Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Sildenafil for Antenatal Treatment of Congenital Diaphragmatic Hernia: From Bench to Bedside

Author(s): Francesca M. Russo, Felix De Bie, Ryan Hodges, Alan Flake and Jan Deprest*

Volume 25, Issue 5, 2019

Page: [601 - 608] Pages: 8

DOI: 10.2174/1381612825666190320151856

Price: $65

Abstract

Background: Persistent pulmonary hypertension (PPH) is one of the main causes of mortality and morbidity in infants affected by congenital diaphragmatic hernia (CDH). Since the structural changes that lead to PPH take place already in utero, a treatment starting in the prenatal phase may prevent the occurrence of this complication.

Objective: To summarize the development process of antenatal sildenafil for CDH.

Methods: The pharmacokinetics and efficacy of sildenafil have been assessed in the rat and the rabbit model. The transfer of the drug through the human placenta has been measured with the ex-vivo placenta perfusion model. Results from this experiment are being incorporated in a pregnancy-physiologically based pharmacokinetic (p- PBPK) model. A phase I-IIb placental transfer and safety study is ongoing.

Results: Sildenafil administration to pregnant rats and rabbits led to therapeutic foetal drug levels without maternal and foetal toxicity, although it was associated with impaired vascular development in foetuses with nonhypoplastic lungs. Peak concentrations and 24-hour exposure were higher in pregnant rabbits compared to nonpregnant ones. In rat and rabbit foetuses with CDH, sildenafil rescued the lung vascular anomalies and partially improved parenchymal development. Sildenafil crossed the human placenta at a high rate ex-vivo, independently from the initial maternal concentration.

Conclusion: There is preclinical evidence that maternally administered sildenafil prevents the vascular changes that lead to PPH in CDH newborns. The phase I/IIb clinical study together with the p-PBPK model will define the maternal dose needed for a therapeutic effect in the foetus. Foetal safety will be investigated both in the clinical study and in the sheep. The final step will be a multicentre, randomized, placebo-controlled trial.

Keywords: Foetal therapy, congenital diaphragmatic hernia, pulmonary hypertension, sildenafil, transplacental transfer, lung development.

[1]
Kotecha S, Barbato A, Bush A, et al. Congenital diaphragmatic hernia. Eur Respir J 2012; 39(4): 820-9.
[2]
Cilley RE, Zgleszewski SE, Krummel TM, Chinoy MR. Nitrofen dose-dependent gestational day-specific murine lung hypoplasia and left-sided diaphragmatic hernia. Am J Physiol 1997; 272(2 Pt 1): L362-71.
[3]
Allan DW, Greer JJ. Pathogenesis of nitrofen-induced congenital diaphragmatic hernia in fetal rats. J Appl Physiol 1997; 83(2): 338-47.
[4]
Keijzer R, Liu J, Deimling J, Tibboel D, Post M. Dual-hit hypothesis explains pulmonary hypoplasia in the nitrofen model of congenital diaphragmatic hernia. Am J Pathol 2000; 156(4): 1299-306.
[5]
Kitagawa M, Hislop A, Boyden EA, Reid L. Lung hypoplasia in congenital diaphragmatic hernia. A quantitative study of airway, artery, and alveolar development. Br J Surg 1971; 58(5): 342-6.
[6]
Rottier R, Tibboel D. Fetal lung and diaphragm development in congenital diaphragmatic hernia. Semin Perinatol 2005; 29(2): 86-93.
[7]
Shehata SM, Sharma HS, van der Staak FH, van de Kaa-Hulsbergen C, Mooi WJ, Tibboel D. Remodeling of pulmonary arteries in human congenital diaphragmatic hernia with or without extracorporeal membrane oxygenation. J Pediatr Surg 2000; 35(2): 208-15.
[8]
Kool H, Mous D, Tibboel D, de Klein A, Rottier RJ. Pulmonary vascular development goes awry in congenital lung abnormalities. Birth Defects Res C Embryo Today 2014; 102(4): 343-58.
[9]
Shehata SM, Tibboel D, Sharma HS, Mooi WJ. Impaired structural remodelling of pulmonary arteries in newborns with congenital diaphragmatic hernia: A histological study of 29 cases. J Pathol 1999; 189(1): 112-8.
[10]
Peacock A. Vasodilators in pulmonary hypertension. Thorax 1993; 48(12): 1196-9.
[11]
Storme L, Aubry E, Rakza T, et al. Pathophysiology of persistent pulmonary hypertension of the newborn: impact of the perinatal environment. Arch Cardiovasc Dis 2013; 106(3): 169-77.
[12]
Bagolan P, Morini F. Long-term follow up of infants with congenital diaphragmatic hernia. Semin Pediatr Surg 2007; 16(2): 134-44.
[13]
Inhaled nitric oxide and hypoxic respiratory failure in infants with congenital diaphragmatic hernia. Pediatrics 1997; 99(6): 838-45.
[14]
Lusk LA, Wai KC, Moon-Grady AJ, Steurer MA, Keller RL. Persistence of pulmonary hypertension by echocardiography predicts short-term outcomes in congenital diaphragmatic hernia. J Pediatr 2015; 166(2 25): 1-6.
[15]
Vanamo K, Rintala R, Sovijärvi A, et al. Long-term pulmonary sequelae in survivors of congenital diaphragmatic defects. J Pediatr Surg 1996; 31(8): 1096-9.
[16]
Behrsin J, Cheung M, Patel N. Sildenafil weaning after discharge in infants with congenital diaphragmatic hernia. Pediatr Cardiol 2013; 34(8): 1844-7.
[17]
van den Hout L, Schaible T, Cohen-Overbeek TE, et al. Actual outcome in infants with congenital diaphragmatic hernia: the role of a standardized postnatal treatment protocol. Fetal Diagn Ther 2011; 29(1): 55-63.
[18]
Gao Y, Cornfield DN, Stenmark KR, Thébaud B, Abman SH, Raj JU. Unique aspects of the developing lung circulation: structural development and regulation of vasomotor tone. Pulm Circ 2016; 6(4): 407-25.
[19]
Owens GK. Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity. Novartis Foundation symposium 2007; 283: 174-91.
[20]
Gallot D, Boda C, Ughetto S, Perthus I, Robert-Gnansia E, Francannet C, et al. Prenatal detection and outcome of congenital diaphragmatic hernia: A French registry-based study. Ultrasound Obstet Gynecol 2007; 29(3): 276-83.
[21]
Jani J, Nicolaides KH, Keller RL, Benachi A, Peralta CF, Favre R, et al. Observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia. Ultrasound Obstet Gynecol 2007; 30(1): 67-71.
[22]
Russo FM, Eastwood MP, Keijzer R, et al. Lung size and liver herniation predict need for extracorporeal membrane oxygenation but not pulmonary hypertension in isolated congenital diaphragmatic hernia: Systematic review and meta-analysis. Ultrasound Obstet Gynecol 2017; 49(6): 704-13.
[23]
Heling KS, Wauer RR, Hammer H, Bollmann R, Chaoui R. Reliability of the lung-to-head ratio in predicting outcome and neonatal ventilation parameters in fetuses with congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 2005; 25: 112-8.
[24]
Lusk LA, Wai KC, Moon-Grady AJ, Basta AM, Filly R, Keller RL. Fetal ultrasound markers of severity predict resolution of pulmonary hypertension in congenital diaphragmatic hernia. Am J Obstet Gynecol 2015; 213(2): 216.e1-8.
[25]
Ruano R, Takashi E, da Silva MM, Campos JA, Tannuri U, Zugaib M. Prediction and probability of neonatal outcome in isolated congenital diaphragmatic hernia using multiple ultrasound parameters. Ultrasound Obstet Gynecol 2012; 39(1): 42-9.
[26]
Ruano R, Takashi E, da Silva MM, Haeri S, Tannuri U, Zugaib M. Quantitative lung index, contralateral lung area, or lung-to-head ratio to predict the neonatal outcome in isolated congenital diaphragmatic hernia? J Ultrasound Med 2013; 32(3): 413-7.
[27]
Basta AM, Lusk LA, Keller RL, Filly RA. Fetal Stomach Position Predicts Neonatal Outcomes in Isolated Left-Sided Congenital Diaphragmatic Hernia. Fetal Diagn Ther 2015.
[28]
Done E, Gratacos E, Nicolaides KH, Allegaert K, Valencia C, Castanon M, et al. Predictors of neonatal morbidity in fetuses with severe isolated congenital diaphragmatic hernia undergoing fetoscopic tracheal occlusion. Ultrasound Obstet Gynecol 2013; 42(1): 77-83.
[29]
Jani JC, Benachi A, Nicolaides KH, et al. Three-dimensional ultrasonographic measurements of the fetal lungs for prediction of perinatal outcome in isolated congenital diaphragmatic hernia. J Obstet Gynaecol Res 2009; 35(6): 1031-41.
[30]
Ruano R, Aubry MC, Barthe B, Dumez Y, Benachi A. Three-dimensional ultrasonographic measurements of the fetal lungs for prediction of perinatal outcome in isolated congenital diaphragmatic hernia. J Obstet Gynaecol Res 2009; 35(6): 1031-41.
[31]
Ruano R, Aubry MC, Barthe B, Mitanchez D, Dumez Y, Benachi A. Quantitative analysis of fetal pulmonary vasculature by 3-dimensional power Doppler ultrasonography in isolated congenital diaphragmatic hernia. Am J Obstet Gynecol 2006; 195(6): 1720-8.
[32]
Ruano R, Aubry MC, Barthe B, Mitanchez D, Dumez Y, Benachi A. Predicting perinatal outcome in isolated congenital diaphragmatic hernia using fetal pulmonary artery diameters. J Pediatr Surg 2008; 43(4): 606-11.
[33]
Kinsella JP, Steinhorn RH, Mullen MP, et al. The Left Ventricle in Congenital Diaphragmatic Hernia: Implications for the Management of Pulmonary Hypertension. J Pediatr 2018; 197: 17-22.
[34]
Al-Maary J, Eastwood MP, Russo FM, Deprest JA, Keijzer R. Fetal Tracheal Occlusion for Severe Pulmonary Hypoplasia in Isolated Congenital Diaphragmatic Hernia: A Systematic Review and Meta-analysis of Survival. Ann Surg 2016; 264(6): 929-33.
[35]
Dekoninck P, Gratacos E, Van Mieghem T, et al. Results of fetal endoscopic tracheal occlusion for congenital diaphragmatic hernia and the set up of the randomized controlled TOTAL trial. Early Hum Dev 2011; 87(9): 619-24.
[36]
Rodrigues HC, Deprest J. v d Berg PP. When referring physicians and researchers disagree on equipoise: The TOTAL trial experience. Prenat Diagn 2011; 31(6): 589-94.
[37]
Deprest J, Gratacos E, Nicolaides KH, Group FT. Fetoscopic tracheal occlusion (FETO) for severe congenital diaphragmatic hernia: evolution of a technique and preliminary results. Ultrasound Obstet Gynecol 2004; 24(2): 121-6.
[38]
Done E, Gratacos E, Nicolaides K, Allegaert K, Valencia C, Castanon M, et al. Predictors of neonatal morbidity in fetuses with severe isolated congenital diaphragmatic hernia undergoing fetoscopic tracheal occlusion. Ultrasound Obstet Gynecol 2013.
[39]
Barnett CF, Machado RF. Sildenafil in the treatment of pulmonary hypertension. Vasc Health Risk Manag 2006; 2(4): 411-22.
[40]
Tantini B, Manes A, Fiumana E, et al. Antiproliferative effect of sildenafil on human pulmonary artery smooth muscle cells. Basic Res Cardiol 2005; 100(2): 131-8.
[41]
Tunks RD, Barker PC, Benjamin DK Jr, et al. Sildenafil exposure and hemodynamic effect after Fontan surgery. Pediatr Crit Care Med 2014; 15(1): 28-34.
[42]
Wharton J, Strange JW, Møller GM, et al. Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am J Respir Crit Care Med 2005; 172(1): 105-13.
[43]
Steinhorn RH, Kinsella JP, Pierce C, et al. Intravenous sildenafil in the treatment of neonates with persistent pulmonary hypertension. J Pediatr 2009; 155(6): 841-847.e1.
[44]
Sanchez Luna M, Franco ML, Bernardo B. Therapeutic strategies in pulmonary hypertension of the newborn: where are we now? Curr Med Chem 2012; 19(27): 4640-53.
[45]
Kipfmueller F, Schroeder L, Berg C, Heindel K, Bartmann P, Mueller A. Continuous intravenous sildenafil as an early treatment in neonates with congenital diaphragmatic hernia. Pediatr Pulmonol 2018; 53(4): 452-60.
[46]
Bialkowski A, Moenkemeyer F, Patel N. Intravenous sildenafil in the management of pulmonary hypertension associated with congenital diaphragmatic hernia. Eur J Pediatr Surg 2015; 25(2): 171-6.
[47]
Luong C, Rey-Perra J, Vadivel A, et al. Antenatal sildenafil treatment attenuates pulmonary hypertension in experimental congenital diaphragmatic hernia. Circulation 2011; 123(19): 2120-31.
[48]
Yamamoto Y, Thebaud B, Vadivel A, Eaton F, Jain V, Hornberger LK. Doppler parameters of fetal lung hypoplasia and impact of sildenafil American journal of obstetrics and gynecology 2014; 211(3): 263-e1-8.
[49]
Burgos CM, Pearson EG, Davey M, et al. Improved pulmonary function in the nitrofen model of congenital diaphragmatic hernia following prenatal maternal dexamethasone and/or sildenafil. Pediatr Res 2016; 80(4): 577-85.
[50]
Mous DS, Kool HM, Burgisser PE, et al. Treatment of rat congenital diaphragmatic hernia with sildenafil and NS-304, selexipag’s active compound, at the pseudoglandular stage improves lung vasculature. Am J Physiol Lung Cell Mol Physiol 2018; 315(2): L276-85.
[51]
Mous DS, Kool HM, Buscop-van Kempen MJ, et al. Clinically relevant timing of antenatal sildenafil treatment reduces pulmonary vascular remodeling in congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2016; 311(4): L734-42.
[52]
Wu J, Yamamoto H, Gratacos E, et al. Lung development following diaphragmatic hernia in the fetal rabbit. Hum Reprod 2000; 15(12): 2483-8.
[53]
Flemmer AW, Jani JC, Bergmann F, et al. Lung tissue mechanics predict lung hypoplasia in a rabbit model for congenital diaphragmatic hernia. Pediatr Pulmonol 2007; 42(6): 505-12.
[54]
McArdle AM, Denton KM, Maduwegedera D, Moritz K, Flower RL, Roberts CT. Ontogeny of placental structural development and expression of the renin-angiotensin system and 11beta-HSD2 genes in the rabbit. Placenta 2009; 30(7): 590-8.
[55]
Fischer B, Chavatte-Palmer P, Viebahn C, Navarrete Santos A, Duranthon V. Rabbit as a reproductive model for human health. Reproduction 2012; 144(1): 1-10.
[56]
Russo FM, Toelen J, Eastwood MP, et al. Transplacental sildenafil rescues lung abnormalities in the rabbit model of diaphragmatic hernia. Thorax 2016; 71(6): 517-25.
[57]
Voelkel NF, Vandivier RW, Tuder RM. Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol 2006; 290(2): L209-21.
[58]
Aman J, Bogaard HJ, Vonk Noordegraaf A. Why vessels do matter in pulmonary disease. Thorax 2016; 71(8): 767-9.
[59]
van der Horst IW, Rajatapiti P, van der Voorn P, et al. Expression of hypoxia-inducible factors, regulators, and target genes in congenital diaphragmatic hernia patients. Pediatr Dev Pathol 2011; 14(5): 384-90.
[60]
Sanz-López E, Maderuelo E, Peláez D, et al. Changes in the expression of vascular endothelial growth factor after fetal tracheal occlusion in an experimental model of congenital diaphragmatic hernia. Crit Care Res Pract 2013; 2013: 958078.
[61]
Chang R, Andreoli S, Ng YS, Truong T, Smith SR, Wilson J. et al. VEGF expression is downregulated in nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 2004; 39(6): 825-discussion -8.
[62]
Zhao X, Lu X, Feng Q. Deficiency in endothelial nitric oxide synthase impairs myocardial angiogenesis. Am J Physiol Heart Circ Physiol 2002; 283(6): H2371-8.
[63]
Reffelmann T, Kloner RA. Therapeutic potential of phosphodiesterase 5 inhibition for cardiovascular disease. Circulation 2003; 108(2): 239-44.
[64]
Goldenberg MM. Safety and efficacy of sildenafil citrate in the treatment of male erectile dysfunction. Clin Ther 1998; 20(6): 1033-48.
[65]
Ballard SA, Gingell CJ, Tang K, Turner LA, Price ME, Naylor AM. Effects of sildenafil on the relaxation of human corpus cavernosum tissue in vitro and on the activities of cyclic nucleotide phosphodiesterase isozymes. J Urol 1998; 159(6): 2164-71.
[66]
Barst RJ, Ivy DD, Gaitan G, et al. A randomized, double-blind, placebo-controlled, dose-ranging study of oral sildenafil citrate in treatment-naive children with pulmonary arterial hypertension. Circulation 2012; 125(2): 324-34.
[67]
Russo FM, Mian P, Krekels EH, Van Calsteren K, Tibboel D, Deprest J, et al. Pregnancy affects the pharmacokinetics of sildenafil and its metabolite in the rabbit Xenobiotica; the fate of foreign compounds in biological systems 2018; 1-8.
[68]
Russo FM, Conings S, Allegaert K, Van Mieghem T, Toelen J, Van Calsteren K, et al. Sildenafil crosses the placenta at therapeutic levels in a dually perfused human cotyledon model Am J Obstet Gynecol. 2018; 219(6 :619): e1-e10.
[69]
Hutson JR, Garcia-Bournissen F, Davis A, Koren G. The human placental perfusion model: A systematic review and development of a model to predict in vivo transfer of therapeutic drugs. Clin Pharmacol Ther 2011; 90(1): 67-76.
[70]
Russo FM, Benachi A, Van Mieghem T, et al. Antenatal sildenafil administration to prevent pulmonary hypertension in congenital diaphragmatic hernia (SToP-PH): study protocol for a phase I/IIb placenta transfer and safety study. Trials 2018; 19(1): 524.
[71]
Hislop A. Developmental biology of the pulmonary circulation. Paediatr Respir Rev 2005; 6(1): 35-43.
[72]
Ganzevoort W, Alfirevic Z, von Dadelszen P, et al. STRIDER: Sildenafil Therapy In Dismal prognosis Early-onset intrauterine growth Restriction--a protocol for a systematic review with individual participant data and aggregate data meta-analysis and trial sequential analysis. Syst Rev 2014; 3: 23.
[73]
Samangaya RA, Mires G, Shennan A, et al. A randomised, double-blinded, placebo-controlled study of the phosphodiesterase type 5 inhibitor sildenafil for the treatment of preeclampsia. Hypertens Pregnancy 2009; 28(4): 369-82.
[74]
Dallmann A, Pfister M, van den Anker J, Eissing T. Physiologically Based Pharmacokinetic Modeling in Pregnancy: A Systematic Review of Published Models. Clin Pharmacol Ther 2018; 104(6): 1110-24.
[75]
Adzick NS, Outwater KM, Harrison MR, et al. Correction of congenital diaphragmatic hernia in utero. IV. An early gestational fetal lamb model for pulmonary vascular morphometric analysis. J Pediatr Surg 1985; 20(6): 673-80.
[76]
Jaillard S, Elbaz F, Bresson-Just S, et al. Pulmonary vasodilator effects of norepinephrine during the development of chronic pulmonary hypertension in neonatal lambs. Br J Anaesth 2004; 93(6): 818-24.
[77]
Larrue B, Jaillard S, Lorthioir M, et al. Pulmonary vascular effects of sildenafil on the development of chronic pulmonary hypertension in the ovine fetus. Am J Physiol Lung Cell Mol Physiol 2005; 288(6): L1193-200.
[78]
Shue EH, Schecter SC, Gong W, et al. Antenatal maternally-administered phosphodiesterase type 5 inhibitors normalize eNOS expression in the fetal lamb model of congenital diaphragmatic hernia. J Pediatr Surg 2014; 49(1): 39-45. [discussion].
[79]
Vorhies EE, Ivy DD. Drug treatment of pulmonary hypertension in children. Paediatr Drugs 2014; 16(1): 43-65.
[80]
Partridge EA, Davey MG, Hornick MA, et al. An extra-uterine system to physiologically support the extreme premature lamb. Nat Commun 2017; 8: 15112.
[81]
Lacassie HJ, Germain AM, Valdés G, Fernández MS, Allamand F, López H. Management of Eisenmenger syndrome in pregnancy with sildenafil and L-arginine. Obstet Gynecol 2004; 103(5 Pt 2): 1118-20.
[82]
Streit M, Speich R, Fischler M, Ulrich S. Successful pregnancy in pulmonary arterial hypertension associated with systemic lupus erythematosus: A case report. J Med Case Reports 2009; 3: 7255.
[83]
Molelekwa V, Akhter P, McKenna P, Bowen M, Walsh K. Eisenmenger’s syndrome in a 27 week pregnancy--management with bosentan and sildenafil. Ir Med J 2005; 98(3): 87-8.
[84]
von Dadelszen P, Dwinnell S, Magee LA, et al. Sildenafil citrate therapy for severe early-onset intrauterine growth restriction. BJOG 2011; 118(5): 624-8.
[85]
Maher MA, Sayyed TM, Elkhouly N. Sildenafil Citrate Therapy for Oligohydramnios: A Randomized Controlled Trial. Obstet Gynecol 2017; 129(4): 615-20.
[86]
Dunn L, Flenady V, Kumar S. Reducing the risk of fetal distress with sildenafil study (RIDSTRESS): A double-blind randomised control trial. J Transl Med 2016; 14(1): 15.
[87]
Dunn L, Greer R, Flenady V, Kumar S. Sildenafil in Pregnancy: A Systematic Review of Maternal Tolerance and Obstetric and Perinatal Outcomes. Fetal Diagn Ther 2016.
[88]
Groom KM, Ganzevoort W, Alfirevic Z, Lim K, Papageorghiou AT. Clinicians should stop prescribing sildenafil for fetal growth restriction (FGR): comment from the STRIDER Consortium. Ultrasound Obstet Gynecol 2018.
[89]
Russo FM, Toelen J, Eastwood MP, et al. Transplacental sildenafil rescues lung abnormalities in the rabbit model of diaphragmatic hernia. Thorax 2016; 71(6): 517-25.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy