[1]
Rajagopal, V.; Pushpan, C.K.; Antony, H. Comparative effect of horse gram and black gram on inflammatory mediators and antioxidant status. J. Food Drug Anal., 2017, 25(4), 845-853.
[2]
Koenig, W.; Rosenson, R.S. Acute-phase reactants and coronary heart disease. Semin. Vasc. Med., 2002, 02(4), 417-428.
[3]
Lowe, G.D. Circulating inflammatory markers and risks of cardiovascular and non-cardiovascular disease. J. Thromb. Haemost., 2005, 3, 1618-1627.
[4]
Rao, P.; Knaus, E.E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): Cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci., 2008, 11(2), 81s-110s.
[5]
Kolios, G.; Valatas, V.; Ward, S.G. Nitric oxide in inflammatory bowel disease: A universal messenger in an unsolved puzzle. Immunology, 2004, 113(4), 427-437.
[6]
Dia, V.P.; Bringe, N.A.; de Mejia, E.G. Peptides in pepsin–pancreatin hydrolysates from commercially available soy products that inhibit lipopolysaccharide-induced inflammation in macrophages. Food Chem., 2014, 152, 423-431.
[7]
Rizzello, C.G.; Tagliazucchi, D.; Babini, E.; Sefora Rutella, G.; Taneyo Saa, D.L.; Gianotti, A. Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. J. Funct. Foods, 2016, 27, 549-569.
[8]
Tu, M.; Cheng, S.; Lu, W.; Du, M. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. Trends Analyt. Chem., 2018, 105, 7-17.
[9]
Salehi-Abargouei, A.; Saraf-Bank, S.; Bellissimo, N.; Azadbakht, L. Effects of non-soy legume consumption on C-reactive protein: A systematic review and meta-analysis. Nutrition, 2015, 31(5), 631-639.
[10]
Chalamaiah, M.; Yu, W.; Wu, J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem., 2018, 245, 205-222.
[11]
Jenkins, D.J.A.; Mirrahimi, A.; Srichaikul, K.; Berryman, C.E.; Wang, L.; Carleton, A.; Abdulnour, S.; Sievenpiper, J.L.; Kendall, C.W.; Kris-Etherton, P.M. Soy protein reduces serum cholesterol by both intrinsic and food displacement mechanisms. J. Nutr., 2010, 140, 2302S-2311S.
[12]
Luna Vital, D.A.; González De Mejía, E.; Dia, V.P.; Loarca-Piña, G. Peptides in common bean fractions inhibit colorectal cancer cells. Food Chem., 2014, 157, 347-355.
[13]
Scarafoni, A.; Magni, C.; Duranti, M. Molecular nutraceutics as a mean to investigate the positive effects of legume seed proteins on human health. Trends Food Sci. Technol., 2007, 18, 454-463.
[14]
Carbonaro, M.; Maselli, P.; Nucara, A. Structural aspects of legume proteins and nutraceutical properties. Food Res. Int., 2015, 76, 19-30.
[15]
Udenigwe, C.C.; Aluko, R.E. Food protein-derived bioactive peptides: Production, processing, and potential health benefits. J. Food Sci., 2012, 77, R11-R24.
[16]
Li-Chan, E.C.Y. Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Curr. Opin. Food Sci., 2015, 1, 28-37.
[17]
Carrasco-Castilla, J.; Hernandez-Alvarez, A.J.; Jimenez-Martınez, C.; Gutierrez-Lopez, G.F.; Davila-Ortiz, G. Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Eng. Rev., 2012, 4, 224-243.
[18]
Kadam, S.U.; Tiwari, B.K.; Alvarez, C.; O’Donnell, C.P. Ultrasound for the extraction, identification and delivery of food proteins and bioactive peptides. Trends Food Sci. Technol., 2015, 46(1), 60-67.
[19]
Arroume, N.; Froidevaux, R.; Kapel, R.; Cudennec, B.; Ravallec, R.; Flahaut, C.; Dhulster, P. Food peptides: Purification, identification and role in the metabolism. Curr. Opin. Food Sci., 2016, 7, 101-107.
[20]
Hur, S.J.; Lim, B.O.; Decker, E.A.; McClements, D.J. In vitro human digestion models for food applications. Food Chem., 2011, 125(1), 1-12.
[21]
Saavedra, L.; Hebert, E.M.; Minahk, C.; Ferranti, P. An overview of “omic” analytical methods applied in bioactive peptide studies. Food Res. Int., 2013, 54, 925-934.
[22]
Rani, S.; Pooja, K.; Pal, G.K. Exploration of rice protein hydrolysates and peptides with special reference to antioxidant potential: Computational derived approaches for bioactivity determination. Trends Food Sci. Technol., 2018, 80, 61-70.
[23]
Iwaniak, A.; Minkiewicz, P.; Darewicz, M. Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Compr. Rev. Food Sci. Food Saf., 2014, 13(2), 114-134.
[24]
Renukuntla, J.; Vadlapudi, A.D.; Patel, A.; Boddu, S.H.S.; Mitra, A.K. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharm., 2013, 447(1-2), 75-93.
[25]
Li, Y.; Yu, J. Research progress in structure-activity relationship of bioactive peptides. J. Med. Food, 2015, 18(2), 147-156.
[26]
Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides, 2010, 31(10), 1949-1956.
[27]
Guang, C.; Phillips, R.D. Plant food-derived angiotensin I converting enzyme inhibitory peptides. J. Agric. Food Chem., 2009, 57, 5113-5130.
[28]
Brandsch, M.; Knütter, I.; Leibach, F.H. The intestinal H+/peptide symporter PEPT1: Structure–affinity relationships. Eur. J. Pharm. Sci., 2004, 21(1), 53-60.
[29]
Brandsch, M. Drug transport via the intestinal peptide transporter PepT1. Curr. Opin. Pharmacol., 2013, 13(6), 881-887.
[30]
Mizuno, S.; Nishimura, S.; Matsuura, K.; Gotou, T.; Yamamoto, N. Release of short and proline-rich antihypertensive peptides from casein hydrolysate with an Aspergillus oryzae protease. J. Dairy Sci., 2004, 87, 3183-3188.
[31]
Maestri, E.; Marmiroli, M.; Marmiroli, N. Bioactive peptides in plant-derived foodstuffs. J. Proteomics, 2016, 147, 140-155.
[32]
Dia, V.P.; Torres, S.; De Lumen, B.O.; Erdman, J.W.; De Mejia, E.G. Presence of lunasin in plasma of men after soy protein consumption. J. Agric. Food Chem., 2009, 57(4), 1260-1266.
[33]
Hsieh, C.C.; Hernández-Ledesma, B.; Jeong, H.J.; Park, J.H.; de Lumen, B.O. Complementary roles in cancer prevention: Protease inhibitor makes the cancer preventive peptide lunasin bioavailable. PLoS One, 2010, 5(1)e8890
[34]
Vanplaterink, C.; Janssen, H.; Horsten, R.; Haverkamp, J. Quantification of ACE inhibiting peptides in human plasma using high performance liquid chromatography-mass spectrometry. J. Chromatogr.B. , 2006, 830(1), 151-157.
[35]
Zhao, L.; Wang, X.; Zhang, X.L.; Xie, Q.F. Purification and identification of anti-inflammatory peptides derived from simulated gastrointestinal digests of velvet antler protein (Cervus elaphus Linnaeus). J. Food Drug Anal.,, 2016, 24(2), 376-384.
[36]
Nguyen, T.T.P.; Bhandari, B.; Cichero, J.; Prakash, S. A comprehensive review on in vitro digestion of infant formula. Food Res. Int., 2015, 76, 373-386.
[37]
Garcia-Mora, P.; Martín-Martínez, M.; Angeles Bonache, M.; González-Múniz, R.; Peñas, E.; Frias, J.; Martinez-Villaluenga, C. Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chem., 2017, 221, 464-472.
[38]
Bouglé, D.; Bouhallab, S. Dietary bioactive peptides: Human studies. Crit. Rev. Food Sci. Nutr., 2017, 57(2), 335-343.
[39]
Ozuna, C.; Paniagua-Martínez, I.; Castaño-Tostado, E.; Ozimek, L.; Amaya-Llano, S.L. Innovative applications of high-intensity ultrasound in the development of functional food ingredients: Production of protein hydrolysates and bioactive peptides. Food Res. Int., 2015, 77(4), 685-696.
[40]
Sanjukta, S.; Rai, A.K. Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends Food Sci. Technol., 2016, 50, 1-10.
[41]
Hayes, M.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Putting microbes to work: Dairy fermentation, cell factories and bioactive peptides. Part I: overview. Biotechnol. J., 2007, 2(4), 426-434.
[42]
Dos Santos Aguilar, J.G.; Sato, H.H. Microbial proteases: Production and application in obtaining protein hydrolysates. Food Res. Int., 2018, 103, 253-262.
[43]
Kamau, S.M.; Lu, R.R.; Chen, W.; Liu, X.M.; Tian, F.W.; Shen, Y.; Gao, T. Functional significance of bioactive peptides derived from milk proteins. Food Rev. Int., 2010, 26, 386-401.
[44]
Marciniak, A.; Suwal, S.; Naderi, N.; Pouliot, Y.; Doyen, A. Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends Food Sci. Technol., 2018, 80, 187-198.
[45]
Vizovišek, M.; Vidmar, R.; Drag, M.; Fonović, M.; Salvesen, G.S.; Turk, B. Protease specificity: Towards in vivo imaging applications and biomarker discovery. Trends Biochem. Sci., 2018, 43(10), 829-844.
[46]
Dullius, A.; Goettert, M.I.; de Souza, C.F.V. Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up. J. Funct. Foods, 2018, 42, 58-74.
[47]
Welsh, G.; Ryder, K.; Brewster, J.; Walker, C.; Mros, S.; Bekhit, A.E.D.A.; McConnell, M.; Carne, A. Comparison of bioactive peptides prepared from sheep cheese whey using a food-grade bacterial and a fungal protease preparation. Int. J. Sci. Technol., 2017, 52(5), 1252-1259.
[48]
Sánchez, A.; Vazquez, A. Bioactive peptides: A review. Food Qual. Saf., 2017, 1(1), 29-46.
[49]
Bao, W.; Chen, Y.; Wang, D. Prediction of protein structure classes with flexible neural tree. Biomed. Mater. Eng., 2014, 24(6), 3797-3806.
[50]
Bao, W.; Huang, Z.; Yuan, C.A.; Huang, D.S. Pupylation sites prediction with ensemble classification model. Int. J. Data Min. Bioinform., 2017, 18(2), 91-104.
[51]
Bao, W.; Yuan, C.; Zhang, Y.; Han, K.; Nandi, A.K.; Honig, B.; Huang, D. Mutli-features prediction of protein translational modification sites. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2018, 15(5), 1453-1460.
[52]
Bao, W.; Wang, D.; Chen, Y. Classification of protein structure classes on flexible neutral tree. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2017, 14(5), 1122-1133.
[53]
Agyei, D.; Danquah, M.K. Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends Food Sci. Technol., 2012, 23, 62-69.
[54]
Sanchón, J.; Fernández-Tomé, S.; Miralles, B.; Hernández-Ledesma, B.; Tomé, D.; Gaudichon, C.; Recio, I. Protein degradation and peptide release from milk proteins in human jejunum. Comparison with in vitro gastrointestinal simulation. Food Chem., 2018, 239, 486-494.
[55]
Roy, F.; Boye, J.I.; Simpson, B.K. Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Res. Int., 2010, 43, 432-442.
[56]
Hermsdorff, H.H.; Zulet, M.A.; Abete, I.; Martínez, J.A. A legume-based hypocaloric diet reduces proinflammatory status and improves metabolic features in overweight/obese subjects. Eur. J. Nutr., 2011, 50(1), 61-69.
[57]
Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int., 2010, 43(2), 414-431.
[58]
Day, L. Proteins from land plants – Potential resources for human nutrition and food security. Trends Food Sci. Technol., 2013, 32(1), 25-42.
[59]
Sharif, H.R.; Williams, P.A.; Sharif, M.K.; Abbas, S.; Majeed, H.; Masamba, K.G.; Safdar, W.; Zhong, F. Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants - A review. Food Hydrocoll., 2017, 76, 2-16.
[60]
López-Barrios, L.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bioactive peptides and hydrolysates from pulses and their potential use as functional ingredients. J. Food Sci., 2014, 79(3), R273-R283.
[61]
Udenigwe, C.C.; Okolie, C.L.; Qian, H.; Ohanenye, I.C.; Agyei, D.; Aluko, R.E. Ribulose-1,5-bisphosphate carboxylase as a sustainable and promising plant source of bioactive peptides for food applications. Trends Food Sci. Technol., 2017, 69A, 74-84.
[62]
Chakrabarti, S.; Jahandideh, F.; Wu, J. Food-derived bioactive peptides on inflammation and oxidative stress. Biomed. Res., 2014, 2014608979
[63]
Kou, X.; Gao, J.; Xue, Z.; Zhang, Z.; Wang, H.; Wang, Wu. Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates. LWT - Food Sci. Technol.,, 2013, 50(2), 591-598.
[64]
Malaguti, M.; Dinelli, G.; Leoncini, E.; Bregola, V.; Bosi, S.; Cicero, A.; Hrelia, S. Bioactive peptides in cereals and legumes: Agronomical, biochemical and clinical aspects. Int. J. Mol. Sci., 2014, 15(11), 21120-21135.
[65]
Siebert, K.J. Quantitative structure−activity relationship modeling of peptide and protein behavior as a function of amino acid composition. J. Agric. Food Chem., 2001, 49(2), 851-858.
[66]
Wu, J.; Aluko, R.E.; Nakai, S. Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure−activity relationship study of di- and tripeptides. J. Agric. Food Chem., 2006, 54(3), 732-738.
[67]
Wu, J.; Aluko, R.E. Quantitative structure-activity relationship study of bitter di- and tripeptides including relationship with angiotensin I-converting enzyme inhibitory activity. J. Pept. Sci., 2007, 13, 63-69.
[68]
Daskaya-Dikmen, C.; Yucetepe, A.; Karbancioglu-Guler, F.; Daskaya, H.; Ozcelik, B. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients, 2017, 9(4), 316.
[69]
Ferreira, I.M.P.L.V.O.; Pinho, O.; Mota, M.V. Preparation of ingredients containing an ACE-inhibitory peptide by tryptic hydrolysis of whey protein concentrates. Int. Dairy J., 2007, 17, 481-487.
[70]
Pihlanto-Leppälä, A. Bioactive peptides derived from bovine whey proteins: Opioid and ACE-inhibitory peptides. Trends Food Sci. Technol., 2000, 11(9-10), 347-356.
[71]
Saito, K.; Jin, D.H.; Ogawa, T. Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. J. Agric. Food Chem., 2003, 51, 3668-3674.
[72]
Ghribi, A.M.; Sila, A.; Przybylski, R.; Nedjar-Arroume, N.; Makhlouf, I.; Blecker, C.; Attia, H.; Dhulster, P.; Bougatef, A.; Besbes, S. Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate. J. Funct. Foods, 2015, 12, 516-525.
[73]
Wang, J.R.; Teng, D.; Tian, Z.G. Preparation and mechanism of functional antioxidant peptides. Nat. Product Res. Dev., 2008, 20, 371-375.
[74]
Singh, B.P.; Vij, S.; Hati, S. Functional significance of bioactive peptides derived from soybean. Peptides, 2014, 54, 171-179.
[75]
Kong, X.; Guo, M.; Hua, Y.; Cao, D.; Zhang, C. Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresour. Technol., 2008, 99, 8873-8879.
[76]
Rodríguez-Carrio, J.; Fernández, A.; Riera, F.A.; Suárez, A. Immunomodulatory activities of whey β-lactoglobulin tryptic-digested fractions. Int. Dairy J., 2014, 34(1), 65-73.
[77]
Hou, H.; Fan, Y.; Li, B.; Xue, C.; Yu, G. Preparation of immunomodulatory hydrolysates from Alaska pollock frame. J. Sci. Food Agric., 2012, 92(15), 3029-3038.
[78]
Jumeri; Kim, S.M. Antioxidant and anticancer activities of enzymatic hydrolysates of solitary tunicate (Styela clava). Food Sci. Biotechnol., 2011, 20(4), 1075-1085.
[79]
Hung, C.; Yang, Y.; Kuo, P.; Hsu, K. Protein hydrolysates from tuna cooking juice inhibit cell growth and induce apoptosis of human breast cancer cell line MCF-7. J. Funct. Foods, 2014, 11, 563-570.
[80]
Chi, C.; Hu, F.; Wang, B.; Li, T.; Ding, G. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. J. Funct. Foods, 2015, 15, 301-313.
[81]
Pan, X.; Zhao, Y.; Hu, F.; Chi, C.; Wang, B. Anticancer activity of a hexapeptide from skate (Raja porosa) cartilage protein hydrolysate in HeLa cells. Mar. Drugs, 2016, 14, 153.
[82]
Wang, Z.; Zhang, X. Isolation and identification of anti-proliferative peptides from Spirulina platensis using three-step hydrolysis. J. Sci. Food Agric., 2017, 97(3), 918-922.
[83]
Schweizer, F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur. J. Pharmacol., 2009, 625, 190-194.
[84]
Dennison, S.R.; Whittaker, M.; Harris, F.; Phoenix, D.A. Anticancer alpha-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Curr. Protein Pept. Sci., 2006, 7, 487-499.
[85]
de Mejia, E.G.; Dia, V.P. Lunasin and lunasin-like peptides inhibit inflammation through suppression of NF-κβ. Peptides, 2009, 30(12), 2388-2398.
[86]
Kovacs-Nolan, J.; Zhang, H.; Ibuki, M.; Nakamori, T.; Yoshiura, K.; Turner, P.V.; Matsui, T.; Mine, Y. The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochim. Biophys. Acta, 2012, 1820(11), 1753-1763.
[87]
Zhang, H.; Kovacs-Nolan, J.; Kodera, T.; Eto, Y.; Mine, Y. γ-Glutamyl cysteine and γ-glutamyl valine inhibit TNF-α signaling in intestinal epithelial cells and reduce inflammation in a mouse model of colitis via allosteric activation of the calcium-sensing receptor. Biochim. Biophys. Acta, 2015, 1852(5), 792-804.
[88]
Ialenti, A.; Santagada, V.; Caliendo, G.; Severino, B.; Fiorino, F.; Maffia, P.; Ianaro, A.; Morelli, F.; Di Micco, B.; Cartenì, M. Synthesis of novel anti-inflammatory peptides derived from the amino-acid sequence of the bioactive protein SV-IV. Eur. J. Biochem., 2001, 268(12), 3399-3406.
[89]
Shang, D.; Liang, H.; Wei, S.; Yan, X.; Yang, Q.; Sun, Y. Effects of antimicrobial peptide L-K6, a temporin-1CEb analog on oral pathogen growth, Streptococcus mutans biofilm formation, and anti-inflammatory activity. Appl. Microbiol. Biotechnol., 2014, 98, 8685-8695.
[90]
Garcia-Mora, P.; Frias, J.; Peñas, E.; Zieliński, H.; Giménez-Bastida, J.A.; Wiczkowski, W.; Zielińska, D.; Martínez-Villaluenga, C. Simultaneous release of peptides and phenolics with antioxidant, ACE-inhibitory and anti-inflammatory activities from pinto bean (Phaseolus vulgaris L. var. pinto) proteins by subtilisins. J. Funct. Foods, 2015, 18, 319-332.
[91]
Martinez-Villaluenga, C.; Dia, V.P.; Berhow, M.; Bringe, N.A.; Gonzalez de Mejia, E. Protein hydrolysates from beta-conglycinin enriched soybean genotypes inhibit lipid accumulation and inflammation in vitro. Mol. Nutr. Food Res., 2009, 53, 1007-1018.
[92]
Oseguera-Toledo, M.E.; de Mejia, E.G.; Dia, V.P.; Amaya-Llano, S.L. Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-κB pathways. Food Chem., 2011, 127, 1175-1185.
[93]
Vernaza, M.G.; Dia, V.P.; de Mejia, E.G.; Chang, Y.K. Antioxidant and antiinflammatory properties of germinated and hydrolysed Brazilian soybean flours. Food Chem., 2012, 134(4), 2217-2225.
[94]
Dia, V.P.; Wang, W.; Oh, V.L.; De Lumen, V.L.; González de Mejia, E. Isolation, purification and characterization of lunasin from defatted soybean flour and in vitro evaluation of its anti-inflammatory activity. Food Chem., 2009, 114(1), 108-115.
[95]
Hwang, J.S.; Yoo, H.J.; Songa, H.J.; Kimb, K.K.; Chunc, Y.J.; Matsui, T.; Kim, H.B. Inflammation-related signaling pathways implicating TGFβ are revealed in the expression profiling of MCF7 cell treated with fermented soybean, Chungkookjang. Nutr. Cancer, 2011, 63(4), 645-652.
[96]
Young, D.; Ibuki, M.; Nakamori, T.; Fan, M.; Mine, Y. Soy-derived di- and tripeptides alleviate colon and ileum inflammation in pigs with dextran sodium sulfate-induced colitis. J. Nutr., 2012, 142, 363-368.
[97]
González-Montoya, M.; Hernández-Ledesma, B.; Silván, J.M.; Mora-Escobedo, R.; Martínez-Villaluenga, C. Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chem., 2018, 242, 75-82.
[98]
López-Barrios, L.; Antunes-Ricardo, M.; Gutiérrez-Uribe, J.A. Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion. Food Chem., 2016, 203, 417-424.
[99]
Ndiaye, F.; Vuong, T.; Duarte, J.; Aluko, R.E.; Matar, C. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds. Eur. J. Nutr., 2012, 51, 29-37.
[100]
Bautista-Expósito, S.; Peñas, E.; Silván, J.M.; Frias, J.; Martínez-Villaluenga, C. pH-controlled fermentation in mild alkaline conditions enhances bioactive compounds and functional features of lentil to ameliorate metabolic disturbances. Food Chem., 2018, 248, 262-271.
[101]
Milán-Noris, A.K.; Gutiérrez-Uribe, J.A.; Santacruz, A.; Serna-Saldívar, S.O.; Martínez-Villaluenga, C. Peptides and isoflavones in gastrointestinal digests contribute to the anti-inflammatory potential of cooked or germinated desi and kabuli chickpea (Cicer arietinum L.). Food Chem., 2018, 268, 66-76.
[102]
Hernández-Ledesma, B.; Hsieh, C.C.; de Lumen, B.O. Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun., 2009, 390, 803-808.
[103]
Zhang, H.; Kodera, T.; Eto, Y.; Mine, Y. γ-Glutamyl valine supplementation-induced mitigation of gut inflammation in a porcine model of colitis. J. Funct. Foods, 2016, 24, 558-567.
[104]
Herman, E.M. Soybean seed proteome rebalancing. Front. Plant Sci., 2014, 5, 437.
[105]
Gomes, L.S.; Senna, R.; Sandim, V.; Silva-Neto, M.A.C.; Perales, J.E.A.; Zingali, R.B.; Soares, M.; Fialho, E. Four conventional soybean [Glycine max (L.) Merrill] seeds exhibit different protein profiles as revealed by proteomic analysis. J. Agric. Food Chem., 2014, 62, 1283-1293.
[106]
Capriotti, A.L.; Caruso, G.; Cavaliere, C.; Samperi, R.; Ventura, S.; Zenezini Chiozzi, R.; Laganà, A. Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. J. Food Compos. Anal., 2015, 44, 205-213.
[107]
Campos-Vega, R.; Reynoso-Camacho, R.; Pedraza-Aboytes, G.; Acosta-Gallegos, J.A.; Guzman-Maldonado, S.H.; Paredes-Lopez, O.; Oomah, B.D.; Loarca-Piña, G. Chemical composition and in vitro polysaccharide fermentation of different beans. J. Food Sci., 2009, 74(7), 59-65.
[108]
Nagai, H.; Kumamoto, H.; Fukuda, M.; Takahashi, T. Inducible nitric oxide synthase and apoptosis-related factors in the synovial tissues of temporomandibular joints with internal derangement and osteoarthritis. J. Oral Maxillofac. Surg., 2003, 61(7), 801-807.
[109]
Mora-Escobedo, R.; Robles-Ramírez, M.C.; Ramón-Gallegos, E.; Reza-Alemán, R. Effect of protein hydrolysates from germinated soybean on cancerous cells of the human cervix: an in vitro study. Plant Foods Hum. Nutr., 2009, 64(4), 271-278.
[110]
Paucar-Menacho, L.M.; Berhow, M.A.; Mandarino, J.M.G.; de Mejia, E.G.; Chang, Y.K. Optimisation of germination time and temperature on the concentration of bioactive compounds in Brazilian soybean cultivar BRS 133 using response surface methodology. Food Chem., 2010, 119(2), 636-642.
[111]
Dia, V.P.; Gomez, T.; Vernaza, G.; Berhow, M.; Chang, Y.K.; de Mejia, E.G. Bowman-Birk and Kunitz protease inhibitors among antinutrients and bioactives modified by germination and hydrolysis in brazilian soybean cultivar BRS 133. J. Agric. Food Chem., 2012, 60(32), 7886-7894.
[112]
Hernández-Ledesma, B.; García-Nebot, M.J.; Fernández-Tomé, S.; Amigo, L.; Recio, I. Dairy protein hydrolysates: Peptides for health benefits. Int. Dairy J., 2014, 38, 82-100.
[113]
Hernández-Ledesma, B.; Hsieh, C.C.; de Lumen, B.O. Lunasin, a novel seed peptide for cancer prevention. Peptides, 2009, 30, 426-430.
[114]
Galvez, A.F.; Chen, N.; Macasieb, J.; de Lumen, B.O. Chemopreventive property of a soybean peptide (lunasin) that binds to deacetylated histones and inhibits acetylation. Cancer Res., 2001, 61, 7473-7478.
[115]
Lam, Y.; Galvez, A.F.; de Lumen, B.O. Lunasin suppresses E1A-mediated transformation of mammalian cells but does not inhibit growth of immortalized and established cancer cell lines. Nutr. Cancer, 2003, 47, 88-94.
[116]
Smyth, E.M.; Grosser, T.; Wang, M.; Yu, Y.; FitzGerald, G.A. Prostanoids in health and disease. J. Lipid Res., 2009, 50, S423-S428.
[117]
Kawai, T.; Akira, S. Signaling to NF-κB by toll-like receptors. Trends Mol. Med., 2007, 13, 460-469.
[118]
Ogawara, K.; Kuldo, J.M.; Oosterhuis, K.; Kroesen, B.J.; Rots, M.G.; Trautwein, C.; Kimura, T.; Haisma, H.J.; Molema, J. Functional inhibition of NF-kappa B signal transduction in αvβ3 integrin expressing endothelial cells by using RGD-PEG modified adenovirus with a mutant IκB gene. Arthritis Res. Ther., 2006, 8(1), R32.
[119]
Jobin, C.; Balfour Sartor, R. The IκB/NF-κB system: A key determinant of mucosal inflammation and protection. Am. J. Physiol. Cell Physiol., 2000, 278, C451-C462.
[120]
Xu, G.L.; Liu, F.; Ao, G.Z.; He, S.Y.; Ju, M.; Zhao, Y.; Xue, T. Anti-inflammatory effects and gastrointestinal safety of NNU-hdpa, a novel dual COX/5-LOX inhibitor. Eur. J. Pharmacol., 2009, 611, 100-106.
[121]
Dinarello, C.A. Proinflammatory cytokines. Chest, 2000, 118, 503-508.
[122]
Laing, K. Chemokines. Dev. Comp. Immunol., 2004, 28(5), 443-460.
[123]
Saleh, L.S.; Bryant, S.J. In vitro and in vivo models for assessing the host response to biomaterials. Drug Discov. Today Dis. Models, 2017, 24, 13-21.