Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Evaluation of Antioxidant, Antityrosinase Activities and Cytotoxic Effects of Phyllanthus amarus Extracts

Author(s): Folorunso Adewale Olabiyi, Yapo Guillaume Aboua, Olugbenga Kayode Popoola, Thomas Klaus Monsees and Oluwafemi Omoniyi Oguntibeju*

Volume 10, Issue 2, 2020

Page: [130 - 138] Pages: 9

DOI: 10.2174/2210315509666190405100745

Price: $65

Abstract

Background: Antioxidant and antityrosinase activities of medicinal plants, together with their various health benefits have received attention in recent times. However, with wide ethnobotanical uses of Phyllanthus amarus, data on in-vitro skin depigmentation activity and cytotoxicity, as well as its impact on mediators of Reactive Oxygen Species (ROS) are still lacking. This present study is, therefore, designed to evaluate its tyrosinase inhibitory action, antioxidant potentials and cytotoxic activities.

Methods: In this study, quantitative determination of polyphenols, flavanol, flavonol, flavonoids, Oxygen Reducing Antioxidant Capacity (ORAC), Trolox Equivalent Antioxidant Capacity (TEAC) were performed on the extracts of P amarus. Also, tyrosinase inhibitory efficacy of the hexane, methanol and aqueous extracts of Phyllanthus amarus were evaluated using ELISA-based methods. Cytotoxicity studies were done with mouse Sertoli (TM4) cells, using MTT assay and cell counts.

Results: The hexane and aqueous extracts exhibited significant antityrosinase activity (p<0.05) (IC50= 116.08 and 129.25 µg/mL respectively) while its methanolic extract produces no statistically significant finding. Higher total polyphenol, flavonoids and flavonol were seen in the methanol fraction of the extract. Besides, higher radical cation scavenging (TEAC) activity was observed in the aqueous extract. These values were significant (p<0.0001), whereas ORAC results of the methanol extract show significantly (p<0.0001) higher oxygen reducing antioxidant potential than the aqueous extract. The aqueous extract showed the highest mitochondrial dehydrogenase activity at lower concentrations (0.01 to 10 μg/ml). Here, TM4 cell numbers were also significantly higher as compared to the untreated control. Sertoli cell viability was compromised after exposure to higher extract concentrations (100 to 1000 µg/ml).

Conclusion: The hexane and aqueous extracts of Phyllanthus amarus possess good tyrosinase inhibitory action when compared to the reference kojic acid. Also, it demonstrated high antioxidant potentials by its ability to scavenge oxygen radicals, reduce ferric ion and inhibit ABTS radical. Lower extract concentrations stimulated Sertoli cell proliferation, which might be due to phytoestrogenic activities of Phyllanthus amarus conferred by its active, components, such as phyllanthin and hypophyllanthin.

Keywords: Phyllanthus amarus, tyrosinase inhibition, antioxidant, cytotoxicity, Sertoli cells, oxidative stress.

Graphical Abstract

[1]
Olabiyi, F.A.; Aboua, Y.G.; Oguntibeju, O.O. Bioactive compounds of medicinal plants-properties and potential for human health In: Innovations in plant science for better health: From soil to fork, Megh R. Goyal and Ademola O. Ayeleso (Eds); Apple Academic Press: New York. 2018, pp. 187-208.
[2]
Tremellen, K. Oxidative stress and male infertility: A clinical perspective. Hum. Reprod. Update, 2008, 14(3), 243-258.
[3]
Chompo, J.; Upadhyay, A.; Fukuta, M.; Tawata, S. Effect of Alpinia zerumbet components on antioxidant and skin disease-related enzymes. BMC Complement. Altern. Med., 2012, 12, 106-114.
[4]
García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martinez, J.A. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res., 2009, 58(9), 537-552.
[5]
Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci., 2008, 4(2), 89.
[6]
Mazlan, N.A.; Mediani, A.; Abas, F.; Ahmad, S.; Shaari, K.; Khamis, S.; Lajis, N.H. Antioxidant, antityrosinase, anticholinesterase, and nitric oxide inhibition activities of three Malaysian Macaranga species. The Scient. World J, 2013, 2013, 8.
[7]
Kim, Y.J.; Uyama, H. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition, mechanism and perspective for the future. Cell. Mol. Life Sci., 2005, 62(15), 1707-1723.
[8]
Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci., 2009, 10(6), 2440-2475.
[9]
Ko, H.H.; Chang, W.L.; Lu, T.M. Antityrosinase and antioxidant effects of ent-kaurane diterpenes from leaves of Broussonetia papyrifera. J. Nat. Prod., 2008, 71(11), 1930-1933.
[10]
Karuna, R.; Bharathi, V.G.; Reddy, S.S.; Ramesh, B.; Saralakumari, D. Protective effects of Phyllanthus amarus aqueous extract against renal oxidative stress in Streptozotocin-induced diabetic rats. Int. J. Pharmacol., 2011, 43(4), 414.
[11]
Tahseen, M.; Mishra, G. Ethnobotany and Diuretic activity of some selected Indian medicinal plants. Pharma Innovat, 2013, 2, 112.
[12]
Adeneye, A.A. The leaf and seed aqueous extract of Phyllanthus amarus improves insulin resistance diabetes in experimental animal studies. J. Ethnopharmacol., 2012, 144(3), 705-711.
[13]
Verma, S.; Sharma, H.; Garg, M. Phyllanthus amarus: A Review. J. Pharmacog. Phytochem, 2014, 3(2), 18-22.
[14]
Maciel, M.A.M.; Cunha, A.F.; Dantas, N.T.C.; Kaiser, C.R. NMR characterization of bioactive lignans from Phyllanthus amarus schum and thonn. J. Magn. Reson. Imaging, 2007, 6(3), 76-82.
[15]
Foo, L.Y.; Wong, H. Phyllanthusiin D, an unusual hydrolysable tannin from Phyllanthus amarus. Phytochemistry, 1992, 31(2), 711-713.
[16]
Foo, L.Y. Amariin, a di-dehydrohexahydroxydiphenoyl hydrolysable tannin from Phyllanthus amarus. Phytochemistry, 1993, 33(2), 487-491.
[17]
Kassuya, C.A.; Silvestre, A.; Menezes-de-Lima, O.; Marotta, D.M.; Rehder, V.L.G.; Calixto, J.B. Anti-inflammatory and antiallodynic actions of the lignan niranthin isolated from Phyllanthus amarus: Evidence for interaction with platelet activating factor receptor. Eur. J. Pharmacol., 2006, 546(1), 182-188.
[18]
Leite, D.F.; Kassuya, C.A.; Mazzuco, T.L.; Silvestre, A.; de Melo, L.V.; Rehder, V.L.; Rumjanek, V.M.; Calixto, J.B. The cytotoxic effect and the multidrug resistance reversing action of lignans from Phyllanthus amarus. Planta medica., 2006, 72(15), 1353-1358.
[19]
Houghton, P.J.; Woldemariam, T.Z.; O’Shea, S.; Thyagarajan, S.P. Two securinega-type alkaloids from Phyllanthus amarus. Phytochemistry, 1996, 43(3), 715-717.
[20]
Keimer, A.K.; Hartung, T.; Huber, C.; Vollmar, A.M. Phyllanthus amarus has anti-inflammatory potential by inhibition of iNOS, COX-2 and cytokines via the NF-kB pathway. J. Hepatol., 2003, 38, 289-297.
[21]
Patel, J.R.; Tripathi, P.; Sharma, V.; Chauhan, N.S. Uses, phytochemistry and pharmacology: A review. J. Ethnopharmacol., 2011, 138(2), 286-313.
[22]
Adedapo, A.A.; Adegbayibi, A.Y.; Emikpe, B.O. Some clinico‐pathological changes associated with the aqueous extract of the leaves of Phyllanthus amarus in rats. Phytother. Res., 2005, 19(11), 971-976.
[23]
(a)Waterhouse, A. Folin-Ciocalteau method for total phenol in wine. Department of Viticulture and Enology. University of California, Davis, USA,
(b)Watt, J.M.; Breyer-Brandwijk, M.G. (1962). The medicinal and poisonous plants of southern and eastern Africa, 2005, 2, 32.
[24]
Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 1999, 64(4), 555-559.
[25]
Delcour, J.A.; Varebeke, D.J.D. A new colourimetric assay for flavanoids in pilsner beers. J. Inst. Brew., 1985, 91(1), 37-40.
[26]
Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[27]
Prior, R.L.; Hoang, H.A.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Jacob, R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agric. Food Chem., 2003, 51(11), 3273-3279.
[28]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[29]
Curto, E.V.; Kwong, C.; Hermersdörfer, H.; Glatt, H.; Santis, C.; Virador, V.; Hearing, V.J.J.; Dooley, T.P. Inhibitors of mammalian melanocyte tyrosinase: In vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochem. Pharmacol., 1999, 57(6), 663-672.
[30]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[31]
Lappalainen, K.; Jääskeläinen, I.; Syrjänen, K.; Urtti, A.; Syrjänen, S. Comparison of cell proliferation and toxicity assays using two cationic liposomes. Pharm. Res., 1994, 11(8), 1127-1131.
[32]
Monsees, T.K.; Franz, M.; Gebhardt, S.; Winterstein, U.; Schill, W.B.; Hayatpour, J. Sertoli cells as a target for reproductive hazards. Andrologia, 2000, 32(4‐5), 239-246.
[33]
Howes, M.J.R.; Simmonds, M.S. The role of phytochemicals as micronutrients in health and disease. Curr. Opin. Clin. Nutr. Metab. Care, 2014, 17(6), 558-566.
[34]
Hosseinimehr, S.J.; Pourmorad, F.; Shahabimajd, N.; Shahrbandy, K.; Hosseinzadeh, R. In vitro antioxidant activity of Polygonium hyrcanicum, Centaurea depressa, Sambucus ebulus, Mentha spicata and Phytolacca Americana. Pak. J. Biol. Sci., 2007, 10(4), 637-640.
[35]
Abbasi, M.A.; Zafar, A.; Riaz, T. Aziz-ur-Rehman.; Arshad, S.; Shahwar, D.; Jahangir, M.; Siddiqui, S.Z.; Shahzadi, T.; Ajaib, M. Evaluation of comparative antioxidant potential of aqueous and organic fractions of Ipomoea carnea. J. Med. Plants Res., 2010, 4(18), 1883-1887.
[36]
Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 2015, 5(35), 27986-28006.
[37]
Islam, A.; Naskar, S.; Mazumder, U.K.; Gupta, M.; Ghosal, S. Estrogenic properties of phyllanthin and hypophyllanthin from Phyllanthus amarus against carbofuran induced toxicity in female rats. Pharmacol. online, 2008, 3, 1006-1016.
[38]
Iranloye, B.; Oyeusi, K.; Alada, A. Effect of aqueous extract of Phyllanthus amarus leaves on implantation and pregnancy in rats. Niger. J. Physiol. Sci., 2010, 25(1), 63-66.
[39]
Lucas, T.F.; Pimenta, M.T.; Pisolato, R.; Lazari, M.F.M.; Porto, C.S. 17β-estradiol signaling and regulation of Sertoli cell function. Spermatogenesis, 2011, 1(4), 318-324.
[40]
Russo, A.; Acquaviva, R.; Campisi, A.; Sorrenti, V.; Di Giacomo, C.; Virgata, G.; Barcellona, M.L.; Vanella, A. Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell Biol. Toxicol., 2000, 16(2), 91.
[41]
Catala, A. The ability of melatonin to counteract lipid peroxidation in biological membranes. Curr. Mol. Med., 2007, •••, 638-649.
[42]
Young, J.; Whale, K.W.; Boyle, S.P. Cytoprotective effects of phenolic antioxidants and essential fatty acids in human blood monocyte and neuroblastoma cell lines: Surrogates for neurological damage in vivo. Prostagl. Leukotr. Essent. Fat. Acid, 2007, 78, 45-59.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy