., 2014, 74, 427-439.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.012] [PMID: 24487191]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy