[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68, 7-30.
[2]
Pennathur, A.; Gibson, M.K.; Jobe, B.A.; Luketich, J.D. Oesophageal carcinoma. Lancet, 2013, 381, 400-412.
[3]
Arnal, D.M.J.; Ferrandez Arenas, A.; Lanas Arbeloa, A. Esophageal cancer: Risk factors, screening and endoscopic treatment in western and eastern countries. World J. Gastroenterol., 2015, 21, 7933-7943.
[4]
Adenis, A.; Robb, W.B.; Mariette, C. Esophageal carcinoma. N. Engl. J. Med., 2015, 372, 1471.
[5]
Alsop, B.R.; Sharma, P. Esophageal cancer. Gastroenterol. Clin. North Am., 2016, 45, 399-412.
[6]
Kaur, N.; Kaur, B.; Sirhindi, G. Phytochemistry and pharmacology of phyllanthus niruri L.: A review. Phytother. Res., 2017, 31, 980-1004.
[7]
Lee, N.Y.; Khoo, W.K.; Adnan, M.A.; Mahalingam, T.P.; Fernandez, A.R.; Jeevaratnam, K. The pharmacological potential of Phyllanthus niruri. J. Pharm. Pharmacol., 2016, 68, 953-969.
[8]
Zheng, Z.Z.; Chen, L.H.; Liu, S.S.; Deng, Y.; Zheng, G.H.; Gu, Y.; Ming, Y.L. Bio-guided fraction and isolation of the antitumor components from phyllanthus niruri L. BioMed Res. Int., 2016, 2016, 9729275.
[9]
Jia, L.; Jin, H.; Zhou, J.; Chen, L.; Lu, Y.; Ming, Y.; Yu, Y. A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-beta signaling pathways. BMC Complement. Altern. Med., 2013, 13, 33.
[10]
Jia, L.; Zhou, J.; Zhao, H.; Jin, H.; Lv, M.; Zhao, N.; Zheng, Z.; Lu, Y.; Ming, Y.; Yu, Y. Corilagin sensitizes epithelial ovarian cancer to chemotherapy by inhibiting snailglycolysis pathways. Oncol. Rep., 2017, 38, 2464-2470.
[11]
Gu, Y.; Xiao, L.; Ming, Y.; Zheng, Z.; Li, W. Corilagin suppresses cholangiocarcinoma progression through notch signaling pathway in vitro and in vivo. Int. J. Oncol., 2016, 48, 1868-1876.
[12]
Li, X.; Deng, Y.; Zheng, Z.; Huang, W.; Chen, L.; Tong, Q.; Ming, Y. Corilagin, a promising medicinal herbal agent. Biomed. Pharmacother., 2018, 99, 43-50.
[13]
Kasparek, T.R.; Humphrey, T.C. DNA double-strand break repair pathways, chromosomal rearrangements and cancer. Semin. Cell Dev. Biol., 2011, 22, 886-897.
[14]
Mahaney, B.L.; Meek, K.; Lees-Miller, S.P. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem. J., 2009, 417, 639-650.
[15]
Rocha, J.C.; Busatto, F.F.; Guecheva, T.N.; Saffi, J. Role of nucleotide excision repair proteins in response to DNA damage induced by topoisomerase II inhibitors. Mutat. Res. Rev. Mutat. Res., 2016, 768, 68-77.
[16]
Nakada, S.; Yonamine, R.M.; Matsuo, K. RNF8 regulates assembly of RAD51 at DNA double-strand breaks in the absence of BRCA1 and 53BP1. Cancer Res., 2012, 72, 4974-4983.
[17]
Thorslund, T.; Ripplinger, A.; Hoffmann, S.; Wild, T.; Uckelmann, M.; Villumsen, B.; Narita, T.; Sixma, T.K.; Choudhary, C.; Bekker-Jensen, S.; Mailand, N. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature, 2015, 527, 389-393.
[18]
Huen, M.S.; Grant, R.; Manke, I.; Minn, K.; Yu, X.; Yaffe, M.B.; Chen, J. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell, 2007, 131, 901-914.
[19]
Feng, L.; Chen, J. The E3 ligase RNF8 regulates KU80 removal and NHEJ repair. Nat. Struct. Mol. Biol., 2012, 19, 201-206.
[20]
Huang, J.; Huen, M.S.; Kim, H.; Leung, C.C.; Glover, J.N.
Yu, X.; Chen, J. RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nat. Cell Biol., 2009, 11, 592-603.
[21]
Zamble, D.B.; Lippard, S.J. Cisplatin and DNA repair in cancer chemotherapy. Trends Biochem. Sci., 1995, 20, 435-439.
[22]
Hecht, S.M.; Berry, D.E.; MacKenzie, L.J.; Busby, R.W.; Nasuti, C.A. A strategy for identifying novel, mechanistically unique inhibitors of topoisomerase I. J. Nat. Prod., 1992, 55, 401-413.
[23]
Champoux, J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem., 2001, 70, 369-413.
[24]
Bekker-Jensen, S.; Mailand, N. The ubiquitin- and SUMO-dependent signaling response to DNA double-strand breaks. FEBS Lett., 2011, 585, 2914-2919.
[25]
Kwon, Y.T.; Ciechanover, A. The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem. Sci., 2017, 42, 873-886.
[26]
Goldstein, M.; Kastan, M.B. The DNA damage response: Implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med., 2015, 66, 129-143.
[27]
Khanna, A. DNA damage in cancer therapeutics: A boon or a curse? Cancer Res., 2015, 75, 2133-2138.
[28]
Zheng, H.C. The molecular mechanisms of chemoresistance in cancers. Oncotarget, 2017, 8, 59950-59964.
[29]
Lee, H.J.; Li, C.F.; Ruan, D.; Powers, S.; Thompson, P.A.; Frohman, M.A.; Chan, C.H. The DNA damage transducer RNF8 facilitates cancer chemoresistance and progression through twist activation. Mol. Cell, 2016, 63, 1021-1033.