Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Biased Agonism as an Emerging Strategy in the Search for Better Opioid Analgesics

Author(s): Justyna Piekielna-Ciesielska, Karol Wtorek and Anna Janecka*

Volume 27, Issue 9, 2020

Page: [1562 - 1575] Pages: 14

DOI: 10.2174/0929867326666190506103124

Price: $65

Abstract

Morphine and related drugs that act through activating opioid receptors are the most effective analgesics for the relief of severe pain. They have been used for decades, despite the range of unwanted side effects that they produce, as no alternative has been found so far. The major goal of opioid research is to understand the mechanism of action of opioid receptor agonists and to improve the therapeutic utility of opioid drugs. In the search for safer and more potent analgesics, analogs with mixed opioid receptor profile gained a lot of interest. However, recently the concept of biased agonism, that highlights the fact that some ligands are able to differentially activate receptor downstream pathways, became a new approach in the design of novel drug candidates for clinical application. In this review, we summarize current knowledge on the development of opioid ligands of peptide and nonpeptide structure, showing how much opioid pharmacology evolved in recent years.

Keywords: Opioid receptors, opioid peptides, antinociceptive activity, biased agonism, bias factor, morphine.

« Previous
[1]
Breivik, H.; Collett, B.; Ventafridda, V.; Cohen, R.; Gallacher, D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur. J. Pain, 2006, 10(4), 287-333.
[http://dx.doi.org/10.1016/j.ejpain.2005.06.009] [PMID: 16095934]
[2]
Smith, H.S.; Peppin, J.F. Toward a systematic approach to opioid rotation. J. Pain Res., 2014, 7(7), 589-608.
[http://dx.doi.org/10.2147/JPR.S55782] [PMID: 25378948]
[3]
Corbett, A.D.; Henderson, G.; McKnight, A.T.; Paterson, S.J. 75 years of opioid research: the exciting but vain quest for the Holy Grail. Br. J. Pharmacol., 2006, 147(Suppl. 1), S153-S162.
[http://dx.doi.org/10.1038/sj.bjp.0706435] [PMID: 16402099]
[4]
Benyamin, R.; Trescot, A.M.; Datta, S.; Buenaventura, R.; Adlaka, R.; Sehgal, N.; Glaser, S.E.; Vallejo, R. Opioid complications and side effects. Pain Physician, 2008, 11(Suppl. 2), S105-S120.
[PMID: 18443635]
[5]
Bailey, C.P.; Connor, M. Opioids: cellular mechanisms of tolerance and physical dependence. Curr. Opin. Pharmacol., 2005, 5(1), 60-68.
[http://dx.doi.org/10.1016/j.coph.2004.08.012] [PMID: 15661627]
[6]
Brock, C.; Olesen, S.S.; Olesen, A.E.; Frøkjaer, J.B.; Andresen, T.; Drewes, A.M. Opioid-induced bowel dysfunction: pathophysiology and management. Drugs, 2012, 72(14), 1847-1865.
[http://dx.doi.org/10.2165/11634970-000000000-00000] [PMID: 22950533]
[7]
van Amsterdam, J.; van den Brink, W. The misuse of prescription opioids: a threat for Europe? Curr. Drug Abuse Rev., 2015, 8(1), 3-14.
[http://dx.doi.org/10.2174/187447370801150611184218] [PMID: 26084418]
[8]
Jones, C.M.; Mack, K.A.; Paulozzi, L.J. Pharmaceutical overdose deaths, United States, 2010. JAMA, 2013, 309(7), 657-659.
[http://dx.doi.org/10.1001/jama.2013.272] [PMID: 23423407]
[9]
Clark, A.K.; Wilder, C.M.; Winstanley, E.L. A systematic review of community opioid overdose prevention and naloxone distribution programs. J. Addict. Med., 2014, 8(3), 153-163.
[http://dx.doi.org/10.1097/ADM.0000000000000034] [PMID: 24874759]
[10]
Becker, W.C.; Fiellin, D.A. Abuse-deterrent opioid formulations - putting the potential benefits into perspective. N. Engl. J. Med., 2017, 376(22), 2103-2105.
[http://dx.doi.org/10.1056/NEJMp1701553] [PMID: 28564568]
[11]
Kieffer, B.L.; Gavériaux-Ruff, C. Exploring the opioid system by gene knockout. Prog. Neurobiol., 2002, 66(5), 285-306.
[http://dx.doi.org/10.1016/S0301-0082(02)00008-4] [PMID: 12015197]
[12]
Stein, C. Opioids, sensory systems and chronic pain. Eur. J. Pharmacol., 2013, 15716(1-3), 179-187.
[http://dx.doi.org/10.1016/j.ejphar.2013.01.076] [PMID: 23500206]
[13]
Mousa, S.A.; Shaqura, M.; Brendl, U.; Al-Khrasani, M.; Fürst, S.; Schäfer, M. Involvement of the peripheral sensory and sympathetic nervous system in the vascular endothelial expression of ICAM-1 and the recruitment of opioid-containing immune cells to inhibit inflammatory pain. Brain Behav. Immun., 2010, 24(8), 1310-1323.
[http://dx.doi.org/10.1016/j.bbi.2010.06.008] [PMID: 20600813]
[14]
Balogh, M.; Zádori, Z.S.; Lázár, B.; Karádi, D.; László, S.; Mousa, S.A.; Hosztafi, S.; Zádor, F.; Riba, P.; Schäfer, M.; Fürst, S.; Al-Khrasani, M. The peripheral versus central antinociception of a novel opioid agonist: acute inflammatory pain in rats. Neurochem. Res., 2018, 43(6), 1250-1257.
[http://dx.doi.org/10.1007/s11064-018-2542-7] [PMID: 29725918]
[15]
Zhang, T.; Zhang, N.; Zhang, R.; Zhao, W.; Chen, Y.; Wang, Z.; Xu, B.; Zhang, M.; Shi, X.; Zhang, Q.; Guo, Y.; Xiao, J.; Chen, D.; Fang, Q. Preemptive intrathecal administration of endomorphins relieves inflammatory pain in male mice via inhibition of p38 MAPK signaling and regulation of inflammatory cytokines. J. Neuroinflammation, 2018, 15(1), 320.
[http://dx.doi.org/10.1186/s12974-018-1358-3] [PMID: 30442166]
[16]
Harrison, L.M.; Kastin, A.J.; Zadina, J.E. Opiate tolerance and dependence: receptors, G-proteins, and antiopiates. Peptides, 1998, 19(9), 1603-1630.
[http://dx.doi.org/10.1016/S0196-9781(98)00126-0] [PMID: 9864069]
[17]
Kieffer, B.L. Opioids: first lessons from knockout mice. Trends Pharmacol. Sci., 1999, 20(1), 19-26.
[http://dx.doi.org/10.1016/S0165-6147(98)01279-6] [PMID: 10101958]
[18]
Clark, J.A.; Liu, L.; Price, M.; Hersh, B.; Edelson, M.; Pasternak, G.W. Kappa opiate receptor multiplicity: evidence for two U50,488-sensitive kappa 1 subtypes and a novel kappa 3 subtype. J. Pharmacol. Exp. Ther., 1989, 251(2), 461-468.
[PMID: 2553920]
[19]
Janecka, A.; Fichna, J.; Janecki, T. Opioid receptors and their ligands. Curr. Top. Med. Chem., 2004, 4(1), 1-17.
[http://dx.doi.org/10.2174/1568026043451618] [PMID: 14754373]
[20]
Evans, C.J.; Keith, D.E. Jr.; Morrison, H.; Magendzo, K.; Edwards, R.H. Cloning of a delta opioid receptor by functional expression. Science, 1992, 258(5090), 1952-1955.
[http://dx.doi.org/10.1126/science.1335167] [PMID: 1335167]
[21]
Kieffer, B.L.; Befort, K.; Gaveriaux-Ruff, C.; Hirth, C.G. The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc. Natl. Acad. Sci. USA, 1992, 89(24), 12048-12052.
[http://dx.doi.org/10.1073/pnas.89.24.12048] [PMID: 1334555]
[22]
Chen, Y.; Mestek, A.; Liu, J.; Hurley, J.A.; Yu, L. Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol. Pharmacol., 1993, 44(1), 8-12.
[PMID: 8393525]
[23]
Roques, B.P. Novel approaches to targeting neuropeptide systems. Trends Pharmacol. Sci., 2000, 21(12), 475-483.
[http://dx.doi.org/10.1016/S0165-6147(00)01571-6] [PMID: 11121837]
[24]
Gu, Z.H.; Wang, B.; Kou, Z.Z.; Bai, Y.; Chen, T.; Dong, Y.L.; Li, H.; Li, Y.Q. Endomorphins: promising endogenous opioid peptides for the development of novel analgesics. Neurosignals, 2017, 25(1), 98-116.
[http://dx.doi.org/10.1159/000484909] [PMID: 29132133]
[25]
Janecka, A.; Gentilucci, L. Cyclic endomorphin analogs in targeting opioid receptors to achieve pain relief. Future Med. Chem., 2014, 6(18), 2093-2101.
[http://dx.doi.org/10.4155/fmc.14.132] [PMID: 25531970]
[26]
Janecka, A.; Staniszewska, R.; Fichna, J. Endomorphin analogs. Curr. Med. Chem., 2007, 14(30), 3201-3208.
[http://dx.doi.org/10.2174/092986707782793880] [PMID: 18220754]
[27]
Feehan, A.K.; Morgenweck, J.; Zhang, X.; Amgott-Kwan, A.T.; Zadina, J.E. Novel endomorphin analogs are more potent and longer-lasting analgesics in neuropathic, inflammatory, postoperative, and visceral pain relative to morphine. J. Pain, 2017, 18(12), 1526-1541.
[http://dx.doi.org/10.1016/j.jpain.2017.08.007] [PMID: 28939014]
[28]
Lee, Y.S.; Petrov, R.; Park, C.K.; Ma, S.W.; Davis, P.; Lai, J.; Porreca, F.; Vardanyan, R.; Hruby, V.J. Development of novel enkephalin analogues that have enhanced opioid activities at both mu and delta opioid receptors. J. Med. Chem., 2007, 50(22), 5528-5532.
[http://dx.doi.org/10.1021/jm061465o] [PMID: 17927164]
[29]
Egleton, R.D.; Mitchell, S.A.; Huber, J.D.; Janders, J.; Stropova, D.; Polt, R.; Yamamura, H.I.; Hruby, V.J.; Davis, T.P. Improved bioavailability to the brain of glycosylated Met-enkephalin analogs. Brain Res., 2000, 881(1), 37-46.
[http://dx.doi.org/10.1016/S0006-8993(00)02794-3] [PMID: 11033091]
[30]
Walker, J.M.; Sandman, C.A.; Berntson, G.G.; McGivern, R.F. Endorphin analogs with potent and long-lasting analgesic effects. Pharmacol. Biochem. Behav., 1977, 7(6), 543-548.
[http://dx.doi.org/10.1016/0091-3057(77)90251-9] [PMID: 594098]
[31]
Hall, S.M.; Lee, Y.S.; Hruby, V.J. Dynorphin A analogs for the treatment of chronic neuropathic pain. Future Med. Chem., 2016, 8(2), 165-177.
[http://dx.doi.org/10.4155/fmc.15.164] [PMID: 26824470]
[32]
Rosenbaum, D.M.; Rasmussen, S.G.; Kobilka, B.K. The structure and function of G-protein-coupled receptors. Nature, 2009, 459(7245), 356-363.
[http://dx.doi.org/10.1038/nature08144] [PMID: 19458711]
[33]
Milligan, G.; Kostenis, E. Heterotrimeric G-proteins: a short history. Br. J. Pharmacol., 2006, 147(Suppl. 1), S46-S55.
[http://dx.doi.org/10.1038/sj.bjp.0706405] [PMID: 16402120]
[34]
Ma, L.; Pei, G. Beta-arrestin signaling and regulation of transcription. J. Cell Sci., 2007, 120(Pt 2), 213-218.
[http://dx.doi.org/10.1242/jcs.03338] [PMID: 17215450]
[35]
Defea, K. Beta-arrestins and heterotrimeric G-proteins: collaborators and competitors in signal transduction. Br. J. Pharmacol., 2008, 153(Suppl. 1), S298-S309.
[http://dx.doi.org/10.1038/sj.bjp.0707508] [PMID: 18037927]
[36]
Nobles, K.N.; Xiao, K.; Ahn, S.; Shukla, A.K.; Lam, C.M.; Rajagopal, S.; Strachan, R.T.; Huang, T.Y.; Bressler, E.A.; Hara, M.R.; Shenoy, S.K.; Gygi, S.P.; Lefkowitz, R.J. Distinct phosphorylation sites on the β(2)-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci. Signal., 2011, 4(185), ra51.
[http://dx.doi.org/10.1126/scisignal.2001707] [PMID: 21868357]
[37]
Reiter, E.; Ahn, S.; Shukla, A.K.; Lefkowitz, R.J. Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu. Rev. Pharmacol. Toxicol., 2012, 52, 179-197.
[http://dx.doi.org/10.1146/annurev.pharmtox.010909.105800] [PMID: 21942629]
[38]
Sutcliffe, K.J.; Henderson, G.; Kelly, E.; Sessions, R.B. Drug binding poses relate structure with efficacy in the μ opioid receptor. J. Mol. Biol., 2017, 429(12), 1840-1851.
[http://dx.doi.org/10.1016/j.jmb.2017.05.009] [PMID: 28502792]
[39]
McPherson, J.; Rivero, G.; Baptist, M.; Llorente, J.; Al-Sabah, S.; Krasel, C.; Dewey, W.L.; Bailey, C.P.; Rosethorne, E.M.; Charlton, S.J.; Henderson, G.; Kelly, E. μ-opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization. Mol. Pharmacol., 2010, 78(4), 756-766.
[http://dx.doi.org/10.1124/mol.110.066613] [PMID: 20647394]
[40]
Cone, E.J.; Gorodetzky, C.W.; Yousefnejad, D.; Buchwald, W.F.; Johnson, R.E. The metabolism and excretion of buprenorphine in humans. Drug Metab. Dispos., 1984, 12(5), 577-581.
[PMID: 6149907]
[41]
Toll, L.; Berzetei-Gurske, I.P.; Polgar, W.E.; Brandt, S.R.; Adapa, I.D.; Rodriguez, L.; Schwartz, R.W.; Haggart, D.; O’Brien, A.; White, A.; Kennedy, J.M.; Craymer, K.; Farrington, L.; Auh, J.S. Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications. NIDA Res. Monogr., 1998, 178, 440-466.
[PMID: 9686407]
[42]
Huang, W.; Manglik, A.; Venkatakrishnan, A.J.; Laeremans, T.; Feinberg, E.N.; Sanborn, A.L.; Kato, H.E.; Livingston, K.E.; Thorsen, T.S.; Kling, R.C.; Granier, S.; Gmeiner, P.; Husbands, S.M.; Traynor, J.R.; Weis, W.I.; Steyaert, J.; Dror, R.O.; Kobilka, B.K. Structural insights into µ-opioid receptor activation. Nature, 2015, 524(7565), 315-321.
[http://dx.doi.org/10.1038/nature14886] [PMID: 26245379]
[43]
Manglik, A.; Kruse, A.C.; Kobilka, T.S.; Thian, F.S.; Mathiesen, J.M.; Sunahara, R.K.; Pardo, L.; Weis, W.I.; Kobilka, B.K.; Granier, S. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature, 2012, 485(7398), 321-326.
[http://dx.doi.org/10.1038/nature10954] [PMID: 22437502]
[44]
Granier, S.; Manglik, A.; Kruse, A.C.; Kobilka, T.S.; Thian, F.S.; Weis, W.I.; Kobilka, B.K. Structure of the δ-opioid receptor bound to naltrindole. Nature, 2012, 485(7398), 400-404.
[http://dx.doi.org/10.1038/nature11111] [PMID: 22596164]
[45]
Wu, H.; Wacker, D.; Mileni, M.; Katritch, V.; Han, G.W.; Vardy, E.; Liu, W.; Thompson, A.A.; Huang, X.P.; Carroll, F.I.; Mascarella, S.W.; Westkaemper, R.B.; Mosier, P.D.; Roth, B.L.; Cherezov, V.; Stevens, R.C. Structure of the human κ-opioid receptor in complex with JDTic. Nature, 2012, 485(7398), 327-332.
[http://dx.doi.org/10.1038/nature10939] [PMID: 22437504]
[46]
Zadina, J.E.; Hackler, L.; Ge, L.J.; Kastin, A.J. A potent and selective endogenous agonist for the mu-opiate receptor. Nature, 1997, 386(6624), 499-502.
[http://dx.doi.org/10.1038/386499a0] [PMID: 9087409]
[47]
Bell, R.M.; Malick, J.B. Enkephalins and endorphins: a major discovery. JAMA, 1976, 236(25), 2887-2888.
[http://dx.doi.org/10.1001/jama.1976.03270260043030] [PMID: 186644]
[48]
Chavkin, C.; James, I.F.; Goldstein, A. Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science, 1982, 215(4531), 413-415.
[http://dx.doi.org/10.1126/science.6120570] [PMID: 6120570]
[49]
Pasternak, G.W.; Pan, Y.X. Mu opioids and their receptors: evolution of a concept. Pharmacol. Rev., 2013, 65(4), 1257-1317.
[http://dx.doi.org/10.1124/pr.112.007138] [PMID: 24076545]
[50]
Goodman, A.J.; Le Bourdonnec, B.; Dolle, R.E. Mu opioid receptor antagonists: recent developments. ChemMedChem, 2007, 2(11), 1552-1570.
[http://dx.doi.org/10.1002/cmdc.200700143] [PMID: 17918759]
[51]
Gendron, L.; Cahill, C.M.; von Zastrow, M.; Schiller, P.W.; Pineyro, G. Molecular pharmacology of δ-opioid receptors. Pharmacol. Rev., 2016, 68(3), 631-700.
[http://dx.doi.org/10.1124/pr.114.008979] [PMID: 27343248]
[52]
Narita, M.; Funada, M.; Suzuki, T. Regulations of opioid dependence by opioid receptor types. Pharmacol. Ther., 2001, 89(1), 1-15.
[http://dx.doi.org/10.1016/S0163-7258(00)00099-1] [PMID: 11316510]
[53]
Galligan, J.J.; Mosberg, H.I.; Hurst, R.; Hruby, V.J.; Burks, T.F. Cerebral delta opioid receptors mediate analgesia but not the intestinal motility effects of intracerebroventricularly administered opioids. J. Pharmacol. Exp. Ther., 1984, 229(3), 641-648.
[PMID: 6327967]
[54]
Lalanne, L.; Ayranci, G.; Kieffer, B.L.; Lutz, P.E. The kappa opioid receptor: from addiction to depression, and back. Front. Psychiatry, 2014, 5, 170.
[http://dx.doi.org/10.3389/fpsyt.2014.00170] [PMID: 25538632]
[55]
Horwell, D.C. Kappa opioid analgesics. Drugs Future, 1988, 13, 1061-1071.
[http://dx.doi.org/10.1358/dof.1988.013.12.77462]
[56]
Kapitzke, D.; Vetter, I.; Cabot, P.J. Endogenous opioid analgesia in peripheral tissues and the clinical implications for pain control. Ther. Clin. Risk Manag., 2005, 1(4), 279-297.
[PMID: 18360571]
[57]
Schiller, P.W. Bi- or multifunctional opioid peptide drugs. Life Sci., 2010, 86(15-16), 598-603.
[http://dx.doi.org/10.1016/j.lfs.2009.02.025] [PMID: 19285088]
[58]
Morphy, R.; Rankovic, Z. Designing multiple ligands - medicinal chemistry strategies and challenges. Curr. Pharm. Des., 2009, 15(6), 587-600.
[http://dx.doi.org/10.2174/138161209787315594] [PMID: 19199984]
[59]
Balboni, G.; Salvadori, S.; Trapella, C.; Knapp, B.I.; Bidlack, J.M.; Lazarus, L.H.; Peng, X.; Neumeyer, J.L. Evolution of the bifunctional lead μ agonist / δ antagonist containing the dmt-tic opioid pharmacophore. ACS Chem. Neurosci., 2010, 1(2), 155-164.
[http://dx.doi.org/10.1021/cn900025j] [PMID: 20352071]
[60]
Zhu, Y.; King, M.A.; Schuller, A.G.; Nitsche, J.F.; Reidl, M.; Elde, R.P.; Unterwald, E.; Pasternak, G.W.; Pintar, J.E. Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron, 1999, 24(1), 243-252.
[http://dx.doi.org/10.1016/S0896-6273(00)80836-3] [PMID: 10677041]
[61]
Mosberg, H.I.; Yeomans, L.; Anand, J.P.; Porter, V.; Sobczyk-Kojiro, K.; Traynor, J.R.; Jutkiewicz, E.M. Development of a bioavailable μ opioid receptor (MOPr) agonist, δ opioid receptor (DOPr) antagonist peptide that evokes antinociception without development of acute tolerance. J. Med. Chem., 2014, 57(7), 3148-3153.
[http://dx.doi.org/10.1021/jm5002088] [PMID: 24641190]
[62]
Purington, L.C.; Sobczyk-Kojiro, K.; Pogozheva, I.D.; Traynor, J.R.; Mosberg, H.I. Development and in vitro characterization of a novel bifunctional μ-agonist/δ-antagonist opioid tetrapeptide. ACS Chem. Biol., 2011, 6(12), 1375-1381.
[http://dx.doi.org/10.1021/cb200263q] [PMID: 21958158]
[63]
Greedy, B.M.; Bradbury, F.; Thomas, M.P.; Grivas, K.; Cami-Kobeci, G.; Archambeau, A.; Bosse, K.; Clark, M.J.; Aceto, M.; Lewis, J.W.; Traynor, J.R.; Husbands, S.M. Orvinols with mixed kappa/mu opioid receptor agonist activity. J. Med. Chem., 2013, 56(8), 3207-3216.
[http://dx.doi.org/10.1021/jm301543e] [PMID: 23438330]
[64]
Almatroudi, A.; Ostovar, M.; Bailey, C.P.; Husbands, S.M.; Bailey, S.J. Antidepressant-like effects of BU10119, a novel buprenorphine analogue with mixed κ/μ receptor antagonist properties, in mice. Br. J. Pharmacol., 2017, 175(14), 2869-2880.
[http://dx.doi.org/10.1111/bph.14060] [PMID: 28967123]
[65]
Martin, N.A.; Prather, P.L. Interaction of co-expressed mu- and delta-opioid receptors in transfected rat pituitary GH(3) cells. Mol. Pharmacol., 2001, 59(4), 774-783.
[http://dx.doi.org/10.1124/mol.59.4.774] [PMID: 11259622]
[66]
Cowell, S.M.; Lee, Y.S. Biphalin: the foundation of bivalent ligands. Curr. Med. Chem., 2016, 23(29), 3267-3284.
[http://dx.doi.org/10.2174/0929867323666160510122731] [PMID: 27160537]
[67]
Kenakin, T. Functional selectivity and biased receptor signaling. J. Pharmacol. Exp. Ther., 2011, 336(2), 296-302.
[http://dx.doi.org/10.1124/jpet.110.173948] [PMID: 21030484]
[68]
Bohn, L.M.; Lefkowitz, R.J.; Caron, M.G. Differential mechanisms of morphine antinociceptive tolerance revealed in (beta)arrestin-2 knock-out mice. J. Neurosci., 2002, 22(23), 10494-10500.
[http://dx.doi.org/10.1523/JNEUROSCI.22-23-10494.2002] [PMID: 12451149]
[69]
Raehal, K.M.; Walker, J.K.; Bohn, L.M. Morphine side effects in beta-arrestin 2 knockout mice. J. Pharmacol. Exp. Ther., 2005, 314(3), 1195-1201.
[http://dx.doi.org/10.1124/jpet.105.087254] [PMID: 15917400]
[70]
Violin, J.D.; Crombie, A.L.; Soergel, D.G.; Lark, M.W. Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol. Sci., 2014, 35(7), 308-316.
[http://dx.doi.org/10.1016/j.tips.2014.04.007] [PMID: 24878326]
[71]
Madariaga-Mazón, A.; Marmolejo-Valencia, A.F.; Li, Y.; Toll, L.; Houghten, R.A.; Martinez-Mayorga, K. Mu-Opioid receptor biased ligands: A safer and painless discovery of analgesics? Drug Discov. Today, 2017, 22(11), 1719-1729.
[http://dx.doi.org/10.1016/j.drudis.2017.07.002] [PMID: 28743488]
[72]
Manglik, A.; Lin, H.; Aryal, D.K.; McCorvy, J.D.; Dengler, D.; Corder, G.; Levit, A.; Kling, R.C.; Bernat, V.; Hübner, H.; Huang, X.P.; Sassano, M.F.; Giguère, P.M.; Löber, S. Da Duan; Scherrer, G.; Kobilka, B.K.; Gmeiner, P.; Roth, B.L.; Shoichet, B.K. Structure-based discovery of opioid analgesics with reduced side effects. Nature, 2016, 537(7619), 185-190.
[http://dx.doi.org/10.1038/nature19112] [PMID: 27533032]
[73]
Chen, X.T.; Pitis, P.; Liu, G.; Yuan, C.; Gotchev, D.; Cowan, C.L.; Rominger, D.H.; Koblish, M.; Dewire, S.M.; Crombie, A.L.; Violin, J.D.; Yamashita, D.S. Structure-activity relationships and discovery of a G protein biased μ opioid receptor ligand, [(3-methoxythiophen-2-yl)methyl](2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro-[4.5]decan-9-yl]ethyl)amine (TRV130), for the treatment of acute severe pain. J. Med. Chem., 2013, 56(20), 8019-8031.
[http://dx.doi.org/10.1021/jm4010829] [PMID: 24063433]
[74]
DeWire, S.M.; Yamashita, D.S.; Rominger, D.H.; Liu, G.; Cowan, C.L.; Graczyk, T.M.; Chen, X.T.; Pitis, P.M.; Gotchev, D.; Yuan, C.; Koblish, M.; Lark, M.W.; Violin, J.D.A.A. G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J. Pharmacol. Exp. Ther., 2013, 344(3), 708-717.
[http://dx.doi.org/10.1124/jpet.112.201616] [PMID: 23300227]
[75]
Soergel, D.G.; Subach, R.A.; Sadler, B.; Connell, J.; Marion, A.S.; Cowan, C.L.; Violin, J.D.; Lark, M.W. First clinical experience with TRV130: pharmacokinetics and pharmacodynamics in healthy volunteers. J. Clin. Pharmacol., 2014, 54(3), 351-357.
[http://dx.doi.org/10.1002/jcph.207] [PMID: 24122908]
[76]
Mori, T.; Kuzumaki, N.; Arima, T.; Narita, M.; Tateishi, R.; Kondo, T.; Hamada, Y.; Kuwata, H.; Kawata, M.; Yamazaki, M.; Sugita, K.; Matsuzawa, A.; Baba, K.; Yamauchi, T.; Higashiyama, K.; Nonaka, M.; Miyano, K.; Uezono, Y.; Narita, M. Usefulness for the combination of G-protein- and β-arrestin-biased ligands of μ-opioid receptors: Prevention of antinociceptive tolerance. Mol. Pain, 2017, 131744806917740030
[http://dx.doi.org/10.1177/1744806917740030] [PMID: 29056067]
[77]
Schneider, S.; Provasi, D.; Filizola, M. How oliceridine (TRV-130) binds and stabilizes a μ-opioid receptor conformational state that selectively triggers G protein signaling pathways. Biochemistry, 2016, 55(46), 6456-6466.
[http://dx.doi.org/10.1021/acs.biochem.6b00948] [PMID: 27778501]
[78]
Crowley, R.S.; Riley, A.P.; Sherwood, A.M.; Groer, C.E.; Shivaperumal, N.; Biscaia, M.; Paton, K.; Schneider, S.; Provasi, D.; Kivell, B.M.; Filizola, M.; Prisinzano, T.E. Synthetic studies of neoclerodane diterpenes from salvia divinorum: identification of a potent and centrally acting μ opioid analgesic with reduced abuse liability. J. Med. Chem., 2016, 59(24), 11027-11038.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01235] [PMID: 27958743]
[79]
Váradi, A.; Marrone, G.F.; Palmer, T.C.; Narayan, A.; Szabó, M.R.; Le Rouzic, V.; Grinnell, S.G.; Subrath, J.J.; Warner, E.; Kalra, S.; Hunkele, A.; Pagirsky, J.; Eans, S.O.; Medina, J.M.; Xu, J.; Pan, Y.X.; Borics, A.; Pasternak, G.W.; McLaughlin, J.P.; Majumdar, S. Mitragynine/corynantheidine pseudoindoxyls as opioid analgesics with Mu agonism and delta antagonism, which do not recruit β-arrestin-2. J. Med. Chem., 2016, 59(18), 8381-8397.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00748] [PMID: 27556704]
[80]
Liu, X.; Zhao, L.; Wang, Y.; Zhou, J.; Wang, D.; Zhang, Y.; Zhang, X.; Wang, Z.; Yang, D.; Mou, L.; Wang, R. MEL-N16: a series of novel endomorphin analogs with good analgesic activity and a favorable side effect profile. ACS Chem. Neurosci., 2017, 8(10), 2180-2193.
[http://dx.doi.org/10.1021/acschemneuro.7b00097] [PMID: 28732166]
[81]
Piekielna-Ciesielska, J.; Ferrari, F.; Calo’, G.; Janecka, A. Cyclopeptide Dmt-[D-Lys-p-CF3-Phe-Phe-Asp]NH2, a novel G protein-biased agonist of the mu opioid receptor. Peptides, 2018, 101, 227-233.
[http://dx.doi.org/10.1016/j.peptides.2017.11.020] [PMID: 29196181]
[82]
Piekielna-Ciesielska, J.; Mollica, A.; Pieretti, S.; Fichna, J.; Szymaszkiewicz, A.; Zielińska, M.; Kordek, R.; Janecka, A. Antinociceptive potency of a fluorinated cyclopeptide Dmt-c[D-Lys-Phe-p-CF3-Phe-Asp]NH2. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 560-566.
[http://dx.doi.org/10.1080/14756366.2018.1441839] [PMID: 29513114]
[83]
Carlezon, W.A., Jr; Béguin, C.; Knoll, A.T.; Cohen, B.M. Kappa-opioid ligands in the study and treatment of mood disorders. Pharmacol. Ther., 2009, 123(3), 334-343.
[http://dx.doi.org/10.1016/j.pharmthera.2009.05.008] [PMID: 19497337]
[84]
Li, W.; Sun, H.; Chen, H.; Yang, X.; Xiao, L.; Liu, R.; Shao, L.; Qiu, Z. Major depressive disorder and kappa opioid receptor antagonists. Transl. Perioper. Pain Med., 2016, 1(2), 4-16.
[PMID: 27213169]
[85]
Wee, S.; Koob, G.F. The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology (Berl.), 2010, 210(2), 121-135.
[http://dx.doi.org/10.1007/s00213-010-1825-8] [PMID: 20352414]
[86]
Prevatt-Smith, K.M.; Lovell, K.M.; Simpson, D.S.; Day, V.W.; Douglas, J.T.; Bosch, P.; Dersch, C.M.; Rothman, R.B.; Kivell, B.; Prisinzano, T.E. Potential drug abuse therapeutics derived from the hallucinogenic natural product salvinorin A. MedChemComm, 2011, 2(12), 1217-1222.
[http://dx.doi.org/10.1039/c1md00192b] [PMID: 22442751]
[87]
Ebner, S.R.; Roitman, M.F.; Potter, D.N.; Rachlin, A.B.; Chartoff, E.H. Depressive-like effects of the kappa opioid receptor agonist salvinorin A are associated with decreased phasic dopamine release in the nucleus accumbens. Psychopharmacology (Berl.), 2010, 210(2), 241-252.
[http://dx.doi.org/10.1007/s00213-010-1836-5] [PMID: 20372879]
[88]
Potter, D.N.; Damez-Werno, D.; Carlezon, W.A. Jr.; Cohen, B.M.; Chartoff, E.H. Repeated exposure to the κ-opioid receptor agonist salvinorin A modulates extracellular signal-regulated kinase and reward sensitivity. Biol. Psychiatry, 2011, 70(8), 744-753.
[http://dx.doi.org/10.1016/j.biopsych.2011.05.021] [PMID: 21757186]
[89]
Ranganathan, M.; Schnakenberg, A.; Skosnik, P.D.; Cohen, B.M.; Pittman, B.; Sewell, R.A.; D’Souza, D.C. Dose-related behavioral, subjective, endocrine, and psychophysiological effects of the κ opioid agonist Salvinorin A in humans. Biol. Psychiatry, 2012, 72(10), 871-879.
[http://dx.doi.org/10.1016/j.biopsych.2012.06.012] [PMID: 22817868]
[90]
Rives, M.L.; Rossillo, M.; Liu-Chen, L.Y.; Javitch, J.A. 6′-Guanidinonaltrindole (6′-GNTI) is a G protein-biased κ-opioid receptor agonist that inhibits arrestin recruitment. J. Biol. Chem., 2012, 287(32), 27050-27054.
[http://dx.doi.org/10.1074/jbc.C112.387332] [PMID: 22736766]
[91]
Zhou, L.; Lovell, K.M.; Frankowski, K.J.; Slauson, S.R.; Phillips, A.M.; Streicher, J.M.; Stahl, E.; Schmid, C.L.; Hodder, P.; Madoux, F.; Cameron, M.D.; Prisinzano, T.E.; Aubé, J.; Bohn, L.M. Development of functionally selective, small molecule agonists at kappa opioid receptors. J. Biol. Chem., 2013, 288(51), 36703-36716.
[http://dx.doi.org/10.1074/jbc.M113.504381] [PMID: 24187130]
[92]
Brust, T.F.; Morgenweck, J.; Kim, S.A.; Rose, J.H.; Locke, J.L.; Schmid, C.L.; Zhou, L.; Stahl, E.L.; Cameron, M.D.; Scarry, S.M.; Aubé, J.; Jones, S.R.; Martin, T.J.; Bohn, L.M. Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria. Sci. Signal., 2016, 9(456), ra117.
[http://dx.doi.org/10.1126/scisignal.aai8441] [PMID: 27899527]
[93]
White, K.L.; Scopton, A.P.; Rives, M.L.; Bikbulatov, R.V.; Polepally, P.R.; Brown, P.J.; Kenakin, T.; Javitch, J.A.; Zjawiony, J.K.; Roth, B.L. Identification of novel functionally selective κ-opioid receptor scaffolds. Mol. Pharmacol., 2014, 85(1), 83-90.
[http://dx.doi.org/10.1124/mol.113.089649] [PMID: 24113749]
[94]
Maillet, E.L.; Milon, N.; Heghinian, M.D.; Fishback, J.; Schürer, S.C.; Garamszegi, N.; Mash, D.C. Noribogaine is a G-protein biased κ-opioid receptor agonist. Neuropharmacology, 2015, 99, 675-688.
[http://dx.doi.org/10.1016/j.neuropharm.2015.08.032] [PMID: 26302653]
[95]
Spetea, M.; Eans, S.O.; Ganno, M.L.; Lantero, A.; Mairegger, M.; Toll, L.; Schmidhammer, H.; McLaughlin, J.P. Selective κ receptor partial agonist HS666 produces potent antinociception without inducing aversion after i.c.v. administration in mice. Br. J. Pharmacol., 2017, 174(15), 2444-2456.
