[1]
Li M, Yu Y, Yang J. Structural biology of TRP channels. Chapter
1. In: Transient Receptor Potential Channels.Adv Exp Med Biol
Islam MS, ed. 2011; 704: pp. Berlin: Springer. 1-23.
[2]
De Petrocellis L, Nabissi M, Santoni G, Ligresti A. Actions and regulation of ionotropic cannabinoid receptors. Adv Pharmacol 2017; 80: 249-89.
[3]
Vriens J, Nilius B, Voets T. Peripheral thermosensation in mammals. Nat Rev Neurosci 2014; 15(9): 573-89.
[4]
Guo A, Vulchanova L, Wang J, Li X, Elde R. Immunocytochemical localization of the vanilloid receptor 1 (VR1): Relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci 1999; 11(3): 946-58.
[5]
Szallasi A, Blumberg PM, Annicelli LL, Krause JE, Cortright DN. The cloned rat vanilloid receptor VR1 mediates both R-type binding and C-type calcium response in dorsal root ganglion neurons. Mol Pharmacol 1999; 56(3): 581-7.
[6]
Ward SM, Bayguinov J, Won KJ, Grundy D, Berthoud HR. Distribution of the vanilloid receptor (VR1) in the gastrointestinal tract. J Comp Neurol 2003; 465(1): 121-35.
[7]
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997; 389: 816-24.
[8]
Tominaga M, Caterina MJ, Malmberg AB, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998; 21(3): 531-43.
[9]
Zahner MR, Li DP, Chen SR, Pan HL. Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats. J Physiol 2003; 551(Pt 2): 515-23.
[10]
Sun Z, Han J, Zhao W, et al. TRPV1 activation exacerbates hypoxia/reoxygenation-induced apoptosis in H9C2 cells via calcium overload and mitochondrial dysfunction. Int J Mol Sci 2014; 15(10): 18362-80.
[11]
Szallasi A, Blumberg PM. Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper. Neuroscience 1989; 30(2): 515-20.
[12]
De Petrocellis L, Schiano Moriello A. Modulation of the TRPV1 channel: Current clinical trials and recent patents with focus on neurological conditions. Recent Patents CNS Drug Discov 2013; 8(3): 180-204.
[13]
Bevan S, Hothi S, Hughes G, et al. Capsazepine: A competitive antagonist of the sensory neuron excitant capsaicin. Br J Pharmacol 1992; 107(2): 544-52.
[14]
Walpole CSJ, Bevan S, Bovermann G, et al. The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitant capsaicin and resiniferatoxin. J Med Chem 1994; 37(13): 1942-54.
[15]
Szallasi A, Blumberg PM. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 1999; 51(2): 159-212.
[16]
Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 1999; 398(6726): 436-41.
[17]
Muraki K, Iwata Y, Katanosaka Y, et al. TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 2003; 93(9): 829-38.
[18]
Koch SE, Gao X, Haar L, et al. Probenecid: Novel use as a non-injurious positive inotrope acting via cardiac TRPV2 stimulation. J Mol Cell Cardiol 2012; 53(1): 134-44.
[19]
Iwata Y, Katanosaka Y, Arai Y, Kamamura K, Miyatake K, Shigekawa M. A novel mechanism of myocyte degeneration involving Ca2+-permeable growth factor-regulated channel. J Cell Biol 2003; 161(5): 957-67.
[20]
Iwata Y, Ohtake H, Suzuki O, Matsuda J, Komamura K, Wakabayashi S. Blockade of sarcolemmal TRPV2 accumulation inhibits progression of dilated cardiomyopathy. Cardiovasc Res 2013; 99(4): 760-8.
[21]
Lorin C, Vögeli I, Niggli E. Dystrophic cardiomyopathy: Role of TRPV2 channels in stretch-induced cell damage. Cardiovasc Res 2015; 106(1): 153-62.
[22]
Bang S, Kim KY, Yoo S, Lee SH, Hwang SW. Transient receptor potential V2 expressed in sensory neurons is activated by probenecid. Neurosci Lett 2007; 425(2): 120-5.
[23]
Mihara H, Boudaka A, Shibasaki K, Yamanaka A, Sugiyama T, Tominaga M. Involvement of TRPV2 activation in intestinal movement through nitric oxide production in mice. J Neurosci 2010; 30(49): 16536-44.
[24]
Liedtke W, Choe Y, Marti-Renom MA, et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 2000; 103(3): 525-35.
[25]
Wu QF, Qian C, Zhao N, et al. Activation of transient receptor potential vanilloid 4 involves in hypoxia/reoxygenation injury in cardiomyocytes. Cell Death Dis 2017; 8(5)e2828
[26]
Rubinstein J, Lasko VM, Koch SE, et al. Novel role of transient receptor potential vanilloid 2 in the regulation of cardiac performance. Am J Physiol Heart Circ Physiol 2014; 306(4): H574-84.
[27]
Koch SE, Nieman ML, Robbins N, et al. Tranilast blunts the hypertrophic and fibrotic response to increased afterload independent of cardiomyocyte transient receptor potential vanilloid 2 channels. J Cardiovasc Pharmacol 2018; 72(1): 40-8.
[28]
Katanosaka Y, Iwasaki K, Ujihara Y, et al. TRPV2 is critical for the maintenance of cardiac structure and function in mice. Nat Commun 2014; 5: 3932.
[29]
Naticchioni M, Karani R, Smith MA, et al. Transient receptor potential vanilloid 2 regulates myocardial response to exercise. PLoS One 2015; 10(9)e0136901
[30]
Li J, Wang MH, Wang L, et al. Role of transient receptor potential vanilloid 4 in the effect of osmotic pressure in myocardial contractility in rat. Acta Phys Sin 2008; 60(2): 181-8.
[31]
Willette RN, Bao W, Nerurkar S, et al. Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J Pharmacol Exp Ther 2008; 326(2): 443-52.
[32]
Wang L, Wang DH. TRPV1 gene knockout impairs postischemic recovery in isolated perfused heart in mice. Circulation 2005; 112(23): 3617-23.
[33]
Entin-Meer M, Levy R, Goryainov P, et al. The transient receptor potential vanilloid 2 cation channel is abundant in macrophages accumulating at the peri-infarct zone and may enhance their migration capacity towards injured cardiomyocytes following myocardial infarction. PLoS One 2014; 9(8)e105055
[34]
Sexton A, McDonald M, Cayla C, Thiemermann C, Ahluwalia A. 12-Lipoxygenase-derived eicosanoids protect against myocardial ischemia/reperfusion injury via activation of neuronal TRPV1. FASEB J 2007; 21(11): 2695-703.
[35]
Huang W, Rubinstein J, Prieto AR, Thang LV, Wang DH. Transient receptor potential vanilloid gene deletion exacerbates inflammation and atypical cardiac remodeling after myocardial infarction. Hypertension 2009; 53(2): 243-50.
[36]
Lei J, Zhu F, Zhang Y, Duan L, Lei H, Huang W. Transient receptor potential vanilloid subtype 1 inhibits inflammation and apoptosis via the release of calcitonin gene-related peptide in the heart after myocardial Infarction. Cardiology 2016; 134(4): 436-43.
[38]
Randhawa PK, Jaggi AS. Investigating the involvement of glycogen synthase kinase-3β and gap junction signaling in TRPV1 and remote hind preconditioning-induced cardioprotection. Eur J Pharmacol 2017; 814: 9-17.
[39]
Jiang XX, Liu GY, Lei H, Li ZL, Feng QP, Huang W. Activation of transient receptor potential vanilloid 1 protects the heart against apoptosis in ischemia/reperfusion injury through upregulating the PI3K/Akt signaling pathway. Int J Mol Med 2018; 41(3): 1724-30.
[40]
Wei Z, Wang L, Han J, et al. Decreased expression of transient receptor potential vanilloid 1 impaires the postischemic recovery of diabetic mouse hearts. Circ J 2009; 73(6): 1127-32.
[41]
Hurt CM, Lu Y, Stary CM, et al. Transient receptor potential vanilloid 1 regulates mitochondrial membrane potential and myocardial reperfusion injury. J Am Heart Assoc 2016; 5(9)e003774
[42]
Wu Y, Heymann HM, Gross ER. Non-opioid analgesic use and concerns for impaired organ protection. Br J Anaesth 2018; 120(2): 403-5.
[43]
Heymann HM, Wu Y, Lu Y, Qvit N, Gross GJ, Gross ER. Transient receptor potential vanilloid 1 inhibitors block laparotomy- and opioid-induced infarct size reduction in rats. Br J Pharmacol 2017; 174(24): 4826-35.
[44]
Bisogno T, Hanus L, De Petrocellis L, et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 2001; 134(4): 845-52.
[45]
De Petrocellis L, Ligresti A, Schiano Moriello A, et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 2011; 163(7): 1479-94.
[46]
Qin N, Neeper MP, Liu Y, Hutchinson TL, Lubin ML, Flores CM. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci 2008; 28(24): 6231-8.
[47]
Durst R, Danenberg H, Gallily R, et al. Cannabidiol, a nonpsychoactive Cannabis constituent, protects against myocardial ischemic reperfusion injury. Am J Physiol Heart Circ Physiol 2007; 293(6): H3602-7.
[48]
Rajesh M, Mukhopadhyay P, Bátkai S, et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol 2010; 56(25): 2115-25.
[49]
Ligresti A, De Petrocellis L, Di Marzo V. From phytocannabinoids to cannabinoid receptors and endocannabinoids: Pleiotropic physiological and pathological roles through complex pharmacology. Physiol Rev 2016; 96(4): 1593-659.
[50]
Horváth B, Mukhopadhyay P, Haskó G, Pacher P. The endocannabinoid system and plant-derived cannabinoids in diabetes and diabetic complications. Am J Pathol 2012; 180(2): 432-42.
[51]
Lu S, Xu D. Cold stress accentuates pressure overload-induced cardiac hypertrophy and contractile dysfunction: Role of TRPV1/AMPK-mediated autophagy. Biochem Biophys Res Commun 2013; 442(1-2): 8-15.
[52]
Chen M, Xin J, Liu B, et al. Mitogen-activated protein kinase and intracellular polyamine signaling is involved in TRPV1 activation-induced cardiac hypertrophy. J Am Heart Assoc 2016; 5(8)e003718
[53]
Aguettaz E, Lopez JJ, Krzesiak A, et al. Axial stretch-dependent cation entry in dystrophic cardiomyopathy: Involvement of several TRPs channels. Cell Calcium 2016; 59(4): 145-55.
[54]
Dong Q, Li J, Wu QF, et al. Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice. Sci Rep 2017; 7: 42678.
[55]
Peart JN, Gross ER, Reichelt ME, Hsu A, Headrick JP, Gross GJ. Activation of kappa-opioid receptors at reperfusion affords cardioprotection in both rat and mouse hearts. Basic Res Cardiol 2008; 103(5): 454-63.
[56]
Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion - a target for cardioprotection. Cardiovasc Res 2004; 61(3): 372-85.
[57]
Halestrap AP. Calcium, mitochondria and reperfusion injury: A pore way to die. Biochem Soc Trans 2006; 34(Pt 2): 232-77.
[58]
Halestrap AP, Clarke SJ, Khaliulin I. The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta 2007; 1767(8): 1007-31.
[59]
Evangelista S. Capsaicin receptor as target of calcitonin generelated
peptide in the gut. In: Abdel-Salam O. (eds) Capsaicin as a
Therapeutic Molecule.Prog Drug Res 2014; 68: 259-76.
[60]
Luo XJ, Liu B, Dai Z, Yang ZC, Peng J. Stimulation of calcitonin gene-related peptide release through targeting capsaicin receptor: A potential strategy for gastric mucosal protection. Dig Dis Sci 2013; 58(2): 320-5.
[61]
Rezaeian AH, Isokane T, Nishibori M, et al. αCGRP and βCGRP transcript amount in mouse tissues of various developmental stages and their tissue expression sites. Brain Dev 2009; 31(9): 682-93.
[62]
Franco-Cereceda A, Lundberg JM, Saria A, Schreibmayer W, Tritthart HA. Calcitonin gene-related peptide: release by capsaicin and prolongation of the action potential in the guinea-pig heart. Acta Physiol Scand 1988; 132(2): 181-90.
[63]
Poyner DR, Marshall I. CGRP receptors: Beyond the CGRP1-CGRP2 subdivision. Trends Pharmacol Sci 2001; 22(5): 223.
[64]
Poyner DR, Sexton PM, Marshall I, et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Re 2002; 54(2): 233-46.
[65]
Goto K, Miyauchi T, Homma S, Ohshima N. Calcitonin gene-related peptide in the regulation of cardiac function. Ann N Y Acad Sci 1992; 657: 194-203.
[66]
Main MJ, Brown J, Brown S, Fraser NJ, Foord SM. The CGRP receptor can couple via pertussis toxin sensitive and insensitive G proteins. FEBS Lett 1998; 441(1): 6-10.
[67]
Chatterjee TK, Moy JA, Fisher RA. Characterization and regulation of high affinity calcitonin gene-related peptide receptors in cultured neonatal rat cardiac myocytes. Endocrinology 1991; 128(6): 2731-38.
[68]
Li YJ, Xiao ZS, Peng CF, Deng HW. Calcitonin gene-related peptide-induced preconditioning protects against ischemia-reperfusion injury in isolated rat hearts. Eur J Pharmacol 1996; 311(2-3): 163-7.
[69]
Randhawa PK, Jaggi AS. Investigating the involvement of TRPV1 ion channels in remote hind limb preconditioning-induced cardioprotection in rats. Naunyn Schmiedebergs Arch Pharmacol 2017; 390(2): 117-26.