[1]
Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem., 2006, 75, 333-366.
[2]
Kopito, R.R.; Ron, D. Conformational disease. Nat. Cell Biol., 2000, 2(11), E207-E209.
[3]
Carulla, N.; Caddy, G.L.; Hall, D.R.; Zurdo, J.; Gairi, M.; Feliz, M.; Giralt, E.; Robinson, C.V.; Dobson, C.M. Molecular recycling within amyloid fibrils. Nature, 2005, 436(7050), 554-558.
[4]
Ventura, S.; Villaverde, A. Protein quality in bacterial inclusion bodies. Trends Biotechnol., 2006, 24(4), 179-185.
[5]
Mitraki, A. Protein aggregation from inclusion bodies to amyloid and biomaterials. Adv. Protein Chem. Struct. Biol., 2010, 79, 89-125.
[6]
Carrio, M.; Gonzalez-Montalban, N.; Vera, A.; Villaverde, A.; Ventura, S. Amyloid-like properties of bacterial inclusion bodies. J. Mol. Biol., 2005, 347(5), 1025-1037.
[7]
Morell, M.; Bravo, R.; Espargaro, A.; Sisquella, X.; Aviles, F.X.; Fernandez-Busquets, X.; Ventura, S. Inclusion bodies: specificity in their aggregation process and amyloid-like structure. Biochim. Biophys. Acta, 2008, 1783(10), 1815-1825.
[8]
Wang, L.; Maji, S.K.; Sawaya, M.R.; Eisenberg, D.; Riek, R. Bacterial inclusion bodies contain amyloid-like structure. PLoS Biol., 2008, 6(8), e195.
[9]
de Groot, N.S.; Espargaro, A.; Morell, M.; Ventura, S. Studies on bacterial inclusion bodies. Future Microbiol., 2008, 3, 423-435.
[10]
de Groot, N.S.; Sabate, R.; Ventura, S. Amyloids in bacterial inclusion bodies. Trends Biochem. Sci., 2009, 34(8), 408-416.
[11]
Wasmer, C.; Benkemoun, L.; Sabate, R.; Steinmetz, M.O.; Coulary-Salin, B.; Wang, L.; Riek, R.; Saupe, S.J.; Meier, B.H. Solid-state NMR spectroscopy reveals that E. coli inclusion bodies of HET-s(218-289) are amyloids. Angew. Chem. Int. Ed. Engl., 2009, 48(26), 4858-4860.
[12]
Carrio, M.M.; Corchero, J.L.; Villaverde, A. Dynamics of in vivo protein aggregation: Building inclusion bodies in recombinant bacteria. FEMS Microbiol. Lett., 1998, 169(1), 9-15.
[13]
Bowden, G.A.; Paredes, A.M.; Georgiou, G. Structure and morphology of protein inclusion bodies in Escherichia coli. Biotechnology (N. Y.), 1991, 9(8), 725-730.
[14]
Arie, J.P.; Miot, M.; Sassoon, N.; Betton, J.M. Formation of active inclusion bodies in the periplasm of Escherichia coli. Mol. Microbiol., 2006, 62(2), 427-437.
[15]
Garcia-Fruitos, E.; Gonzalez-Montalban, N.; Morell, M.; Vera, A.; Ferraz, R.M.; Aris, A.; Ventura, S.; Villaverde, A. Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb. Cell Fact., 2005, 4, 27.
[16]
Carrio, M.M.; Villaverde, A. Role of molecular chaperones in inclusion body formation. FEBS Lett., 2003, 537(1-3), 215-221.
[17]
Carrio, M.M.; Villaverde, A. Construction and deconstruction of bacterial inclusion bodies. J. Biotechnol., 2002, 96(1), 3-12.
[18]
Clark, E.D. Protein refolding for industrial processes. Curr. Opin. Biotechnol., 2001, 12(2), 202-207.
[19]
Schrodel, A.; de Marco, A. Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC Biochem., 2005, 6, 10.
[20]
Garcia-Fruitos, E.; Aris, A.; Villaverde, A. Localization of functional polypeptides in bacterial inclusion bodies. Appl. Environ. Microbiol., 2007, 73(1), 289-294.
[21]
Rinas, U.; Hoffmann, F.; Betiku, E.; Estape, D.; Marten, S. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. J. Biotechnol., 2007, 127(2), 244-257.
[22]
Ehgartner, D.; Sagmeister, P.; Langemann, T.; Meitz, A.; Lubitz, W.; Herwig, C. A novel method to recover inclusion body protein from recombinant E. coli fed-batch processes based on phage PhiX174-derived lysis protein E. Appl. Microbiol. Biotechnol., 2017, 101(14), 5603-5614.
[23]
Wasmer, C.; Soragni, A.; Sabate, R.; Lange, A.; Riek, R.; Meier, B.H. Infectious and noninfectious amyloids of the HET-s(218-289) prion have different NMR spectra. Angew. Chem. Int. Ed. Engl., 2008, 47(31), 5839-5841.
[24]
Villar-Pique, A.; Espargaro, A.; Ventura, S.; Sabate, R. Screening for amyloid aggregation: in-silico, in-vitro and in-vivo detection. Curr. Protein Pept. Sci., 2014, 15(5), 477-489.
[25]
Carrio, M.M.; Corchero, J.L.; Villaverde, A. Proteolytic digestion of bacterial inclusion body proteins during dynamic transition between soluble and insoluble forms. Biochim. Biophys. Acta, 1999, 1434(1), 170-176.
[26]
de Groot, N.S.; Aviles, F.X.; Vendrell, J.; Ventura, S. Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer’s peptide. Side-chain properties correlate with aggregation propensities. FEBS J., 2006, 273(3), 658-668.
[27]
de Groot, N.S.; Ventura, S. Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Lett., 2006, 580(27), 6471-6476.
[28]
de Groot, N.S.; Ventura, S. Protein activity in bacterial inclusion bodies correlates with predicted aggregation rates. J. Biotechnol., 2006, 125(1), 110-113.
[29]
Beharry, C.; Alaniz, M.E.; Alonso Adel, C. Expression of Alzheimer-like pathological human tau induces a behavioral motor and olfactory learning deficit in Drosophila melanogaster. J. Alzheimers Dis., 2013, 37(3), 539-550.
[30]
Costa, R.; Speretta, E.; Crowther, D.C.; Cardoso, I. Testing the therapeutic potential of doxycycline in a Drosophila melanogaster model of Alzheimer disease. J. Biol. Chem., 2011, 286(48), 41647-41655.
[31]
Luo, Y. Alzheimer’s disease, the nematode Caenorhabditis elegans, and ginkgo biloba leaf extract. Life Sci., 2006, 78(18), 2066-2072.
[32]
Prussing, K.; Voigt, A.; Schulz, J.B. Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol. Neurodegener., 2013, 8, 35.
[33]
Pujols, J.; Pena-Diaz, S.; Lazaro, D.F.; Peccati, F.; Pinheiro, F.; Gonzalez, D.; Carija, A.; Navarro, S.; Conde-Gimenez, M.; Garcia, J.; Guardiola, S.; Giralt, E.; Salvatella, X.; Sancho, J.; Sodupe, M.; Outeiro, T.F.; Dalfo, E.; Ventura, S. Small molecule inhibits alpha-synuclein aggregation, disrupts amyloid fibrils, and prevents degeneration of dopaminergic neurons. Proc. Natl. Acad. Sci. USA, 2018, 115(41), 10481-10486.
[34]
Wu, B.K.; Yuan, R.Y.; Lien, H.W.; Hung, C.C.; Hwang, P.P.; Chen, R.P.; Chang, C.C.; Liao, Y.F.; Huang, C.J. Multiple signaling factors and drugs alleviate neuronal death induced by expression of human and zebrafish tau proteins in vivo. J. Biomed. Sci., 2016, 23, 25.
[35]
Newman, M.; Ebrahimie, E.; Lardelli, M. Using the zebrafish model for Alzheimer’s disease research. Front. Genet., 2014, 5, 189.
[36]
Garcia-Fruitos, E.; Sabate, R.; de Groot, N.S.; Villaverde, A.; Ventura, S. Biological role of bacterial inclusion bodies: A model for amyloid aggregation. FEBS J., 2011, 278(14), 2419-2427.
[37]
Hou, X.Q.; Yan, R.; Yang, C.; Zhang, L.; Su, R.Y.; Liu, S.J.; Zhang, S.J.; He, W.Q.; Fang, S.H.; Cheng, S.Y.; Su, Z.R.; Chen, Y.B.; Wang, Q. A novel assay for high-throughput screening of anti-Alzheimer’s disease drugs to determine their efficacy by real-time monitoring of changes in PC12 cell proliferation. Int. J. Mol. Med., 2014, 33(3), 543-549.
[38]
Ahn, M.; Kalume, F.; Pitstick, R.; Oehler, A.; Carlson, G.; DeArmond, S.J. Brain aggregates: An effective in vitro cell culture system modeling neurodegenerative diseases. J. Neuropathol. Exp. Neurol., 2016, 75(3), 256-262.
[39]
Villar-Pique, A.; Espargaro, A.; Ventura, S.; Sabate, R. In vivo amyloid aggregation kinetics tracked by time-lapse confocal microscopy in real-time. Biotechnol. J., 2016, 11(1), 172-177.
[40]
Cornejo, A.; Aguilar Sandoval, F.; Caballero, L.; Machuca, L.; Munoz, P.; Caballero, J.; Perry, G.; Ardiles, A.; Areche, C.; Melo, F. Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to beta sheet in tau protein linked to Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 945-953.
[41]
Cornejo, A.; Jimenez, J.M.; Caballero, L.; Melo, F.; Maccioni, R.B. Fulvic acid inhibits aggregation and promotes disassembly of tau fibrils associated with Alzheimer’s disease. J. Alzheimers Dis., 2011, 27(1), 143-153.
[42]
Chua, S.W.; Cornejo, A.; van Eersel, J.; Stevens, C.H.; Vaca, I.; Cueto, M.; Kassiou, M.; Gladbach, A.; Macmillan, A.; Lewis, L.; Whan, R.; Ittner, L.M. The polyphenol altenusin inhibits in vitro fibrillization of tau and reduces induced tau pathology in primary neurons. ACS Chem. Neurosci., 2017, 8(4), 743-751.
[43]
Villar-Pique, A.; Espargaro, A.; Sabate, R.; de Groot, N.S.; Ventura, S. Using bacterial inclusion bodies to screen for amyloid aggregation inhibitors. Microb. Cell Fact., 2012, 11, 55.
[44]
Carrio, M.M.; Cubarsi, R.; Villaverde, A. Fine architecture of bacterial inclusion bodies. FEBS Lett., 2000, 471(1), 7-11.
[45]
Espargaro, A.; Sabate, R.; Ventura, S. Kinetic and thermodynamic stability of bacterial intracellular aggregates. FEBS Lett., 2008, 582(25-26), 3669-3673.
[46]
Dasari, M.; Espargaro, A.; Sabate, R.; Lopez del Amo, J.M.; Fink, U.; Grelle, G.; Bieschke, J.; Ventura, S.; Reif, B. Bacterial inclusion bodies of Alzheimer’s disease beta-amyloid peptides can be employed to study native-like aggregation intermediate states. ChemBioChem, 2011, 12(3), 407-423.
[47]
de Groot, N.S.; Espargaro, A.; Morell, M.; Ventura, S. Studies on bacterial inclusion bodies. Future Microbiol., 2008, 3(4), 423-435.
[48]
Sabate, R.; Estelrich, J. Evidence of the existence of micelles in the fibrillogenesis of beta-amyloid peptide. J. Phys. Chem. B, 2005, 109(21), 11027-11032.
[49]
Sabate, R.; Baxa, U.; Benkemoun, L.; Sanchez de Groot, N.; Coulary-Salin, B.; Maddelein, M.L.; Malato, L.; Ventura, S.; Steven, A.C.; Saupe, S.J. Prion and non-prion amyloids of the HET-s prion forming domain. J. Mol. Biol., 2007, 370(4), 768-783.
[50]
Tanaka, M.; Chien, P.; Naber, N.; Cooke, R.; Weissman, J.S. Conformational variations in an infectious protein determine prion strain differences. Nature, 2004, 428(6980), 323-328.
[51]
Sabate, R.; Villar-Pique, A.; Espargaro, A.; Ventura, S. Temperature dependence of the aggregation kinetics of Sup35 and Ure2p yeast prions. Biomacromolecules, 2012, 13(2), 474-483.
[52]
Bocharova, O.V.; Breydo, L.; Parfenov, A.S.; Salnikov, V.V.; Baskakov, I.V. In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrP(Sc). J. Mol. Biol., 2005, 346(2), 645-659.
[53]
Caballero, A.B.; Terol-Ordaz, L.; Espargaro, A.; Vazquez, G.; Nicolas, E.; Sabate, R.; Gamez, P. Histidine-rich oligopeptides to lessen copper-mediated amyloid-beta toxicity. Chemistry, 2016, 22(21), 7268-7280.
[54]
Jarrett, J.T.; Lansbury, P.T., Jr Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer’s disease and scrapie? Cell, 1993, 73(6), 1055-1058.
[55]
Sabate, R.; Gallardo, M.; Estelrich, J. An autocatalytic reaction as a model for the kinetics of the aggregation of beta-amyloid. Biopolymers, 2003, 71(2), 190-195.
[56]
Sumbria, R.K.; Hui, E.K.; Lu, J.Z.; Boado, R.J.; Pardridge, W.M. Disaggregation of amyloid plaque in brain of Alzheimer’s disease transgenic mice with daily subcutaneous administration of a tetravalent bispecific antibody that targets the transferrin receptor and the Abeta amyloid peptide. Mol. Pharm., 2013, 10(9), 3507-3513.
[57]
Solomon, B.; Koppel, R.; Frankel, D.; Hanan-Aharon, E. Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc. Natl. Acad. Sci. USA, 1997, 94(8), 4109-4112.
[58]
Cruz, L.; Urbanc, B.; Buldyrev, S.V.; Christie, R.; Gomez-Isla, T.; Havlin, S.; McNamara, M.; Stanley, H.E.; Hyman, B.T. Aggregation and disaggregation of senile plaques in Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1997, 94(14), 7612-7616.
[59]
Kim, H.Y.; Kim, H.V.; Jo, S.; Lee, C.J.; Choi, S.Y.; Kim, D.J.; Kim, Y. Corrigendum: EPPS rescues hippocampus-dependent cognitive deficits in APP/PS1 mice by disaggregation of amyloid-beta oligomers and plaques. Nat. Commun., 2016, 7, 10755.
[60]
Kim, H.Y.; Kim, H.V.; Jo, S.; Lee, C.J.; Choi, S.Y.; Kim, D.J.; Kim, Y. EPPS rescues hippocampus-dependent cognitive deficits in APP/PS1 mice by disaggregation of amyloid-beta oligomers and plaques. Nat. Commun., 2015, 6, 8997.
[61]
Barabasi, A.L.; Oltvai, Z.N. Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet., 2004, 5(2), 101-113.
[62]
Viayna, E.; Sola, I.; Di Pietro, O.; Munoz-Torrero, D. Human disease and drug pharmacology, complex as real life. Curr. Med. Chem., 2013, 20(13), 1623-1634.
[63]
Lee, J.A.; Uhlik, M.T.; Moxham, C.M.; Tomandl, D.; Sall, D.J. Modern phenotypic drug discovery is a viable, neoclassic pharma strategy. J. Med. Chem., 2012, 55(10), 4527-4538.
[64]
Espargaro, A.; Sabate, R.; Ventura, S. Thioflavin-S staining coupled to flow cytometry. A screening tool to detect in vivo protein aggregation. Mol. Biosyst., 2012, 8(11), 2839-2844.
[65]
Pouplana, S.; Espargaro, A.; Galdeano, C.; Viayna, E.; Sola, I.; Ventura, S.; Munoz-Torrero, D.; Sabate, R. Thioflavin-S staining of bacterial inclusion bodies for the fast, simple, and inexpensive screening of amyloid aggregation inhibitors. Curr. Med. Chem., 2014, 21(9), 1152-1159.
[66]
Viayna, E.; Sabate, R.; Munoz-Torrero, D. Dual inhibitors of beta-amyloid aggregation and acetylcholinesterase as multi-target anti-Alzheimer drug candidates. Curr. Top. Med. Chem., 2013, 13(15), 1820-1842.
[67]
Perez-Areales, F.J.; Betari, N.; Viayna, A.; Pont, C.; Espargaro, A.; Bartolini, M.; De Simone, A.; Rinaldi Alvarenga, J.F.; Perez, B.; Sabate, R.; Lamuela-Raventos, R.M.; Andrisano, V.; Luque, F.J.; Munoz-Torrero, D. Design, synthesis and multitarget biological profiling of second-generation anti-Alzheimer rhein-huprine hybrids. Future Med. Chem., 2017, 9(10), 965-981.
[68]
Viayna, E.; Sola, I.; Bartolini, M.; De Simone, A.; Tapia-Rojas, C.; Serrano, F.G.; Sabate, R.; Juarez-Jimenez, J.; Perez, B.; Luque, F.J.; Andrisano, V.; Clos, M.V.; Inestrosa, N.C.; Munoz-Torrero, D. Synthesis and multitarget biological profiling of a novel family of rhein derivatives as disease-modifying anti-Alzheimer agents. J. Med. Chem., 2014, 57(6), 2549-2567.
[69]
Di Pietro, O.; Perez-Areales, F.J.; Juarez-Jimenez, J.; Espargaro, A.; Clos, M.V.; Perez, B.; Lavilla, R.; Sabate, R.; Luque, F.J.; Munoz-Torrero, D. Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer agents targeting beta-amyloid, tau, and cholinesterase pathologies. Eur. J. Med. Chem., 2014, 84, 107-117.
[70]
Perez-Areales, F.J.; Di Pietro, O.; Espargaro, A.; Vallverdu-Queralt, A.; Galdeano, C.; Ragusa, I.M.; Viayna, E.; Guillou, C.; Clos, M.V.; Perez, B.; Sabate, R.; Lamuela-Raventos, R.M.; Luque, F.J.; Munoz-Torrero, D. Shogaol-huprine hybrids: dual antioxidant and anticholinesterase agents with beta-amyloid and tau anti-aggregating properties. Bioorg. Med. Chem., 2014, 22(19), 5298-5307.
[71]
Sola, I.; Aso, E.; Frattini, D.; Lopez-Gonzalez, I.; Espargaro, A.; Sabate, R.; Di Pietro, O.; Luque, F.J.; Clos, M.V.; Ferrer, I.; Munoz-Torrero, D. Novel levetiracetam derivatives that are effective against the Alzheimer-like phenotype in mice: Synthesis, in vitro, ex vivo, and in vivo efficacy studies. J. Med. Chem., 2015, 58(15), 6018-6032.
[72]
Wang, S.N.; Li, Q.; Jing, M.H.; Alba, E.; Yang, X.H.; Sabate, R.; Han, Y.F.; Pi, R.B.; Lan, W.J.; Yang, X.B.; Chen, J.K. Natural xanthones from Garcinia mangostana with multifunctional activities for the therapy of Alzheimer’s disease. Neurochem. Res., 2016, 41(7), 1806-1817.
[73]
Espargaro, A.; Ginex, T.; Vadell, M.D.; Busquets, M.A.; Estelrich, J.; Munoz-Torrero, D.; Luque, F.J.; Sabate, R. Combined in vitro cell-based/in silico screening of naturally occurring flavonoids and phenolic compounds as potential anti-Alzheimer drugs. J. Nat. Prod., 2017, 80(2), 278-289.
[74]
Panek, D.; Wieckowska, A.; Jonczyk, J.; Godyn, J.; Bajda, M.; Wichur, T.; Pasieka, A.; Knez, D.; Pislar, A.; Korabecny, J.; Soukup, O.; Sepsova, V.; Sabate, R.; Kos, J.; Gobec, S.; Malawska, B. Design, synthesis, and biological evaluation of 1-benzylamino-2-hydroxyalkyl derivatives as new potential disease-modifying multifunctional anti-Alzheimer’s agents. ACS Chem. Neurosci., 2018, 9(5), 1074-1094.
[75]
Schramm, S.; Huang, G.; Gunesch, S.; Lang, F.; Roa, J.; Hogger, P.; Sabate, R.; Maher, P.; Decker, M. Regioselective synthesis of 7-O-esters of the flavonolignan silibinin and SARs lead to compounds with overadditive neuroprotective effects. Eur. J. Med. Chem., 2018, 146, 93-107.
[76]
Wehle, S.; Espargaró, A.; Sabaté, R.; Decker, M. Investigation into the stability and reactivity of the pentacyclic alkaloid dehydroevodiamine and the benz-analog thereof. Tetrahedron, 2016, 72(20), 2535-2543.
[77]
Navarro, S.; Ventura, S. Fluorescent dye ProteoStat to detect and discriminate intracellular amyloid-like aggregates in Escherichia coli. Biotechnol. J., 2014, 9(10), 1259-1266.
[78]
Navarro, S.; Carija, A.; Munoz-Torrero, D.; Ventura, S. A fast and specific method to screen for intracellular amyloid inhibitors using bacterial model systems. Eur. J. Med. Chem., 2016, 121, 785-792.
[79]
Gonzalez-Montalban, N.; Garcia-Fruitos, E.; Ventura, S.; Aris, A.; Villaverde, A. The chaperone DnaK controls the fractioning of functional protein between soluble and insoluble cell fractions in inclusion body-forming cells. Microb. Cell Fact., 2006, 5, 26.
[80]
Mogk, A.; Deuerling, E.; Vorderwulbecke, S.; Vierling, E.; Bukau, B. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol. Microbiol., 2003, 50(2), 585-595.
[81]
Schlieker, C.; Tews, I.; Bukau, B.; Mogk, A. Solubilization of aggregated proteins by ClpB/DnaK relies on the continuous extraction of unfolded polypeptides. FEBS Lett., 2004, 578(3), 351-356.
[82]
Mogk, A.; Schlieker, C.; Friedrich, K.L.; Schonfeld, H.J.; Vierling, E.; Bukau, B. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J. Biol. Chem., 2003, 278(33), 31033-31042.
[83]
Espargaro, A.; Medina, A.; Di Pietro, O.; Munoz-Torrero, D.; Sabate, R. Ultra rapid in vivo screening for anti-Alzheimer anti-amyloid drugs. Sci. Rep., 2016, 6, 23349.