[1]
Fiamingo, A.; Delezuk, J.A.D.M.; Trombotto, S.; David, L.; Campana-Filho, S.P. Extensively deacetylated high molecular weight chitosan from the multistep ultrasound-assisted deacetylation of beta-chitin. Ultrason. Sonochem., 2016, 32, 79-85.
[2]
Elizabeth, B. Alogenosis iatrogénica; PhD Thesis, Universidad
Católica de Cuenca: Cuenca, Ecuador, 2012.
[3]
Kadajji, V.G.; Betageri, G.V. Water soluble polymers for pharmaceutical applications. Polymers , 2011, 3(4), 1972-2009.
[4]
Dutta, P.K.; Dutta, J.; Tripathi, V.S. Chitin and chitosan: Chemistry, properties and application. J. Sci. Ind. Res. , 2004, 63(1), 20-31.
[5]
Macleod, G.; Fell, T. J.; Collett, J. An in vitro investigation into the potential for bimodal drug release from pectin/chitosan/HPMC-coated tablets. Int. J. Pharm., 1999, 188(1), 11-18.
[6]
Kokil, S.; Patil, P.; Mahadik, K.; Paradkar, A. Studies on spray-dried mixtures of chitosan and hydrolyzed gelatin as tablet binder: A technical note. AAPS PharmSciTech, 2005, 6(3), 437-443.
[7]
Chuang, C.Y.; Don, T.M.; Chiu, W.Y. Synthesis and characterization of stimuli‐responsive porous/hollow nanoparticles by self‐assembly of chitosan‐based graft copolymers and application in drug release. J. Polym. Sci. A1, 2010, 48(11), 2377-2387.
[8]
Ribeiro, P.A.F.; Dias, D.S.; Lage, D.P.; Costa, L.E.; Martins, V.T.; Tavares, G.S.V.; Mendonça, D.V.C.; Lima, M.P.; Oliveira, J.S.; Steiner, B.T.; Machado-de-Ávila, R.A.; Roatt, B.M.; Chávez-Fumagalli, M.A.; Menezes-Souza, D.; Duarte, M.C.; Teixeira, A.L.; Coelho, E.A.F. Evaluation of a Leishmania hypothetical protein administered as DNA vaccine or recombinant protein against Leishmania infantum infection and its immunogenicity in humans. Cell. Immunol., 2018, 331, 67-77.
[9]
Boateng, J.S.; Matthews, K.H.; Stevens, H.N.E.; Eccleston, G.M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci., 2008, 97(8), 2892-2923.
[10]
Singla, A.K.; Chawla, M. Chitosan: Some pharmaceutical and biological aspects-an update. J. Pharm. Pharmacol., 2001, 53(8), 1047-1067.
[11]
Muzzarelli, R.A.A.; Muzzarelli, C. Chitosan chemistry: Relevance to the biomedical sciences. In: Polysaccharides I: Structure, Characterization and Use; Heinze, T., Ed.; Springer Berlin: Heidelberg, 2005; Vol. 186, pp. 151-209.
[12]
Englehart, M.S.; Cho, S.D.; Tieu, B.H.; Morris, M.S.; Underwood, S.J.; Karahan, A.; Muller, P.J.; Differding, J.A.; Farrell, D.H.; Schreiber, M.A. A novel highly porous silica and chitosan-based hemostatic dressing is superior to HemCon and gauze sponges. J. Trauma, 2008, 65(4), 884-890.
[13]
Malmquist, J.P.; Clemens, S.C.; Oien, H.J.; Wilson, S.L. Hemostasis of oral surgery wounds with the HemCon Dental Dressing. J. Oral Maxillofac. Surg., 2008, 66(6), 1177-1183.
[14]
Brown, M.A.; Daya, M.R.; Worley, J.A. Experience with chitosan dressings in a civilian EMS system. J. Emerg. Med., 2009, 37(1), 1-7.
[15]
Landriscina, A.; Rosen, J.; Friedman, A.J. Biodegradable chitosan nanoparticles in drug delivery for infectious disease. Nanomedicine (Lond.), 2015, 10(10), 1609-1619.
[16]
Park, J.H.; Saravanakumar, G.; Kim, K.; Kwon, I.C. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv. Drug Deliv. Rev., 2010, 62(1), 28-41.
[17]
Gan, Q.; Wang, T. Chitosan nanoparticle as protein delivery carrier-systematic examination of fabrication conditions for efficient loading and release. Colloids Surf. B Biointerfaces, 2007, 59(1), 24-34.
[18]
Illum, L.; Jabbal-Gill, I.; Hinchcliffe, M.; Fisher, A.N.; Davis, S.S. Chitosan as a novel nasal delivery system for vaccines. Adv. Drug Deliv. Rev., 2001, 51(1-3), 81-96.
[19]
Mao, S.; Sun, W.; Kissel, T. Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliv. Rev., 2010, 62(1), 12-27.
[20]
Galván Márquez, I.; Akuaku, J.; Cruz, I.; Cheetham, J.; Golshani, A.; Smith, M.L. Disruption of protein synthesis as antifungal mode of action by chitosan. Int. J. Food Microbiol., 2013, 164(1), 108-112.
[21]
Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol., 2010, 144(1), 51-63.
[22]
Badawy, M.E.I.; Rabea, E.I. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int. J. Carbohydr. Chem., 2011, 1, 1-29.
[23]
Gamal, R.F.; El-Tayeb, T.S.; Raffat, E.I.; Ibrahim, H.M.M.; Bashandy, A.S. Optimization of chitin yield from shrimp shell waste by Bacillus subtilis and impact of gamma irradiation on production of low molecular weight chitosan. Int. J. Biol. Macromol., 2016, 91, 598-608.
[24]
Percot, A.; Viton, C.; Domard, A. Optimization of chitin extraction from shrimp shells. Biomacromolecules, 2003, 4(1), 12-18.
[25]
Crofton, A.R.; Hudson, S.M.; Howard, K.; Pender, T.; Abdelgawad, A.; Wolski, D.; Kirsch, W.M. Formulation and characterization of a plasma sterilized, pharmaceutical grade chitosan powder. Carbohydr. Polym., 2016, 146, 420-426.
[26]
Jayakumar, R.; Prabaharan, M.; Reis, R.L.; Mano, J.F. Graft copolymerized chitosan-present status and applications. Carbohydr. Polym., 2005, 62(2), 142-158.
[27]
Harris, M.; Alexander, C.; Wells, C.M.; Bumgardner, J.D.; Carpenter, D.P.; Jennings, J.A. Chitosan for the delivery of antibiotics. In: Chitosan Based Biomaterials; Jennings, J.A.; Bumgardner, J.D., Eds.; Woodhead Publishing, 2017; Vol. 2, pp. 147-173.
[28]
Ramasamy, P.; Subhapradha, N.; Thinesh, T.; Selvin, J.; Selvan, K.M.; Shanmugam, V.; Shanmugam, A. Characterization of bioactive chitosan and sulfated chitosan from Doryteuthis singhalensis (Ortmann, 1891). Int. J. Biol. Macromol., 2017, 99, 682-691.
[29]
Gierszewska, M.; Ostrowska-Czubenko, J. Chitosan-based membranes with different ionic crosslinking density for pharmaceutical and industrial applications. Carbohydr. Polym., 2016, 153, 501-511.
[30]
Jóźwiak, T.; Filipkowska, U.; Szymczyk, P.; Rodziewicz, J.; Mielcarek, A. Effect of ionic and covalent crosslinking agents on properties of chitosan beads and sorption effectiveness of Reactive Black 5 dye. React. Funct. Polym., 2017, 114, 58-74.
[31]
Maslakci, N.N.; Ulusoy, S.; Oksuz, A.U. Investigation of the effects of plasma-treated chitosan electrospun fibers onto biofilm formation. Sens. Actuators, 2017, 246, 887-895.
[32]
Illum, L. Chitosan and its use as a pharmaceutical excipient. Pharm. Res., 1998, 15(9), 1326-1331.
[33]
Drechsler, M.; Garbacz, G.; Thomann, R.; Schubert, R. Development and evaluation of chitosan and chitosan/Kollicoat® Smartseal 30 D film-coated tablets for colon targeting. Eur. J. Pharm. Biopharm., 2014, 88(3), 807-815.
[34]
Upadrashta, S.M.; Katikaneni, P.R.; Nuessle, N.O. Chitosan as a tablet binder. Drug Dev. Ind. Pharm., 1992, 18(15), 1701-1708.
[35]
Movaffagh, J.; Ghodsi, A.; Fazly Bazzaz, B.S.; Sajadi Tabassi, S.A.; Ghodrati Azadi, H. The use of natural biopolymer of chitosan as biodegradable beads for local antibiotic delivery: Release studies. Jundishapur J. Nat. Pharm. Prod., 2013, 8(1), 27-33.
[36]
Sogias, I.A.; Williams, A.C.; Khutoryanskiy, V.V. Why is chitosan mucoadhesive? Biomacromolecules, 2008, 9(7), 1837-1842.
[37]
Gonçalves, I.; Henriques, P.; Seabra, C.; Martins, M.C. The potential utility of chitosan micro/nanoparticles in the treatment of gastric infection. Expert Rev. Anti Infect. Ther., 2014, 12(8), 981-992.
[38]
Wang, M.; Liu, M.; Xie, T.; Zhang, B-F.; Gao, X-L. Chitosan-modified cholesterol-free liposomes for improving the oral bioavailability of progesterone. Colloids Surf. B Biointerfaces, 2017, 159, 580-585.
[39]
Ubaid, M.; Murtaza, G. Fabrication and characterization of genipin cross-linked chitosan/gelatin hydrogel for pH-sensitive, oral delivery of metformin with an application of response surface methodology. Int. J. Biol. Macromol., 2018, 114, 1174-1185.
[40]
S.,, P.; Y.,, G. Polymers in mucoadhesive buccal drug delivery system
– A review. Int. J. Res. Pharm. Sci. , 2010.
[41]
Freag, M.S.; Saleh, W.M.; Abdallah, O.Y. Exploiting polymer blending approach for fabrication of buccal chitosan-based composite sponges with augmented mucoadhesive characteristics. Eur. J. Pharm. Sci., 2018, 120, 10-19.
[42]
Portero, A.; Teijeiro-Osorio, D.; Alonso, M.J.; Remuñán-López, C. Development of chitosan sponges for buccal administration of insulin. Carbohydr. Polym., 2007, 68(4), 617-625.
[43]
Tejada, G.; Barrera, M.G.; Piccirilli, G.N.; Sortino, M.; Frattini, A.; Salomon, C.J.; Lamas, M.C.; Leonardi, D. Development and evaluation of buccal films based on chitosan for the potential treatment of oral candidiasis. AAPS PharmSciTech, 2017, 18(4), 936-946.
[44]
Moes, A.J. Gastroretentive dosage forms. Crit. Rev. Ther. Drug Carrier Syst., 1993, 10(2), 143-195.
[45]
Yang, L.; Eshraghi, J.; Fassihi, R. A new intragastric delivery system for the treatment of Helicobacter pylori associated gastric ulcer: in vitro evaluation. J. Control. Release, 1999, 57(3), 215-222.
[46]
Praveen, R.; Prasad Verma, P.R.; Venkatesan, J.; Yoon, D-H.; Kim, S-K.; Singh, S.K. In vitro and in vivo evaluation of gastro-retentive carvedilol loaded chitosan beads using Gastroplus™. Int. J. Biol. Macromol., 2017, 102, 642-650.
[47]
Kim, S.; Jo, A.; Ahn, J. Application of chitosan–alginate microspheres for the sustained release of bacteriophage in simulated gastrointestinal conditions. Int. J. Food Sci. Technol., 2015, 50(4), 913-918.
[48]
Abruzzo, A.; Bigucci, F.; Cerchiara, T.; Saladini, B.; Gallucci, M.C.; Cruciani, F.; Vitali, B.; Luppi, B. Chitosan/alginate complexes for vaginal delivery of chlorhexidine digluconate. Carbohydr. Polym., 2013, 91(2), 651-658.
[49]
Marciello, M.; Rossi, S.; Caramella, C.; Remuñán-López, C. Freeze-dried cylinders carrying chitosan nanoparticles for vaginal peptide delivery. Carbohydr. Polym., 2017, 170, 43-51.
[50]
Dabaghian, M.; Latifi, A.M.; Tebianian, M. NajmiNejad, H.; Ebrahimi, S.M. Nasal vaccination with r4M2e.HSP70c antigen encapsulated into N-trimethyl chitosan (TMC) nanoparticulate systems: Preparation and immunogenicity in a mouse model. Vaccine, 2018, 36(20), 2886-2895.
[51]
Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release, 2004, 100(1), 5-28.
[52]
Luppi, B.; Bigucci, F.; Abruzzo, A.; Corace, G.; Cerchiara, T.; Zecchi, V. Freeze-dried chitosan/pectin nasal inserts for antipsychotic drug delivery. Eur. J. Pharm. Biopharm., 2010, 75(3), 381-387.
[53]
Huang, Y.C.; Vieira, A.; Huang, K.L.; Yeh, M.K.; Chiang, C.H. Pulmonary inflammation caused by chitosan microparticles. J. Biomed. Mater. Res. A, 2005, 75(2), 283-287.
[54]
Zhang, W.F.; Zhao, X.T.; Zhao, Q.S.; Zha, S.H.; Liu, D.M.; Zheng, Z.J.; Li, W.T.; Zhou, H.Y.; Yan, F. Biocompatibility and characteristics of theophylline/carboxymethyl chitosan microspheres for pulmonary drug delivery. Polym. Int., 2014, 63(6), 1035-1040.
[55]
Manca, M.L.; Manconi, M.; Valenti, D.; Lai, F.; Loy, G.; Matricardi, P.; Fadda, A.M. Liposomes coated with chitosan–xanthan gum (chitosomes) as potential carriers for pulmonary delivery of rifampicin. J. Pharm. Sci., 2012, 101(2), 566-575.
[56]
Oyarzun-Ampuero, F.A.; Brea, J.; Loza, M.I.; Torres, D.; Alonso, M.J. Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int. J. Pharm., 2009, 381(2), 122-129.
[57]
Anirudhan, T.S.; Nair, S.S.; Nair, A.S. Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine. Carbohydr. Polym., 2016, 152, 687-698.
[58]
Cui, Z.; Zheng, Z.; Lin, L.; Si, J.; Wang, Q.; Peng, X.; Chen, W. Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Adv. Polym. Technol., 2018, 37(6), 1917-1928.
[59]
De Campos, A.M.; Sanchez, A.; Alonso, M.J. Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm., 2001, 224(1-2), 159-168.
[60]
Schipper, N.G.; Olsson, S.; Hoogstraate, J.A.; deBoer, A.G.; Varum, K.M.; Artursson, P. Chitosans as absorption enhancers for poorly absorbable drugs 2: Mechanism of absorption enhancement. Pharm. Res., 1997, 14(7), 923-929.
[61]
Felt, O.; Furrer, P.; Mayer, J.M.; Plazonnet, B.; Buri, P.; Gurny, R. Topical use of chitosan in ophthalmology: Tolerance assessment and evaluation of precorneal retention. Int. J. Pharm., 1999, 180(2), 185-193.
[62]
Wadhwa, S.; Paliwal, R.; Paliwal, S.R.; Vyas, S.P. Nanocarriers in ocular drug delivery: An update review. Curr. Pharm. Des., 2009, 15(23), 2724-2750.
[63]
Natesan, S.; Pandian, S.; Ponnusamy, C.; Palanichamy, R.; Muthusamy, S.; Kandasamy, R. Co-encapsulated resveratrol and quercetin in chitosan and peg modified chitosan nanoparticles: For efficient intra ocular pressure reduction. Int. J. Biol. Macromol., 2017, 104(Pt B), 1837-1845.
[64]
Rodrigues, L.B.; Leite, H.F.; Yoshida, M.I.; Saliba, J.B.; Cunha, A.S., Jr; Faraco, A.A. In vitro release and characterization of chitosan films as dexamethasone carrier. Int. J. Pharm., 2009, 368(1-2), 1-6.
[65]
Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev., 2010, 62(1), 83-99.
[66]
Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S.V.; Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials-A short review. Carbohydr. Polym., 2010, 82(2), 227-232.
[67]
Lai, W.F.; Lin, M.C. Nucleic acid delivery with chitosan and its derivatives. J. Control. Release, 2009, 134(3), 158-168.
[68]
Buschmann, M.D.; Merzouki, A.; Lavertu, M.; Thibault, M.; Jean, M.; Darras, V. Chitosans for delivery of nucleic acids. Adv. Drug Deliv. Rev., 2013, 65(9), 1234-1270.
[69]
Amidi, M.; Romeijn, S.G.; Verhoef, J.C.; Junginger, H.E.; Bungener, L.; Huckriede, A.; Crommelin, D.J.; Jiskoot, W. N-trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine, 2007, 25(1), 144-153.
[70]
Li, Y.; Dong, H.; Wang, K.; Shi, D.; Zhang, X.; Zhuo, R. Stimulus-responsive polymeric nanoparticles for biomedical applications. Sci. China Chem., 2010, 53(3), 447-457.
[71]
Du, H.; Liu, M.; Yang, X.; Zhai, G. The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discov. Today, 2015, 20(8), 1004-1011.
[72]
Yilmaz, E.; Yalinca, Z.; Yahya, K.; Sirotina, U. pH responsive graft copolymers of chitosan. Int. J. Biol. Macromol., 2016, 90, 68-74.
[73]
Li, Z.; Shim, H.; Cho, M.O.; Cho, I.S.; Lee, J.H.; Kang, S-W.; Kwon, B.; Huh, K.M. Thermo-sensitive injectable glycol chitosan-based hydrogel for treatment of degenerative disc disease. Carbohydr. Polym., 2018, 184, 342-353.
[74]
Jeong, Y-I.L.; Cha, B.; Lee, H.L.; Song, Y.H.; Jung, Y.H.; Kwak, T.W.; Choi, C.; Jeong, G-W.; Nah, J.W.; Kang, D.H. Simple nanophotosensitizer fabrication using water-soluble chitosan for photodynamic therapy in gastrointestinal cancer cells. Int. J. Pharm., 2017, 532(1), 194-203.
[75]
Goycoolea, F.M.; Milkova, V. Electrokinetic behavior of chitosan adsorbed on o/w nanoemulsion droplets. Colloids Surf. A, 2017, 519, 205-211.
[76]
Natesan, S.; Ponnusamy, C.; Sugumaran, A.; Chelladurai, S.; Shanmugam Palaniappan, S.; Palanichamy, R. Artemisinin loaded chitosan magnetic nanoparticles for the efficient targeting to the breast cancer. Int. J. Biol. Macromol., 2017, 104, 1853-1859.
[77]
Mumper, R.J.; Wang, J.; Claspell, J.M.; Rolland, A.P. Novel polymeric condensing carriers for gene delivery; P. Controll. Release Soc., 1995, p. 22.
[78]
Li, L.; Jiang, G.; Yu, W.; Liu, D.; Chen, H.; Liu, Y.; Tong, Z.; Kong, X.; Yao, J. Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin. Mater. Sci. Eng. C Mater. Biol. Appl, 2017, 70, 278-286.
[79]
Kim, T-H.; Jiang, H-L.; Jere, D.; Park, I-K.; Cho, M-H.; Nah, J-W.; Choi, Y.J.; Akaike, T.; Cho, C.S. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog. Polym. Sci., 2007, 32(7), 726-753.
[80]
Tamboli, V.; Mishra, G.P.; Mitra, A.K. Polymeric vectors for ocular gene delivery. Ther. Deliv., 2011, 2(4), 523-536.
[81]
Prabaharan, M.; Mano, J.F. Chitosan-based particles as controlled drug delivery systems. Drug Deliv., 2005, 12(1), 41-57.
[82]
Duceppe, N.; Tabrizian, M. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin. Drug Deliv., 2010, 7(10), 1191-1207.
[83]
Ishii, T.; Okahata, Y.; Sato, T. Mechanism of cell transfection with plasmid/chitosan complexes. BBA-Biomembranes, 2001, 1514(1), 51-64.
[84]
Kiang, T.; Wen, J.; Lim, H.W.; Leong, K.W. The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials, 2004, 25(22), 5293-5301.
[85]
Senel, S.J.; McClure, S. Potential applications of chitosan in veterinary medicine. Adv. Drug Deliv. Rev., 2004, 56, 1467-1480.
[86]
Amaduzzi, F.; Bomboi, F.; Bonincontro, A.; Bordi, F.; Casciardi, S.; Chronopoulou, L.; Diociaiuti, M.; Mura, F.; Palocci, C.; Sennato, S. Chitosan–DNA complexes: Charge inversion and DNA condensation. Colloids Surf. B Biointerfaces, 2014, 114, 1-10.
[87]
Boonthum, C.; Namdee, K.; Boonrungsiman, S.; Chatdarong, K.; Saengkrit, N.; Sajomsang, W.; Ponglowhapan, S.; Yata, T. Chitosan-based DNA delivery vector targeted to gonadotropin-releasing hormone (GnRH) receptor. Carbohydr. Polym., 2017, 157, 311-320.
[88]
Lee, Y.H.; Park, H.I.; Choi, J.S. Novel glycol chitosan-based polymeric gene carrier synthesized by a Michael addition reaction with low molecular weight polyethylenimine. Carbohydr. Polym., 2016, 137, 669-677.
[89]
Feng, C.; Sun, G.; Wang, Z.; Cheng, X.; Park, H.; Cha, D.; Kong, M.; Chen, X. Transport mechanism of doxorubicin loaded chitosan based nanogels across intestinal epithelium. Eur. J. Pharm. Biopharm., 2014, 87(1), 197-207.
[90]
Moura, M.; Gil, M.; Figueiredo, M. Delivery of cisplatin from thermosensitive co-cross-linked chitosan hydrogels. Eur. Polym. J., 2013, 49(9), 2504-2510.
[91]
Tan, M.L.; Choong, P.F.; Dass, C.R. Review: doxorubicin delivery systems based on chitosan for cancer therapy. J. Pharm. Pharmacol., 2009, 61(2), 131-142.
[92]
Li, S.; Xiong, Y.; Zhang, X. Poloxamer surface modified trimethyl chitosan nanoparticles for the effective delivery of methotrexate in osteosarcoma. Biomed. Pharmacother., 2017, 90, 872-879.
[93]
Rudzinski, W.E.; Palacios, A.; Ahmed, A.; Lane, M.A.; Aminabhavi, T.M. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles. Carbohydr. Polym., 2016, 147, 323-332.