[1]
Hosseinimehr, S.J. Flavonoids and genomic instability induced by ionizing radiation. Drug Discov. Today, 2010, 15(21-22), 907-918.
[2]
Sage, E.; Shikazono, N. Radiation-induced clustered DNA lesions: Repair and mutagenesis. Free Radic. Biol. Med., 2017, 107, 125-135.
[3]
Smith, T.A.; Kirkpatrick, D.R.; Smith, S.; Smith, T.K.; Pearson, T.; Kailasam, A.; Herrmann, K.Z.; Schubert, J.; Agrawal, D.K. Radioprotective agents to prevent cellular damage due to ionizing radiation. J. Transl. Med., 2017, 15(1), 232.
[4]
Hosseinimehr, S.J. Trends in the development of radioprotective agents. Drug Discov. Today, 2007, 12(19-20), 794-805.
[5]
Hosseinimehr, S.J.; Mahmoudzadeh, A.; Ahmadi, A.; Ashrafi, S.A.; Shafaghati, N.; Hedayati, N. The radioprotective effect of Zataria multiflora against genotoxicity induced by γ irradiation in human blood lymphocytes. Cancer Biother. Radiopharm., 2011, 26(3), 325-329.
[6]
Hosseinimehr, S.J.; Izakmehri, M.; Ghasemi, A. In vitro protective effect of atorvastatin against ionizing radiation induced genotoxicity in human lymphocytes. Cell. Mol. Biol., 2015, 61(1), 68-71.
[7]
Hosseinimehr, S.J.; Nobakht, R.; Ghasemi, A.; Pourfallah, T.A. Radioprotective effect of mefenamic acid against radiation-induced genotoxicity in human lymphocytes. Radiat. Oncol. J., 2015, 33(3), 256-260.
[8]
Hosseinimehr, S.J.; Fathi, M.; Ghasemi, A.; Shiadeh, S.N.; Pourfallah, T.A. Celecoxib mitigates genotoxicity induced by ionizing radiation in human blood lymphocytes. Res. Pharm. Sci., 2017, 12(1), 82-87.
[9]
Hosseinimehr, S.J.; Ahmadi, A.; Beiki, D.; Habibi, E.; Mahmoudzadeh, A. Protective effects of hesperidin against genotoxicity induced by (99m)Tc-MIBI in human cultured lymphocyte cells. Nucl. Med. Biol., 2009, 36(7), 863-867.
[10]
Hosseinimehr, S.J. Natural Product as potential radioprotective agents. J. Mazand. Univ. Med. Sci., 2007, 17(61), 175-189.
[11]
Landman, G.W.; De Bock, G.H.; Van Hateren, K.J.; Van Dijk, P.R.; Groenier, K.H.; Gans, R.O.; Houweling, S.T.; Bilo, H.J.; Kleefstra, N. Safety and efficacy of gliclazide as treatment for type 2 diabetes: A systematic review and meta-analysis of randomized trials. PLoS One, 2014, 9(2)e82880
[12]
O’Brien, R.C.; Luo, M.; Balazs, N.; Mercuri, J. In vitro and in vivo antioxidant properties of gliclazide. J. Diabetes Complications, 2000, 14(4), 201-206.
[13]
Sena, C.M.; Louro, T.; Matafome, P.; Nunes, E.; Monteiro, P.; Seiça, R. Antioxidant and vascular effects of gliclazide in type 2 diabetic rats fed high-fat diet. Physiol. Res., 2009, 58(2), 203-209.
[14]
Drzewoski, J.; Zurawska-Klis, M. Effect of gliclazide modified release on adiponectin, interleukin-6, and tumor necrosis factor-alpha plasma levels in individuals with type 2 diabetes mellitus. Curr. Med. Res. Opin., 2006, 22(10), 1921-1926.
[15]
Rastkhah, E.; Zakeri, F.; Ghoranneviss, M.; Rajabpour, M.R.; Farshidpour, M.R.; Mianji, F.; Bayat, M. The cytokinesis-blocked micronucleus assay: Dose-response calibration curve, background frequency in the population and dose estimation. Radiat. Environ. Biophys., 2016, 55(1), 41-51.
[16]
Rossnerova, A.; Spatova, M.; Schunck, C.; Sram, R.J. Automated scoring of lymphocyte micronuclei by the meta systems metafer image cytometry system and its application in studies of human mutagen sensitivity and biodosimetry of genotoxin exposure. Mutagenesis, 2011, 26(1), 169-175.
[17]
Fenech, M. The in vitro micronucleus technique. Mutat. Res., 2000, 455(1-2), 81-95.
[18]
Hosseinimehr, S.J.; Azadbakht, M.; Mousavi, S.M.; Mahmoudzadeh, A.; Akhlaghpoor, S. Radioprotective effects of hawthorn fruit extract against gamma irradiation in mouse bone marrow cells. J. Radiat. Res. (Tokyo), 2007, 48(1), 63-68.
[19]
Macwan, C.P.; Patel, M.A. Antioxidant potential of dried root of Capparis zylanica linn. Int. J. Pharm. Pharm. Sci., 2010, 30, 58-60.
[20]
Pinkawa, M.; Brzozowska, K.; Kriehuber, R.; Eble, M.J.; Schmitz, S. Prediction of radiation-induced toxicity by in vitro radiosensitivity of lymphocytes in prostate cancer patients. Future Oncol., 2016, 12(5), 617-624.
[21]
Sharma, D.; Sandur, S.K.; Rashmi, R.; Maurya, D.K.; Suryavanshi, S.; Checker, R.; Krishnan, S.; Sainis, K.B. Differential activation of NF-κB and nitric oxide in lymphocytes regulates in vitro and in vivo radiosensitivity. Mutat. Res., 2010, 703(2), 149-157.
[22]
Weiss, J.F.; Landauer, M.R. Radioprotection by antioxidants. Ann. N. Y. Acad. Sci., 2000, 899, 44-60.
[23]
Castillo, J.; Benavente-García, O.; Lorente, J.; Alcaraz, M.; Redondo, A.; Ortuño, A.; Del Rio, J.A. Antioxidant activity and radioprotective effects against chromosomal damage induced in vivo by X-rays of flavan-3-ols (Procyanidins) from grape seeds (Vitis vinifera): Comparative study versus other phenolic and organic compounds. J. Agric. Food Chem., 2000, 48(5), 1738-1745.
[24]
Vladimir-Knežević, S.; Blažeković, B.; Štefan, M.B.; Alegro, A.; Koszegi, T.; Petrik, J. Antioxidant activities and polyphenolic contents of three selected Micromeria species from Croatia. Molecules, 2011, 16(2), 1454-1470.
[25]
Sliwinska, A.; Rogalska, A.; Szwed, M.; Kasznicki, J.; Jozwiak, Z.; Drzewoski, J. Gliclazide may have an antiapoptotic effect related to its antioxidant properties in human normal and cancer cells. Mol. Biol. Rep., 2012, 39(5), 5253-5267.
[26]
Alp, H.; Varol, S.; Celik, M.M.; Altas, M.; Evliyaoglu, O.; Tokgoz, O.; Tanrıverdi, M.H.; Uzar, E. Protective effects of beta glucan and gliclazide on brain tissue and sciatic nerve of diabetic rats induced by streptozosin. Exp. Diabetes Res., 2012, 2012230342
[27]
Memişoǧullari, R.; Türkeli, M.; Bakan, E.; Akçay, F. Effect of metformin or gliclazide on lipid peroxidation and antioxidant levels in patients with diabetes mellitus. Turk. J. Med. Sci., 2008, 38(6), 545-548.
[28]
Chan, S.P.; Colagiuri, S. Systematic review and meta-analysis of the efficacy and hypoglycemic safety of gliclazide versus other insulinotropic agents. Diabetes Res. Clin. Pract., 2015, 110(1), 75-81.
[29]
Sarkar, A.; Tiwari, A.; Bhasin, P.; Mitra, M. Pharmacological and pharmaceutical profile of gliclazide: A review. J. Appl. Pharm. Sci., 2011, 1(9), 11-19.