[http://dx.doi.org/10.1111/bph.13854] [PMID: 28494108]
[96]
Schattauer, S.S.; Kuhar, J.R.; Song, A.; Chavkin, C. Nalfurafine is a G-protein biased agonist having significantly greater bias at the human than rodent form of the kappa opioid receptor. Cell. Signal., 2017, 32, 59-65.
[http://dx.doi.org/10.1016/j.cellsig.2017.01.016] [PMID: 28088389]
[97]
Bruchas, M.R.; Land, B.B.; Aita, M.; Xu, M.; Barot, S.K.; Li, S.; Chavkin, C. Stress-induced p38 mitogen-activated protein kinase activation mediates kappa-opioid-dependent dysphoria. J. Neurosci., 2007, 27(43), 11614-11623.
[http://dx.doi.org/10.1523/JNEUROSCI.3769-07.2007] [PMID: 17959804]
[98]
Bruchas, M.R.; Chavkin, C. Kinase cascades and ligand-directed signaling at the kappa opioid receptor. Psychopharmacology (Berl.), 2010, 210(2), 137-147.
[http://dx.doi.org/10.1007/s00213-010-1806-y] [PMID: 20401607]
[99]
Liu, J.J.; Sharma, K.; Zangrandi, L.; Chen, C.; Humphrey, S.J.; Chiu, Y.T.; Spetea, M.; Liu-Chen, L.Y.; Schwarzer, C.; Mann, M. In vivo brain GPCR signaling elucidated by phosphoproteomics. Science, 2018, 360(6395)eaao4927
[http://dx.doi.org/10.1126/science.aao4927] [PMID: 29930108]
[100]
Luttrell, L.M.; Lefkowitz, R.J. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell Sci., 2002, 115(Pt 3), 455-465.
[PMID: 11861753]
[101]
Lamberts, J.T.; Traynor, J.R. Opioid receptor interacting proteins and the control of opioid signaling. Curr. Pharm. Des., 2013, 19(42), 7333-7347.
[http://dx.doi.org/10.2174/138161281942140105160625] [PMID: 23448476]
[102]
Bohn, L.M.; Raehal, K.M. Opioid receptor signaling: relevance for gastrointestinal therapy. Curr. Opin. Pharmacol., 2006, 6(6), 559-563.
[http://dx.doi.org/10.1016/j.coph.2006.06.007] [PMID: 16935560]
[103]
Rajagopal, S.; Rajagopal, K.; Lefkowitz, R.J. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat. Rev. Drug Discov., 2010, 9(5), 373-386.
[http://dx.doi.org/10.1038/nrd3024] [PMID: 20431569]
[104]
Violin, J.D.; Lefkowitz, R.J. Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci., 2007, 28(8), 416-422.
[http://dx.doi.org/10.1016/j.tips.2007.06.006] [PMID: 17644195]
[105]
Kenakin, T.; Miller, L.J. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol. Rev., 2010, 62(2), 265-304.
[http://dx.doi.org/10.1124/pr.108.000992] [PMID: 20392808]
[106]
Molinari, P.; Vezzi, V.; Sbraccia, M.; Grò, C.; Riitano, D.; Ambrosio, C.; Casella, I.; Costa, T. Morphine-like opiates selectively antagonize receptor-arrestin interactions. J. Biol. Chem., 2010, 285(17), 12522-12535.
[http://dx.doi.org/10.1074/jbc.M109.059410] [PMID: 20189994]
[107]
Doi, S.; Mori, T.; Uzawa, N.; Arima, T.; Takahashi, T.; Uchida, M.; Yawata, A.; Narita, M.; Uezono, Y.; Suzuki, T.; Narita, M. Characterization of methadone as a β-arrestin-biased μ-opioid receptor agonist. Mol. Pain, 2016, 12, 1744806916654146
[http://dx.doi.org/10.1177/1744806916654146] [PMID: 27317580]
[108]
Narita, M.; Imai, S.; Nakamura, A.; Ozeki, A.; Asato, M.; Rahmadi, M.; Sudo, Y.; Hojo, M.; Uezono, Y.; Devi, L.A.; Kuzumaki, N.; Suzuki, T. Possible involvement of prolonging spinal µ-opioid receptor desensitization in the development of antihyperalgesic tolerance to µ-opioids under a neuropathic pain-like state. Addict. Biol., 2013, 18(4), 614-622.
[http://dx.doi.org/10.1111/j.1369-1600.2011.00354.x] [PMID: 21812868]
[109]
Gach-Janczak, K.; Piekielna-Ciesielska, J.; Adamska-Bartłomiejczyk, A.; Wtorek, K.; Ferrari, F.; Calo’, G.; Szymaszkiewicz, A.; Piasecka-Zelga, J.; Janecka, A. In vitro and in vivo activity of cyclopeptide Dmt-c[d-Lys-Phe-Asp]NH2, a mu opioid receptor agonist biased toward β-arrestin. Peptides, 2018, 105, 51-57.
[http://dx.doi.org/10.1016/j.peptides.2018.04.014] [PMID: 29684591]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy