Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

New Insights into the Binding Mechanism of Co-regulator BUD31 to AR AF2 Site: Structural Determination and Analysis of the Mutation Effect

Author(s): Tianqing Song and Jiazhong Li*

Volume 16, Issue 1, 2020

Page: [45 - 53] Pages: 9

DOI: 10.2174/1573409915666190502153307

Price: $65

Abstract

Introduction: Androgen Receptor (AR) plays a pivotal role in the development of male sex and contributes to prostate cancer growth. Different from other nuclear receptors that bind to the co-regulator LxxLL motif in coregulator peptide interaction, the AR Ligand Binding Domain (LBD) prefers to bind to the FxxLF motif. BUD31, a novel co-regulator with FxxLF motif, has been demonstrated to suppress wild-type and mutated AR-mediated prostate cancer growth.

Methods: To find out the interaction mechanisms of BUD31 with WT/T877A/W741L AR complex, molecular dynamics simulations were employed to study the complex BUD31 and WT/mutant ARs. The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) results demonstrated that T877A and W741L point mutations can reduce the binding affinity between BUD31 and AR. The RMSF and dynamic cross-correlation analysis indicated that amino acid point mutations can affect the motions of loop residues in the AR structure.

Results: These results indicated that AR co-regulator binding site AF2 can serve as a target for drug discovery to solve the resistance problem.

Keywords: BUD31; Androgen receptor, AF2 binding site, interaction mechanism, molecular dynamics, co-regulator.

Graphical Abstract

[1]
Lee, D.K.; Chang, C. Endocrine mechanisms of disease: Expression and degradation of androgen receptor: Mechanism and clinical implication. J. Clin. Endocrinol. Metab., 2003, 88(9), 4043-4054.
[http://dx.doi.org/10.1210/jc.2003-030261] [PMID: 12970260]
[2]
Quigley, C.A.; De Bellis, A.; Marschke, K.B.; el-Awady, M.K.; Wilson, E.M.; French, F.S. Androgen receptor defects: Historical, clinical, and molecular perspectives. Endocr. Rev., 1995, 16(3), 271-321.
[http://dx.doi.org/10.1210/edrv-16-3-271] [PMID: 7671849]
[3]
Tsai, M.J.; O’Malley, B.W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem., 1994, 63, 451-486.
[http://dx.doi.org/10.1146/annurev.bi.63.070194.002315] [PMID: 7979245]
[4]
Mangelsdorf, D.J.; Thummel, C.; Beato, M.; Herrlich, P.; Schütz, G.; Umesono, K.; Blumberg, B.; Kastner, P.; Mark, M.; Chambon, P.; Evans, R.M. The nuclear receptor superfamily: The second decade. Cell, 1995, 83(6), 835-839.
[http://dx.doi.org/10.1016/0092-8674(95)90199-X] [PMID: 8521507]
[5]
Wärnmark, A.; Treuter, E.; Wright, A.P.; Gustafsson, J.A. Activation functions 1 and 2 of nuclear receptors: Molecular strategies for transcriptional activation. Mol. Endocrinol., 2003, 17(10), 1901-1909.
[http://dx.doi.org/10.1210/me.2002-0384] [PMID: 12893880]
[6]
Chang, C.; Saltzman, A.; Yeh, S.; Young, W.; Keller, E.; Lee, H.J.; Wang, C.; Mizokami, A. Androgen receptor: An overview. Crit. Rev. Eukaryot. Gene Expr., 1995, 5(2), 97-125.
[http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v5.i2.10] [PMID: 8845584]
[7]
Shang, Y.; Myers, M.; Brown, M. Formation of the androgen receptor transcription complex. Mol. Cell, 2002, 9(3), 601-610.
[http://dx.doi.org/10.1016/S1097-2765(02)00471-9] [PMID: 11931767]
[8]
Heinlein, C.A.; Chang, C. Androgen receptor (AR) coregulators: An overview. Endocr. Rev., 2002, 23(2), 175-200.
[http://dx.doi.org/10.1210/edrv.23.2.0460] [PMID: 11943742]
[9]
Kinyamu, H.K.; Archer, T.K. Modifying chromatin to permit steroid hormone receptor-dependent transcription. Biochim. Biophys. Acta, 2004, 1677(1-3), 30-45.
[http://dx.doi.org/10.1016/j.bbaexp.2003.09.015] [PMID: 15020043]
[10]
Dubbink, H.J.; Hersmus, R.; Verma, C.S.; van der Korput, H.A.; Berrevoets, C.A.; van Tol, J.; Ziel-van der Made, A.C.; Brinkmann, A.O.; Pike, A.C.; Trapman, J. Distinct recognition modes of FXXLF and LXXLL motifs by the androgen receptor. Mol. Endocrinol., 2004, 18(9), 2132-2150.
[http://dx.doi.org/10.1210/me.2003-0375] [PMID: 15178743]
[11]
Steketee, K.; Berrevoets, C.A.; Dubbink, H.J.; Doesburg, P.; Hersmus, R.; Brinkmann, A.O.; Trapman, J. Amino acids 3-13 and amino acids in and flanking the 23FxxLF27 motif modulate the interaction between the N-terminal and ligand-binding domain of the androgen receptor. Eur. J. Biochem., 2002, 269(23), 5780-5791.
[http://dx.doi.org/10.1046/j.1432-1033.2002.03276.x] [PMID: 12444966]
[12]
He, B.; Minges, J.T.; Lee, L.W.; Wilson, E.M. The FXXLF motif mediates androgen receptor-specific interactions with coregulators. J. Biol. Chem., 2002, 277(12), 10226-10235.
[http://dx.doi.org/10.1074/jbc.M111975200] [PMID: 11779876]
[13]
Dubbink, H.J.; Hersmus, R.; Pike, A.C.; Molier, M.; Brinkmann, A.O.; Jenster, G.; Trapman, J. Androgen receptor ligand-binding domain interaction and nuclear receptor specificity of FXXLF and LXXLL motifs as determined by L/F swapping. Mol. Endocrinol., 2006, 20(8), 1742-1755.
[http://dx.doi.org/10.1210/me.2005-0348] [PMID: 16627595]
[14]
Van de Wijngaart, D.J.; Dubbink, H.J.; Molier, M.; de Vos, C.; Trapman, J.; Jenster, G. Functional screening of FxxLF-like peptide motifs identifies SMARCD1/BAF60a as an androgen receptor cofactor that modulates TMPRSS2 expression. Mol. Endocrinol., 2009, 23, 1776-1786.
[http://dx.doi.org/10.1210/me.2008-0280] [PMID: 19762545 ]
[15]
Wahl, J.; Smieško, M. Endocrine disruption at the androgen receptor: Employing molecular dynamics and docking for improved virtual screening and toxicity prediction. Int. J. Mol. Sci., 2018, 19(6), 1784.
[http://dx.doi.org/10.3390/ijms19061784] [PMID: 29914135]
[16]
Sakkiah, S.; Kusko, R.; Pan, B.; Guo, W.; Ge, W.; Tong, W.; Hong, H. Structural changes due to antagonist binding in ligand binding pocket of androgen receptor elucidated through molecular dynamics simulations. Front. Pharmacol., 2018, 9, 492.
[http://dx.doi.org/10.3389/fphar.2018.00492] [PMID: 29867496]
[17]
Mammino, L. Complexes of 1-[3-geranyl-2,4,6-trihydroxyphenyl]-2- methylpropan-1-one with a Cu2+ ion: A DFT study. Theor. Chem. Acc., 2019, 138, 15.
[http://dx.doi.org/10.1007/s00214-018-2381-2]
[18]
Teodorico, C.R.; Elaine, F.F. da C. Ricardo B. de A. Solvent effects on 13C and 15N shielding tensors of nitroimidazoles in the condensed phase: A sequential molecular dynamics/quantum mechanics study. J. Phys. Condens. Matter, 2004, 16, 6159-6170.
[http://dx.doi.org/10.1088/0953-8984/16/34/015]
[19]
Mateus, A.G.; Lizandro, S.S.; Fernando, C.P.; Elaine, F.F. da C.; Telles, C.S.; Teodorico, C.R. Comparing structure and dynamics of solvation of different iron oxide phases for enhanced magnetic resonance imaging. ChemistrySelect, 2017, 2, 10136-10142.
[http://dx.doi.org/10.1002/slct.201701705]
[20]
Yeh, S.; Chang, C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc. Natl. Acad. Sci. USA, 1996, 93(11), 5517-5521.
[http://dx.doi.org/10.1073/pnas.93.11.5517] [PMID: 8643607]
[21]
Hsu, C.L.; Chen, Y.L.; Yeh, S.; Ting, H.J.; Hu, Y.C.; Lin, H.; Wang, X.; Chang, C. The use of phage display technique for the isolation of androgen receptor interacting peptides with (F/W)XXL(F/W) and FXXLY new signature motifs. J. Biol. Chem., 2003, 278(26), 23691-23698.
[http://dx.doi.org/10.1074/jbc.M211908200] [PMID: 12714604]
[22]
Hsu, C.L.; Liu, J.S.; Wu, P.L.; Guan, H.H.; Chen, Y.L.; Lin, A.C.; Ting, H.J.; Pang, S.T.; Yeh, S.D.; Ma, W.L.; Chen, C.J.; Wu, W.G.; Chang, C. Identification of a new androgen receptor (AR) co-regulator BUD31 and related peptides to suppress wild-type and mutated AR-mediated prostate cancer growth via peptide screening and X-ray structure analysis. Mol. Oncol., 2014, 8(8), 1575-1587.
[http://dx.doi.org/10.1016/j.molonc.2014.06.009] [PMID: 25091737]
[23]
Case, D.A.; Darden, T.A.; Cheatham, T.E., III; Simmerling, C.L.; Wang, J.; Duke, R.E.; Luo, R.; Walker, R.C.; Zhang, W.; Merz, K.M.; Roberts, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Swails, J.; Götz, A.W.; Kolossváry, I.; Wong, K.F.; Paesani, F.; Vanicek, J.; Wolf, R.M.; Liu, J.; Wu, X.; Brozell, S.R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.; Wang, J.; Hsieh, M-J.; Cui, G.; Roe, D.R.; Mathews, D.H.; Seetin, M.G.; Salomon-Ferrer, R.; Sagui, C.; Babin, V.; Luchko, T.; Gusarov, S.; Kovalenko, A. Kollman. P.A. 2012, AMBER 12 Reference Manual; University of California: San Francisco, 2012.
[24]
Wang, J.; Cieplak, P.; Kollman, P.A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem., 2000, 21, 1049-1074.
[http://dx.doi.org/10.1002/1096-987X(200009)21:12<1049:AID-JCC3>3.0.CO;2-F]
[25]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79, 926-935.
[http://dx.doi.org/10.1063/1.445869]
[26]
26 Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81, 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[27]
Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys., 1995, 103, 8577.
[http://dx.doi.org/10.1063/1.470117]
[28]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log (N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98, 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[29]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-Alkanes. J. Chem. Phys., 1977, 23, 327-341.
[30]
Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D.A.; Cheatham, T.E., III Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33(12), 889-897.
[http://dx.doi.org/10.1021/ar000033j] [PMID: 11123888]
[31]
Doree, S.; Kim, A.S.; Barry, H. Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem., 1994, 98, 1978-1988.
[http://dx.doi.org/10.1021/j100058a043]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy