Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Effect of Simultaneous Snail Slime-aided Degradation and Yeast Fermentation on Terpenoid Composition of Plantain Pseudostem Waste

Author(s): Amadi P. Uchenna*, Ogunka-Nnoka Charity and Bene Abbey

Volume 20, Issue 6, 2019

Page: [459 - 464] Pages: 6

DOI: 10.2174/1389201020666190408120018

Price: $65

Abstract

Background: In this study, local sustainable enzyme sources involving excised digestive juice of African land snail and yeast were utilized to achieve the simultaneous saccharification (SSF) and fermentation (SSF) of plantain pseudostem (PPS) waste, and afterwards their effects on terpenoids using gas chromatography coupled to a flame ionization detector (GC-FID), were examined.

Methods: The most abundant terpenoids were found in the order α-pinene > borneol > camphor > humulene > β-caryophellene, while the least in abundance were cis ocimene (8.78x10-6 mg/100g), and cyperene (1.81x10-5 mg/100g). The application of exclusive fermentation and SSF respectively elevated azuluene by 95.46 and 99.6%, while pinene-2-ol was elevated by 83.02 and 98.57%, respectively.

Results: Both exclusive fermentation and SSF had no effect on myrcene, cyperene, ethyl cinnamate, germacrene b, valencene, beta selinene, aromadendrene, and taraxerol, while the degree of degradation of some of the terpenoids by both processes was respectively as follows; gama muurolene (100%), β-caryophyllene (97.60 and 93.14%), α-terpinenyl acetate (91.95 and 83.16%), geranyl acetate (94.81 and 43.87%), and terpinen-4-ol (94.40 and 57.00%).

Conclusion: The findings of this study encourage the imminent application of simultaneous saccharification and fermentation for the enhancement of bioactivities of terpenoids.

Keywords: Terpenes, plantain pseudostem, saccharification, fermentation, snail digestive juice, biosynthesis.

[1]
Pattanaik, B.; Lindberg, P. Terpenoids and their biosynthesis in cyanobacteria. Life, 2015, 5, 269-293.
[2]
Kandi, S.; Vikram, G.; Pragna, R.; Ramana, K.V. Biomedical significance of terpenes: An insight. Biomed. Biotech, 2015, 3, 8-10.
[3]
Gonzalez-Burgos, E.; Gomez-Serranillos, M.P. Terpene compounds in nature: A review of their potential antioxidant activity. Curr. Med. Chem., 2012, 19(31), 5319-5341.
[4]
Agomuo, E.N.; Amadi, P.U. Nutrient and antioxidant properties of oils from bagasses, agricultural residues, medicinal plants, and fodders. J. Am. Coll. Nutr., 2019, 38(2), 132-140.
[5]
Sotirios, C.K.; Antonios, M.M. Developing a yeast cell factory for the production of terpenoids. Comput. Struct. Biotechnol. J., 2012, 3(4), e201210006.
[6]
Nevoigt, E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev., 2008, 72(3), 379-412.
[7]
Yoichi, M. Microbial conversion of terpenoids. Biotechnol. Genet. Eng. Rev., 1988, 6(1), 271-320.
[8]
Amadi, P.U.; Ifeanacho, M.O. Impact of changes in fermentation time, volume of yeast, and mass of plantain pseudo-stem substrate on the simultaneous saccharification and fermentation potentials of African Land Snail slime and yeast. J. Gen. Eng. Biotech, 2016, 14(2), 289-297.
[9]
Amadi, P.U.; Ifeanacho, M.O.; Agomuo, E.N. The effects of different heating periods and exclusion of some fermentation conditions on bioethanol production from plantain pseudo-stem waste using the digestive juice of Archachatina marginata, garlic and Saccharomyces cerevisiae. Biofuels, 2018, 9(4), 531-539.
[10]
Amadi, P.U.; Ogunka, N.C.; Abbey, B.W. Biotransformation of plantain pseudostem fibres using local enzyme sources; analysis of their potential as commercial poultry feed; Biocatal. Biotrans, 2018, pp. 1-9.
[11]
Ortan, A.; Popescu, M.; Gaita, A.; Dinu-Pîrvu, C.; Câmpeanu, G.H. Contributions to the pharmacognostical study on Anethum graveolens, Dill (Apiaceae). Rom. Biotechnol. Lett., 2009, 14(2), 4342-4348.
[12]
Ramalho, T.R.O.; Oliveira, M.T.P.; Lima, A.L.A.; Santos, C.R.B.; Piuvezam, M.R. Gamma-terpinene modulates acute inflammatory response in mice. Planta Med., 2015, 81(14), 1-9.
[13]
Takahashi, Y.; Inaba, N.; Kuwahara, S.; Kuki, W. Effects of g-terpinene on lipid concentrations in serum using triton WR1339-treated rats. Biosci. Biotechnol. Biochem., 2003, 67(11), 2448-2450.
[14]
Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharm, 2011, 163(7), 1344-1364.
[15]
Nissen, L.; Zatta, A.; Stefanini, I.; Grandi, S.; Sgorbati, B.; Biavati, B. Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa). Fitoterapia, 2010, 81, 413-419.
[16]
Yang, H.; Woo, J.; Pae, A.N.; Um, M.Y.; Cho, N.C.; Park, K.D.; Yoon, M.; Kim, J.; Lee, C.J.; Cho, S. α-Pinene, a major constituent of pine tree oils, enhances non-rapid eye movement sleep in mice through GABAA-benzodiazepine receptors. Mol. Pharmacol., 2016, 90, 530-539.
[17]
Rombi, M. Cento Piante Medicinali. Bergamo; Nuovo Insttuto d'Arti Grafiche: Italy, 1993, pp. 63-65.
[18]
Awang-Dennis, V.C. The herbs of choice: The therapeutic use of Phytomedicinals; Taylor & Francis group: New York, CRC Press. , 2006, p. 292.
[19]
Moqrich, A.; Hwang, S.W.; Earley, T.J.; Petrus, M.J.; Murray, A.N.; Spencer, K.S.R.; Andahazy, M.; Story, G.M.; Patapoutian, A. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science, 2005, 307(5714), 1468-1472.
[20]
Johari, H.; Abedini, M.; Fallahi, S. The effect of camphor (Cinnamomum camphora) on concentration of liver enzymes in female rats. Int. J. Latest Res. Sci. Tech, 2015, 4(1), 111-113.
[21]
Titley, N.M. The Ni’matnama Manuscript of the Sultans of Mandu: The Sultan’s Book of Delights; ,Routledge Studies in South Asia. London: UK, Routledge,. , 2004.
[22]
Soares, M.C.M.S.; Damiani, C.E.N.; Moreira, C.M.; Stefanon, I.; Vassallo, D.V. Eucalyptol, an essential oil, reduces contractile activity in rat cardiac muscle. Braz. J. Med. Biol. Res., 2005, 38(3), 453-461.
[23]
Lima, P.R.; Melo, T.S.; Carvalho, K.M.M.; Oliveira, Í.B.; Arruda, B.R.; Brito, G.A.C.; Rao, V.S.; Santos, F.A. 1,8-cineole (eucalyptol) ameliorates cerulein-induced acute pancreatitis via modulation of cytokines, oxidative stress and NF-κB activity in mice. Life Sci., 2013, 92(24-26), 1195-1201.
[24]
Laude, E.A.; Morice, A.H.; Grattan, T.J. The antitussive effects of menthol, camphor and cineole in conscious guinea-pigs. Pulm. Pharm, 1994, 7, 179-184.
[25]
Lahlou, S.; Figueiredo, A.F.; Magalhães, P.J.; Leal-Cardoso, J.H. Cardiovascular effects of 1,8-cineole, a terpenoid oxide present in many plant essential oils, in normotensive rats. Can. J. Physiol. Pharmacol., 2002, 80, 1125-1131.
[26]
Qing-xia, K.; Zhao-ying, W.; Xu, C.; Ru-qing, L.; Min, X.; Lei, L. Study on the anti-cerebral ischemia effect of borneol and its mechanism. Afr. J. Tradit. Complement. Altern. Med., 2014, 11(1), 161-164.
[27]
Elisabetsky, E.; Marschner, J.; Souza, D.O. Effects of Linalool on glutamatergic system in the rat cerebral cortex. Neurochem. Res., 1995, 20(4), 461-465.
[28]
Anjos, P.J.; Lima, A.O.; Cunha, P.S.; De Sousa, D.P.; Onofre, A.S.; Ribeiro, T.P.; Medeiros, I.A.; Antoniolli, A.R.; Quintans-Júnior, L.J.; Santosa, M.R. Cardiovascular effects induced by linalool in normotensive and hypertensive rats. Z. Naturforsch. C, 2013, 68(5-6), 181-190.
[29]
Seol, G.H.; Kang, P.; Lee, H.S.; Seol, G.H. Antioxidant activity of linalool in patients with carpal tunnel syndrome. BMC Neurol., 2016, 2(16), 17.
[30]
Nóbrega, F.F.; Salvadori, M.G.; Masson, C.J.; Mello, C.F.; Nascimento, T.S.; Leal-Cardoso, J.H.; de Sousa, D.P. Monoterpenoid terpinen-4-ol exhibits anticonvulsant activity in behavioural and electrophysiological studies. Oxid. Med. Cell. Longev., 2014, 2014, 703848.
[31]
Pan, M.; Hsieh, M.; Kuo, J.; Lai, C.; Wu, H.; Sang, S.; Ho, C. 6-Shogaol induces apoptosis in human colorectal carcinoma cellsviaROS production, caspase activation, and GADD 153 expression. Mol. Nutr. Food Res., 2008, 52(5), 527.
[32]
Saleem, M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett., 2009, 285(2), 109-115.
[33]
Guimarães-Santos, A. Copaiba oil-resin treatment is neuroprotective and reduces neutrophil recruitment and microglia activation after motor cortex excitotoxic injury. Evid. Based Complement. Alternat. Med., 2012, 1-9.
[34]
Javed, H.; Azimullah, S.; Haque, M.E.; Ojha, S.K. Cannabinoid type 2 (CB2) receptors activation protects against oxidative stress and neuroinflammation associated dopaminergic neurodegeneration in rotenone model of Parkinson’s disease. Front. Neurosci., 2016, 10, 321.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy