[1]
Kumar, A.; Rana, D. Is there a role for Sodium orthovanadate in the treatment of diabetes? Curr. Diabetes Rev., 2019, 15(4), 284-287. [http://dx.doi.org/10.2174/1573399814666180903162556]. [PMID: 30179137].
[2]
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol. (Lausanne), 2017, 8, 6. [http://dx.doi.org/10.3389/fendo.2017.00006]. [PMID: 28167928].
[3]
Kumar, A.; Goel, M.K.; Jain, R.B.; Khanna, P.; Chaudhary, V. India towards diabetes control: Key issues. Australas. Med. J., 2013, 6(10), 524-531. [http://dx.doi.org/10.4066/AMJ.2013.1791]. [PMID: 24223071].
[4]
Puri, P.; Singh, S.K.; Srivastava, S. Reporting heterogeneity in the measurement of hypertension and diabetes in India. J. Public Health; Berl, 2019, pp. 1-8. [https://doi.org/10.1007/s10389-019-01017-z]
[5]
Diagnosis and classification of diabetes mellitus. Diabetes Care, 2009, 32(Suppl. 1), S62-S67. [http://dx.doi.org/10.2337/dc09-S062]. [PMID: 19118289].
[6]
Misra, A.; Khurana, L. Obesity and the metabolic syndrome in developing countries. J. Clin. Endocrinol. Metab., 2008, 93(11)(Suppl. 1), S9-S30. [http://dx.doi.org/10.1210/jc.2008-1595]. [PMID: 18987276].
[7]
Deepthi, B.; Sowjanya, K.; Lidiya, B.; Bhargavi, R.S.; Babu, P.S. A modern review of diabetes mellitus: An annihilatory metabolic
disorder. J. In silico In vitro Pharmacol., 2017, 3, 1.
[8]
Kaul, K.; Tarr, J.M.; Ahmad, S.I.; Kohner, E.M.; Chibber, R. Diabetes: An old disease, a new insight; Springer-Verlag: New York, 2013.
[9]
Kalita, D.; Holm, D.G.; LaBarbera, D.V.; Petrash, J.M.; Jayanty, S.S. Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. PLoS One, 2018, 13(1)e0191025 [http://dx.doi.org/10.1371/journal.pone.0191025]. [PMID: 29370193].
[10]
A.N.Hossain, M.S.; Naim, H.B.; Kumar, D.M.; Sapon, A.; Sen, M.K. A review on medicinal plants with antidiabetic activity. J. Pharmacog. Phytochem., 2014, 3, 149-159.
[11]
Williamson, J.R.; Kilo, C.; Tilton, R.G. Hyperglycemia, diabetes and vascular disease; Oxford University Press: New York, 1992, pp. 691-714.
[12]
Yao, Y.; Sang, W.; Zhou, M.; Ren, G. Antioxidant and α-glucosidase inhibitory activity of colored grains in China. J. Agric. Food Chem., 2010, 58(2), 770-774. [http://dx.doi.org/10.1021/jf903234c]. [PMID: 19904935].
[13]
Wang, H.; Du, Y.D.; Song, H. α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chem., 2010, 123, 6-13. [http://dx.doi.org/10.1016/j.foodchem.2010.03.088].
[14]
Park, H.J.; Lee, M.K.; Park, Y.B.; Shin, Y.C.; Choi, M.S. Beneficial effects of Undaria pinnatifida ethanol extract on diet-induced-insulin resistance in C57BL/6J mice. Food Chem. Toxicol., 2011, 49(4), 727-733. [http://dx.doi.org/10.1016/j.fct.2010.11.032]. [PMID: 21146577].
[15]
Shai, J.L.; Magano, R.S.; Lebelo, S.L.; Mogale, A.M. Inhibitory effects of five medicinal plants on rat alpha-glucosidase: Comparison with their effects on yeast alpha-glucosidase. J. Med. Plants Res., 2011, 5, 2863-2867.
[16]
Rafe, M.R. A review of five traditionally used anti-diabetic plants of Bangladesh and their pharmacological activities. Asian Pac. J. Trop. Med., 2017, 10(10), 933-939. [http://dx.doi.org/10.1016/j.apjtm.2017.09.002]. [PMID: 29111187].
[17]
Hua, Z.Y.; Jun, G.J.; Hua, L.Z.; Jing, T. Research progress of ACE inhibitory peptide. Cereals Oil, 2011, 25, 44-46.
[18]
Wu, W.L.; Wu, G.J.; Liang, D.S.; Yang, F. The physiological function and research progress of angiotensin-I-converting enzyme inhibitory peptides. Modern Food Sci. Tech., 2006, 22, 251-254.
[19]
Wang, F.J.; Yin, X.Y.; Regenstein, J.M.; Wang, J.Z. Separation and purification of Angiotensin-I-Converting Enzyme (ACE) inhibitory peptides from walnuts (Juglans regia L.) meal. Eur. Food Res. Technol., 2016, 242, 911-918. [http://dx.doi.org/10.1007/s00217-015-2597-5].
[20]
McCarty, M.F. ACE inhibition may decrease diabetes risk by boosting the impact of bradykinin on adipocytes. Med. Hypotheses, 2003, 60(6), 779-783. [http://dx.doi.org/10.1016/S0306-9877(02)00234-7]. [PMID: 12699703].
[21]
International Year of Pulses Food and Agriculture Organization of the United Nations: Rome, Italy, 2016.
[22]
Roy, F.; Boye, J.I.; Simpson, B.K. Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Res. Int., 2010, 43, 432-442. [http://dx.doi.org/10.1016/j.foodres.2009.09.002].
[23]
Naeem, A.; Haque, S.; Khan, R.H. Purification and characterization of a novel β-D-galactosides-specific lectin from Clitoria ternatea. Protein J., 2007, 26(6), 403-413. [http://dx.doi.org/10.1007/s10930-007-9080-5]. [PMID: 17514413].
[24]
Gautam, A.K.; Gupta, N.; Narvekar, D.T.; Bhadkariya, R.; Bhagyawant, S.S. Characterization of chickpea (Cicer arietinum L.) lectin for biological activity. Physiol. Mol. Biol. Plants, 2018, 24(3), 389-397. [http://dx.doi.org/10.1007/s12298-018-0508-5]. [PMID: 29692547].
[25]
Gautam, A.K.; Srivastava, N.; Nagar, D.P.; Bhagyawant, S.S. Biochemical
and functional properties of a lectin purified from the
seeds of Cicer arietinum L. 3 Biotech., 8, 272. 2018.
[26]
Koleva, I.I.; van Beek, T.A.; Linssen, J.P.; de Groot, A.; Evstatieva, L.N. Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochem. Anal., 2002, 13(1), 8-17. [http://dx.doi.org/10.1002/pca.611]. [PMID: 11899609].
[27]
Ueno, H.; Yamakura, S.; Arastoo, R.S.; Oshima, T.; Kokubo, K. Systematic evaluation and mechanistic investigation of antioxidant activity of fullerenols using carotene bleaching assay. J. Nanomater., 2014, 2014802596 [http://dx.doi.org/10.1155/2014/802596].
[28]
Cushman, D.W.; Cheung, H.S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol., 1971, 20(7), 1637-1648. [http://dx.doi.org/10.1016/0006-2952(71)90292-9]. [PMID: 4355305].
[29]
Gupta, N.; Srivastava, N.; Bhagyawant, S.S. Vicilin-A major storage protein of mungbean exhibits antioxidative potential, antiproliferative effects and ACE inhibitory activity. PLoS One, 2018, 13(2)e0191265 [http://dx.doi.org/10.1371/journal.pone.0191265]. [PMID: 29408872].
[30]
Yu, Z.; Yin, Y.; Zhao, W.; Liu, J.; Chen, F. Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase. Food Chem., 2012, 135(3), 2078-2085. [http://dx.doi.org/10.1016/j.foodchem.2012.06.088]. [PMID: 22953959].
[31]
Kızıl, K.; Kızıl, M.; Çeken, B.; Yavuz, M.; Demir, H. Protective ability of ethanol extracts of Hypericum scabrum L. and Hypericum retusum Aucher against the protein oxidation and DNA damage. Int. J. Food Prop., 2011, 14, 926-940. [http://dx.doi.org/10.1080/10942910903491181].
[32]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685. [http://dx.doi.org/10.1038/227680a0]. [PMID: 5432063].
[33]
Siddiqi, M.K.; Alam, P.; Iqbal, T.; Majid, N.; Malik, S.; Nusrat, S.; Alam, A.; Ajmal, M.R.; Uversky, V.N.; Khan, R.H. Elucidating the inhibitory potential of designed peptides against amyloid fibrillation and amyloid associated cytotoxicity. Front Chem., 2018, 6, 311. [http://dx.doi.org/10.3389/fchem.2018.00311]. [PMID: 30123793].
[34]
Siddiqi, M.K.; Alam, P.; Malik, S.; Majid, N.; Chaturvedi, S.K.; Rajan, S.; Ajmal, M.R.; Khan, M.V.; Uversky, V.N.; Khan, R.H. Stabilizing proteins to prevent conformational changes required for amyloid fibril formation. J. Cell. Biochem., 2018, 1-15. [https://doi.org/10.1002/jcb.27576]. [PMID: 30242891].
[35]
Kao, Y.H.; Chang, H.H.; Lee, M.J.; Chen, C.L. Tea, obesity, and diabetes. Mol. Nutr. Food Res., 2006, 50(2), 188-210. [http://dx.doi.org/10.1002/mnfr.200500109]. [PMID: 16416476].
[36]
Regan, T.J.; Lyons, M.M.; Ahmed, S.S.; Levinson, G.E.; Oldewurtel, H.A.; Ahmad, M.R.; Haider, B. Evidence for cardiomyopathy in familial diabetes mellitus. J. Clin. Invest., 1977, 60(4), 884-899. [http://dx.doi.org/10.1172/JCI108843]. [PMID: 893679].
[37]
Mizushige, K.; Yao, L.; Noma, T.; Kiyomoto, H.; Yu, Y.; Hosomi, N.; Ohmori, K.; Matsuo, H. Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation, 2000, 101(8), 899-907. [http://dx.doi.org/10.1161/01.CIR.101.8.899]. [PMID: 10694530].
[38]
Nguyen, A.D.; Nguyen, Q.V.; Wang, S.L. Porcine pancreatic α-amylase inhibitors from Euonymus laxiflorus Champ. Res. Chem. Intermed., 2017, 43(1), 259-269. [http://dx.doi.org/10.1007/s11164-016-2619-3].
[39]
Messina, M.J. Legumes and soybeans: Overview of their nutritional profiles and health effects. Am. J. Clin. Nutr., 1999, 70(3)(Suppl.), 439S-450S. [http://dx.doi.org/10.1093/ajcn/70.3.439s]. [PMID: 10479216].
[40]
Katre, U.V.; Gaikwad, S.M.; Bhagyawant, S.S.; Deshpande, U.D.; Khan, M.I.; Suresh, C.G. Crystallization and preliminary X-ray characterization of a lectin from Cicer arietinum (chickpea). Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2005, 61(Pt 1), 141-143. [http://dx.doi.org/10.1107/S1744309104032166]. [PMID: 16508116].
[41]
Aisa, H.A.; Yanhua, G.; Abulimiti, Y.; Qingling, M.; Zhen, C. Beneficial role of chickpea (Cicer arietinum L.) functional factors
in the intervention of metabolic syndrome and diabetes mellitus In: Bioactive Food as dietary interventions for diabetes; B.V; Preedy,
V.R., Ed.; Elsevier Science: Amsterdam. , 2019; pp. 615-627.
[42]
Zhuang, H.; Tang, N.; Yuan, Y. Purification and identification of antioxidant peptides from corn gluten meal. J. Funct. Foods, 2013, 5, 1810-1821. [http://dx.doi.org/10.1016/j.jff.2013.08.013].
[43]
Vioque, J. Production of ace inhibitory peptides by digestion of chickpea legumin with alcalase. Food Chem., 2003, 81(3), 363-369. [http://dx.doi.org/10.1016/S0308-8146(02)00431-4].
[44]
Yili, A.; Ma, Q.L.; Lv, Q.Y.; Gao, Y.H.; Zhao, B.; Veshkurova, O.N.; Salikhov, S.I.; Aisa, H.A. Antioxidant peptides from Cicer arietinum of Xinjiang, China. Chem. Nat. Compd., 2012, 48(4), 643-645. [http://dx.doi.org/10.1007/s10600-012-0332-z].
[45]
Ghassem, M.; Arihara, K.; Babji, A.S.; Said, M.; Ibrahim, S. Purification and identification of ACE inhibitory peptides from Haruan (Channa striatus) myofibrillar protein hydrolysate using HPLCESI-TOF MS/ MS. Food Chem., 2011, 129, 1770-1777. [http://dx.doi.org/10.1016/j.foodchem.2011.06.051].
[46]
Flather, M.D.; Yusuf, S.; Køber, L.; Pfeffer, M.; Hall, A.; Murray, G.; Torp-Pedersen, C.; Ball, S.; Pogue, J.; Moyé, L.; Braunwald, E. Long-term ACE-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: A systematic overview of data from individual patients. Lancet, 2000, 355(9215), 1575-1581. [http://dx.doi.org/10.1016/S0140-6736(00)02212-1]. [PMID: 10821360].
[47]
Pahor, M.; Psaty, B.M.; Alderman, M.H.; Applegate, W.B.; Williamson, J.D.; Furberg, C.D. Therapeutic benefits of ACE inhibitors and other antihypertensive drugs in patients with type 2 diabetes. Diabetes Care, 2000, 23(7), 888-892. [http://dx.doi.org/10.2337/diacare.23.7.888]. [PMID: 10895836].
[48]
Intarasirisawat, R.; Benjakul, S.; Wu, J.; Visessanguan, W. Isolation of antioxidative and ACE inhibitory peptides from protein hydrolysate of skipjack (Katsuwana pelamis) roe. J. Funct. Foods, 2013, 5, 1854-1862. [http://dx.doi.org/10.1016/j.jff.2013.09.006].
[49]
Khan, M.Y.; Kumar, V. Mechanism & inhibition kinetics of bioassay-guided fractions of Indian medicinal plants and foods as ACE inhibitors. J. Tradit. Complement. Med., 2018, 9(1), 73-84. [http://dx.doi.org/10.1016/j.jtcme.2018.02.001]. [PMID: 30671369].
[50]
Gropper, S.S.; Smith, J.L. Advanced nutrition and human metabolism; Yalanda Cossio Inc: Belmont, 2013.
[51]
Wilson, A.L.; Mehra, I.V. Managing the patient with type II diabetes; Aspen Publishers: Gaithersburg, 1997.
[52]
Wang, Z.; Chen, M.; Zhu, Y.; Qian, P.; Zhou, Y.; Wei, J.; Shen, Y.; Mijiti, A.; Gu, A.; Wang, Z.; Zhang, H.; Ma, H. Yali, Zhou.; Wei, J.; Shen, Y.; Mijiti, A.; Gu, A.; Wang, Z.; Zhang, H.; Ma, H. Isolation, identification and characterization of a new type of lectin with α-amylase inhibitory activity in chickpea (Cicer arietinum L.). Protein Pept. Lett., 2017, 24(11), 1008-1020. [https://doi.org/10.2174/0929866524666170711120501]. [PMID: 29081299].
[53]
Lin, H.; Li, L.; Tian, Y.; Zhang, X.; Li, B. Protein hydrolysate from brewer’s spent grain and its inhibitory ability of α-glucosidase. Adv. Mat. Res., 2012, 581, 138-141. [http://dx.doi.org/10.4028/www.scientific.net/AMR.581-582.138].
[54]
Bhat, M.; Zinjarde, S.S.; Bhargava, S.Y.; Kumar, A.R.; Joshi, B.N. Antidiabetic Indian plants: A good source of potent amylase inhibitors. Evid. Based Complement. Alternat. Med., 2011, 2011810207 [http://dx.doi.org/10.1093/ecam/nen040]. [PMID: 18955350].
[55]
Alarcon-Aguilara, F.J.; Roman-Ramos, R.; Perez-Gutierrez, S.; Aguilar-Contreras, A.; Contreras-Weber, C.C.; Flores-Saenz, J.L. Study of the anti-hyperglycemic effect of plants used as antidiabetics. J. Ethnopharmacol., 1998, 61(2), 101-110. [http://dx.doi.org/10.1016/S0378-8741(98)00020-8]. [PMID: 9683340].
[56]
Chhetri, D.R.; Parajuli, P.; Subba, G.C. Antidiabetic plants used by Sikkim and Darjeeling Himalayan tribes, India. J. Ethnopharmacol., 2005, 99(2), 199-202. [http://dx.doi.org/10.1016/j.jep.2005.01.058]. [PMID: 15894127].
[57]
Sarikurkcu, C.; Eskici, M.; Karanfil, A.; Tepe, B. Phenolic profile, enzyme inhibitory and antioxidant activities of two endemic Nepeta species: Nepeta nuda subsp. glandulifera and N. cadmea. S. Afr. J. Bot., 2018, 120, 298-301. [http://dx.doi.org/10.1016/j.sajb.2018.09.008].
[58]
Pomin, V.H. Seaweed: Ecology, nutrient composition and medicinal uses; Nova Science Publishers Inc: New York, 2012.
[59]
Zaharudin, N.; Staerk, D.; Dragsted, L.O. Inhibition of α-glucosidase activity by selected edible seaweeds and fucoxanthin. Food Chem., 2019, 270, 481-486. [http://dx.doi.org/10.1016/j.foodchem.2018.07.142]. [PMID: 30174076].
[60]
Maeda, H. Anti-obesity and anti-diabetic activities of algae.Domínguez, H., Ed.; Woodhead Publishing Series in Food Science;
Technology and Nutrition , 2013; pp. 453-472. [http://dx.doi.org/10.1533/9780857098689.2.453]
[61]
Herrera, T.; Navarro Del Hierro, J.; Fornari, T.; Reglero, G.; Martin, D. Inhibitory effect of quinoa and fenugreek extracts on pancreatic lipase and α-amylase under in vitro traditional conditions or intestinal simulated conditions. Food Chem., 2019, 270, 509-517. [http://dx.doi.org/10.1016/j.foodchem.2018.07.145]. [PMID: 30174080].
[62]
Taha, M.; Shah, S.A.A.; Afifi, M.; Imran, S.; Sultan, S.; Rahim, F.; Khan, K.M. Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives. Bioorg. Chem., 2018, 77, 586-592. [http://dx.doi.org/10.1016/j.bioorg.2018.01.033]. [PMID: 29477126].
[63]
Khan, J.M.; Qadeer, A.; Ahmad, E.; Ashraf, R.; Bhushan, B.; Chaturvedi, S.K.; Rabbani, G.; Khan, R.H. Monomeric banana lectin at acidic pH overrules conformational stability of its native dimeric form. PLoS One, 2013, 8(4)e62428 [http://dx.doi.org/10.1371/journal.pone.0062428]. [PMID: 23638080].
[64]
Bertoft, E.; Andtfolk, C.; Kulp, S.E. Effect of pH, temperature, and calcium ions on barley malt α‐amylase isoenzymes. J. Inst. Brew., 1984, 90, 298-302. [https://doi.org/10.1002/j.2050-0416.1984.tb04278.x].
[65]
Naseem, F.; Khan, R.H. Characterization of a common intermediate of pea lectin in the folding pathway induced by TFE and HFIP. Biochim. Biophys. Acta, 2005, 1723(1-3), 192-200. [http://dx.doi.org/10.1016/j.bbagen.2005.02.009]. [PMID: 15840464].
[66]
Oliveira, J.T.A.; Vasconcelos, I.M.; Gondim, M.J.L.; Cavada, B.S.; Moreira, R.A.; Santos, C.F.; Moreira, L.I.M. Canavalia brasiliensis seeds protein quality and nutritional implications of dietary lectin. J. Sci. Food Agric., 1994, 64, 417-424. [https://doi.org/10.1002/jsfa.2740640405].
[67]
E, Lacerda. R.R.; do Nascimento, E.S.; de Lacerda, J.T.; Pinto, L.D.; Rizzi, C.; Bezerra, M.M.; Pinto, I.R.; Filho, S.M.; Pinto, V.P.; Filho, G.C.; Gadelha, C.A.; Gadelha, T.S. Lectin from seeds of a Brazilian lima bean variety (Phaseolus lunatus L. var. cascavel) presents antioxidant, antitumour and gastroprotective activities. Int. J. Biol. Macromol., 2017, 95, 1072-1081. [http://dx.doi.org/10.1016/j.ijbiomac.2016.10.097]. [PMID: 27984144].
[68]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070. [http://dx.doi.org/10.1161/CIRCRESAHA.110.223545]. [PMID: 21030723].