Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

In-vitro Pre-Treatment of Cancer Cells with TGF-β1: A Novel Approach of Tail Vein Lung Cancer Metastasis Mouse Model for Anti-Metastatic Studies

Author(s): Ghulam Jilany Khan*, Li Sun, Muhammad Abbas, Muhammad Naveed, Talha Jamshaid, Mirza Muhammad Faran Ashraf Baig and Shengtao Yuan*

Volume 12, Issue 4, 2019

Page: [249 - 260] Pages: 12

DOI: 10.2174/1874467212666190306165703

Price: $65

Abstract

Background: Aggressive behavior of tumor metastasis comes from certain mutations, changes in cellular metabolic and signaling pathways that are majorly altered by tumor microenvironment (TME), its other components and growth factors like transforming growth factor-β1 (TGF-β1) which is chiefly known for its epithelial to mesenchymal transformation (EMT). EMT is a critical step of metastasis cascade in actual human lung cancer scenario.

Objective: Our present study is focused on unveiling the in-vivo metastatic behavior of TGF-β1 treated lung cancer cells that undergo EMT.

Methods: The lung cancer epithelial A549 cells were treated in-vitro with TGF-β1 (3-5ng/ml for 72 h) for EMT. After confirming the transformation of cells by phenotype modifications, wound healing and cell migration assay and qRT-PCR analyses of EMT biomarkers including E. Cadherin, Vimentin, Snail, Slug, MMP2 and MMP9; those TGF-β1 modified cells were probed with fluorescent trackers and were injected into the tail vein of BALB/c nude mice for metastatic dissemination studies.

Results: Our findings indicate that the distribution of TGF-β1 treated A549 cells as compared to W.T A549 towards lungs is less in terms of total relative fluorescent cluster count, however, the difference is insignificant (52±4, 60±5 respectively). Additionally, we show that TGF-β1 treated cells tend to metastasize almost 2, 3, 1.5, 2 and 1.7 times more than W.T towards liver, brain, ovaries, bones and adrenal gland, respectively, which is very much like human lung cancer metastasis.

Conclusion: Conclusively, it is the first study ever reporting that a pre-treatment of cells with TGF-β1 for experimental lung cancer metastasis mouse model may portray a more precise approach for the development of potential therapeutic treatments. Additional pre-treatment studies with the application of other TME conditions like hypoxia and factors like NFκB, VEGF etc. may be a future prospect to develop a better understanding.

Keywords: Animal models, TGF-β1, tail vein mouse model, metastasis cascade, EMT, lung orthotopic metastasis model, tumor microenvironment.

Graphical Abstract

[1]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends--An Update. Cancer Epidemiol. Biomarkers Prev., 2016, 25(1), 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[2]
Abbas, M.; Ahmed, A.; Khan, G.J.; Baig, M.M.F.A.; Naveed, M.; Mikrani, R.; Cao, T.; Naeem, S.; Shi, M.; Dingding, C. Clinical evaluation of carcinoembryonic and carbohydrate antigens as cancer biomarkers to monitor palliative chemotherapy in advanced stage gastric cancer. Curr. Probl. Cancer, 2019, 43(1), 5-17.
[http://dx.doi.org/10.1016/j.currproblcancer.2018.08.003] [PMID: 30172422]
[3]
Abbas, M.; Faggian, A.; Sintali, D.N.; Khan, G.J.; Naeem, S.; Shi, M.; Dingding, C. Current and future biomarkers in gastric cancer. Biomed. Pharmacother., 2018, 103, 1688-1700.
[http://dx.doi.org/10.1016/j.biopha.2018.04.178] [PMID: 29864959]
[4]
Khan, G.J.; Naeem, H.S.; Khan, S.; Jamshaid, T.; Sajid, M.I.; Bashir, I.; Jamshaid, M. Understanding and responsiveness level about cervical cancer and its avoidance among young women of Pakistan. Asian Pac. J. Cancer Prev., 2014, 15(12), 4877-4883.
[http://dx.doi.org/10.7314/APJCP.2014.15.12.4877] [PMID: 24998557]
[5]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[6]
Khan, G.J.; Naeem, H.S.; Khan, S.; Jamshaid, T.; Sajid, M.I.; Bashir, I.; Jamshaid, M. Understanding and responsiveness level about cervical cancer and its avoidance among young women of Pakistan. Asian Pac. J. Cancer Prev., 2014, 15(12), 4877-4883.
[http://dx.doi.org/10.7314/APJCP.2014.15.12.4877] [PMID: 24998557]
[7]
Khan, G.J.; Sun, L.; Khan, S.; Yuan, S.; Nongyue, H. Versatility of Cancer Associated Fibroblasts: Commendable Targets for Anti-tumor Therapy. Curr. Drug Targets, 2018, 19(13), 1573-1588.
[http://dx.doi.org/10.2174/1389450119666180219124439] [PMID: 29468965]
[8]
DeVita, V.T., Jr; Young, R.C.; Canellos, G.P. Combination versus single agent chemotherapy: a review of the basis for selection of drug treatment of cancer. Cancer, 1975, 35(1), 98-110.
[http://dx.doi.org/10.1002/1097-0142(197501)35:1<98:AID-CNCR2820350115>3.0.CO;2-B] [PMID: 162854]
[9]
Khan, G.J.; Gao, Y.; Gu, M.; Wang, L.; Khan, S.; Naeem, F.; Semukunzi, H.; Roy, D.; Yuan, S.; Sun, L. TGF-β1 Causes EMT by Regulating N-Acetyl Glucosaminyl Transferases via Downregulation of Non Muscle Myosin II-A through JNK/P38/PI3K Pathway in Lung Cancer. Curr. Cancer Drug Targets, 2018, 18(2), 209-219.
[http://dx.doi.org/10.2174/1568009617666170807120304] [PMID: 28782471]
[10]
Popper, H.H. Progression and metastasis of lung cancer. Cancer Metastasis Rev., 2016, 35(1), 75-91.
[http://dx.doi.org/10.1007/s10555-016-9618-0] [PMID: 27018053]
[11]
Gabor, S.; Renner, H.; Popper, H.; Anegg, U.; Sankin, O.; Matzi, V.; Lindenmann, J.; Smolle Jüttner, F.M. Invasion of blood vessels as significant prognostic factor in radically resected T1-3N0M0 non-small-cell lung cancer. Eur. J. Cardiothorac. Surg., 2004, 25(3), 439-442.
[http://dx.doi.org/10.1016/j.ejcts.2003.11.033] [PMID: 15019675]
[12]
Shin, D.Y.; Na, I.I.; Kim, C.H.; Park, S.; Baek, H.; Yang, S.H. EGFR mutation and brain metastasis in pulmonary adenocarcinomas. J. Thorac. Oncol., 2014, 9(2), 195-199.
[http://dx.doi.org/10.1097/JTO.0000000000000069] [PMID: 24419416]
[13]
Tamura, T.; Kurishima, K.; Nakazawa, K.; Kagohashi, K.; Ishikawa, H.; Satoh, H.; Hizawa, N. Specific organ metastases and survival in metastatic non-small-cell lung cancer. Mol. Clin. Oncol., 2015, 3(1), 217-221.
[http://dx.doi.org/10.3892/mco.2014.410] [PMID: 25469298]
[14]
Hendriks, L.E.L.; Smit, E.F.; Vosse, B.A.H.; Mellema, W.W.; Heideman, D.A.M.; Bootsma, G.P.; Westenend, M.; Pitz, C.; de Vries, G.J.; Houben, R.; Grünberg, K.; Bendek, M.; Speel, E.J.; Dingemans, A.M. EGFR mutated non-small cell lung cancer patients: more prone to development of bone and brain metastases? Lung Cancer, 2014, 84(1), 86-91.
[http://dx.doi.org/10.1016/j.lungcan.2014.01.006] [PMID: 24529684]
[15]
Martin, T.A.; Jiang, W.G. Loss of tight junction barrier function and its role in cancer metastasis. Biochim. Biophys. Acta, 2009, 1788(4), 872-891.
[http://dx.doi.org/10.1016/j.bbamem.2008.11.005] [PMID: 19059202]
[16]
Padua, D.; Massagué, J. Roles of TGFbeta in metastasis. Cell Res., 2009, 19(1), 89-102.
[http://dx.doi.org/10.1038/cr.2008.316] [PMID: 19050696]
[17]
Wang, X.; Hassan, W.; Jabeen, Q.; Khan, G.J.; Iqbal, F. Interdependent and independent multidimensional role of tumor microenvironment on hepatocellular carcinoma. Cytokine, 2018, 103, 150-159.
[http://dx.doi.org/10.1016/j.cyto.2017.09.026] [PMID: 29029799]
[18]
Yang, T.; Khan, G.J.; Wu, Z.; Wang, X.; Zhang, L.; Jiang, Z. Bile acid homeostasis paradigm and its connotation with cholestatic liver diseases. Drug Discov. Today, 2019, 24(1), 112-128.
[http://dx.doi.org/10.1016/j.drudis.2018.09.007] [PMID: 30244079]
[19]
Martin, T.A.; Ye, L.; Sanders, A.J.; Lane, J.; Jiang, W.G. Cancer Invasion and Metastasis Molecular and Cellular Perspective. In: Madame Curie Bioscience Database. Austin (TX): Landes Bioscience; 2000-2013, [Available from: https://www.ncbi.nlm.nih.gov/books/NBK164700]
[20]
Wei, X.H.; Lin, S.S.; Liu, Y.; Zhao, R.P.; Khan, G.J.; Du, H.Z.; Mao, T.T.; Yu, B.Y.; Li, R.M.; Yuan, S.T.; Sun, L. DT-13 attenuates human lung cancer metastasis via regulating NMIIA activity under hypoxia condition. Oncol. Rep., 2016, 36(2), 991-999.
[http://dx.doi.org/10.3892/or.2016.4879] [PMID: 27374701]
[21]
Du, H.; Huang, Y.; Hou, X.; Yu, X.; Lin, S.; Wei, X.; Li, R.; Khan, G.J.; Yuan, S.; Sun, L. DT-13 inhibits cancer cell migration by regulating NMIIA indirectly in the tumor microenvironment. Oncol. Rep., 2016, 36(2), 721-728.
[http://dx.doi.org/10.3892/or.2016.4890] [PMID: 27350172]
[22]
van Zijl, F.; Krupitza, G.; Mikulits, W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat. Res., 2011, 728(1-2), 23-34.
[http://dx.doi.org/10.1016/j.mrrev.2011.05.002] [PMID: 21605699]
[23]
Chiang, A.C.; Massagué, J. Molecular basis of metastasis. N. Engl. J. Med., 2008, 359(26), 2814-2823.
[http://dx.doi.org/10.1056/NEJMra0805239] [PMID: 19109576]
[24]
Nguyen, D.X.; Massagué, J. Genetic determinants of cancer metastasis. Nat. Rev. Genet., 2007, 8(5), 341-352.
[http://dx.doi.org/10.1038/nrg2101] [PMID: 17440531]
[25]
Li, H.; Sun, L.; de Carvalho, E.L.; Li, X.; Lv, X.; Khan, G.J.; Semukunzi, H.; Yuan, S.; Lin, S. DT-13, a saponin monomer of dwarf lilyturf tuber, induces autophagy and potentiates anti-cancer effect of nutrient deprivation. Eur. J. Pharmacol., 2016, 781, 164-172.
[http://dx.doi.org/10.1016/j.ejphar.2016.04.016] [PMID: 27079642]
[26]
Khan, G.J.; Omer, M.O.; Ashraf, M.; Rehman, H.U.; Khan, Z.U.D. Effect of Punica granatum (pomegranate) fruit extract on angiogenesis. J. App. Pharm., 2013, 4(02), 764-780.
[27]
Khan, G.J.; Shakir, L.; Khan, S.; Naeem, H.S.; Omer, M.O. Assessment methods of angiogenesis and present approaches for its quantification. Cancer Res. J. (N. Y. N. Y.), 2014, 2(3), 47-62.
[http://dx.doi.org/10.11648/j.crj.20140203.12]
[28]
Pickup, M.; Novitskiy, S.; Moses, H.L. The roles of TGFβ in the tumour microenvironment. Nat. Rev. Cancer, 2013, 13(11), 788-799.
[http://dx.doi.org/10.1038/nrc3603] [PMID: 24132110]
[29]
Li, H.; Fan, X.; Houghton, J. Tumor microenvironment: the role of the tumor stroma in cancer. J. Cell. Biochem., 2007, 101(4), 805-815.
[http://dx.doi.org/10.1002/jcb.21159] [PMID: 17226777]
[30]
Feng, R.; Chen, X.; Yu, Y.; Su, L.; Yu, B.; Li, J.; Cai, Q.; Yan, M.; Liu, B.; Zhu, Z. miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett., 2010, 298(1), 50-63.
[http://dx.doi.org/10.1016/j.canlet.2010.06.004] [PMID: 20619534]
[31]
Yang, R.; Dick, M.; Marme, F.; Schneeweiss, A.; Langheinz, A.; Hemminki, K.; Sutter, C.; Bugert, P.; Wappenschmidt, B.; Varon, R.; Schott, S.; Weber, B.H.; Niederacher, D.; Arnold, N.; Meindl, A.; Bartram, C.R.; Schmutzler, R.K.; Müller, H.; Arndt, V.; Brenner, H.; Sohn, C.; Burwinkel, B. Genetic variants within miR-126 and miR-335 are not associated with breast cancer risk. Breast Cancer Res. Treat., 2011, 127(2), 549-554.
[http://dx.doi.org/10.1007/s10549-010-1244-x] [PMID: 21046227]
[32]
Huyen, C.T.T.; Luyen, B.T.T.; Khan, G.J.; Oanh, H.V.; Hung, T.M.; Li, H-J.; Li, P. Chemical Constituents from Cimicifuga dahurica and Their Anti-Proliferative Effects on MCF-7 Breast Cancer Cells. Molecules, 2018, 23(5), 1083.
[http://dx.doi.org/10.3390/molecules23051083] [PMID: 29734650]
[33]
Rwibasira, R.G.; Khan, G.J.; Kong, Y. Protease-Activated Receptor 4 (PAR4): A Promising Target for Antiplatelet Therapy. Int. J. Mol. Sci., 2018, 19(2), 573.
[http://dx.doi.org/10.3390/ijms19020573] [PMID: 29443899]
[34]
Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog., 2013, 18(1-2), 43-73.
[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40] [PMID: 23237552]
[35]
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[36]
Semukunzi, H.; Roy, D.; Li, H.; Khan, G.J.; Lyu, X.; Yuan, S.; Lin, S. IDH mutations associated impact on related cancer epidemiology and subsequent effect toward HIF-1α. Biomed. Pharmacother., 2017, 89, 805-811.
[http://dx.doi.org/10.1016/j.biopha.2017.02.083] [PMID: 28273642]
[37]
Hoffman, R.M. Metastatic orthotopic mouse models of lung cancer. Methods Mol. Med., 2003, 74, 457-464.
[PMID: 12415714]
[38]
Davis, J.M.; Casey, K.K. Surgery in the Immunocompromised Patient.Surgery: Basic Science and Clinical Evidence; Norton, J.A.; Barie, P.S.; Bollinger, R.R.; Chang, A.E.; Lowry, S.F.; Mulvihill, S.J.; Pass, H.I.; Thompson, R.W; Eds.; Springer New York: New York, NY,. , 2008, pp. 697-707.
[http://dx.doi.org/10.1007/978-0-387-68113-9_37]
[39]
Girard, J.P.; Cuevas, M. Effects of anesthesia and surgery on certain parameters of humoral immunity. Ann. Anesthesiol. Fr., 1977, 18(7-8), 701-707.
[PMID: 23062]
[40]
Wingard, D.W.; Lang, R.; Humphrey, L.J. Effect of anesthesia on immunity. J. Surg. Res., 1967, 7(9), 430-432.
[http://dx.doi.org/10.1016/0022-4804(67)90089-3] [PMID: 6032796]
[41]
Malik, G.; Knowles, L.M.; Dhir, R.; Xu, S.; Yang, S.; Ruoslahti, E.; Pilch, J. Plasma fibronectin promotes lung metastasis by contributions to fibrin clots and tumor cell invasion. Cancer Res., 2010, 70(11), 4327-4334.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3312] [PMID: 20501851]
[42]
Ruf, W. Molecular regulation of blood clotting in tumor biology. Haemostasis, 2001, 31(Suppl. 1), 5-7.
[PMID: 11990479]
[43]
Saxena, M.; Christofori, G. Rebuilding cancer metastasis in the mouse. Mol. Oncol., 2013, 7(2), 283-296.
[http://dx.doi.org/10.1016/j.molonc.2013.02.009] [PMID: 23474222]
[44]
Shields, A.F.; Price, P.M.D.; Mcconville, P.; Elliott, W.L.; Rajendran, J.G.; Mankoff, D.A.; Evelhoch, J.L.; Ken Miles, M.D.; Weber, W.A. In vivo imaging of cancer therapy; Humana Press, 2007, p. 2033.
[45]
Hart, I.R. ‘Seed and soil’ revisited: mechanisms of site-specific metastasis. Cancer Metastasis Rev., 1982, 1(1), 5-16.
[http://dx.doi.org/10.1007/BF00049477] [PMID: 6764375]
[46]
Fidler, I.J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer, 2003, 3(6), 453-458.
[http://dx.doi.org/10.1038/nrc1098] [PMID: 12778135]
[47]
Zhai, K.F.; Duan, H.; Khan, G.J.; Xu, H.; Han, F.K.; Cao, W.G.; Gao, G.Z.; Shan, L.L.; Wei, Z-J. Salicin from Alangium chinense Ameliorates Rheumatoid Arthritis by Modulating the Nrf2-HO-1-ROS Pathways. J. Agric. Food Chem., 2018, 66(24), 6073-6082.
[http://dx.doi.org/10.1021/acs.jafc.8b02241] [PMID: 29852739]
[48]
Zhai, K.F.; Duan, H.; Chen, Y.; Khan, G.J.; Cao, W.G.; Gao, G.Z.; Shan, L.L.; Wei, Z.J. Apoptosis effects of imperatorin on synoviocytes in rheumatoid arthritis through mitochondrial/caspase-mediated pathways. Food Funct., 2018, 9(4), 2070-2079.
[http://dx.doi.org/10.1039/C7FO01748K] [PMID: 29577119]
[49]
Baig, M.M.F.A.; Khan, S.; Naeem, M.A.; Khan, G.J.; Ansari, M.T. Vildagliptin loaded triangular DNA nanospheres coated with eudragit for oral delivery and better glycemic control in type 2 diabetes mellitus. Biomed. Pharmacother., 2018, 97, 1250-1258.
[http://dx.doi.org/10.1016/j.biopha.2017.11.059] [PMID: 29145151]
[50]
Khan, G.J.; Rizwan, M.; Abbas, M.; Naveed, M.; Boyang, Y.; Naeem, M.A.; Khan, S.; Yuan, S.; Baig, M.M.F.A.; Sun, L. Pharmacological effects and potential therapeutic targets of DT-13. Biomed. Pharmacother., 2018, 97, 255-263.
[http://dx.doi.org/10.1016/j.biopha.2017.10.101] [PMID: 29107216]
[51]
Tajdin, F.; Rasheed, M.A.; Ashraf, M.; Rasheed, H.; Ejaz, H.; Khan, G.J. Antibiotic therapy in pyogenic meningitis in paediatric patients. J. Coll. Physicians Surg. Pak., 2013, 23(10), 703-707.
[PMID: 24112254]
[52]
Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol., 2002, 3(7), H0034.
[http://dx.doi.org/10.1186/gb-2002-3-7-research0034] [PMID: 12184808]
[53]
An, Q.; Han, C.; Zhou, Y.; Li, F.; Li, D.; Zhang, X.; Yu, Z.; Duan, Z.; Kan, Q. In vitro effects of mitomycin C on the proliferation of the non-small-cell lung cancer line A549. Int. J. Clin. Exp. Med., 2015, 8(11), 20516-20523.
[PMID: 26884968]
[54]
D’Antonio, C.; Passaro, A.; Gori, B.; Del Signore, E.; Migliorino, M.R.; Ricciardi, S.; Fulvi, A.; de Marinis, F. Bone and brain metastasis in lung cancer: recent advances in therapeutic strategies. Ther. Adv. Med. Oncol., 2014, 6(3), 101-114.
[http://dx.doi.org/10.1177/1758834014521110] [PMID: 24790650]
[55]
Owen, S.; Souhami, L. The management of brain metastases in non-small cell lung cancer. Front. Oncol., 2014, 4(12), 248.
[http://dx.doi.org/10.3389/fonc.2014.00248] [PMID: 25309873]
[56]
Deberne, M.; Ropert, S.; Billemont, B.; Daniel, C.; Chapron, J.; Goldwasser, F. Inaugural bone metastases in non-small cell lung cancer: a specific prognostic entity? BMC Cancer, 2014, 14(1), 416.
[http://dx.doi.org/10.1186/1471-2407-14-416] [PMID: 24913188]
[57]
Weber, G.F. Time and Circumstances: Cancer Cell Metabolism at Various Stages of Disease Progression. Front. Oncol., 2016, 6(12), 257.
[http://dx.doi.org/10.3389/fonc.2016.00257] [PMID: 28018856]
[58]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[59]
DeBerardinis, R.J.; Thompson, C.B. Cellular metabolism and disease: what do metabolic outliers teach us? Cell, 2012, 148(6), 1132-1144.
[http://dx.doi.org/10.1016/j.cell.2012.02.032] [PMID: 22424225]
[60]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[61]
Miller, D.M.; Thomas, S.D.; Islam, A.; Muench, D.; Sedoris, K. c-Myc and cancer metabolism. Clin. Cancer Res., 2012, 18(20), 5546-5553.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0977] [PMID: 23071356]
[62]
Valastyan, S.; Weinberg, R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell, 2011, 147(2), 275-292.
[http://dx.doi.org/10.1016/j.cell.2011.09.024] [PMID: 22000009]
[63]
Palmirotta, R.; Cives, M.; Della-Morte, D.; Capuani, B.; Lauro, D.; Guadagni, F.; Silvestris, F. Sirtuins and Cancer: Role in the Epithelial-Mesenchymal Transition. Oxid. Med. Cell. Longev., 2016, 2016(3)3031459
[http://dx.doi.org/10.1155/2016/3031459] [PMID: 27379175]
[64]
Heerboth, S.; Housman, G.; Leary, M.; Longacre, M.; Byler, S.; Lapinska, K.; Willbanks, A.; Sarkar, S. EMT and tumor metastasis. Clin. Transl. Med., 2015, 4(1), 6.
[http://dx.doi.org/10.1186/s40169-015-0048-3] [PMID: 25852822]
[65]
Wei, S.C.; Fattet, L.; Yang, J. The forces behind EMT and tumor metastasis. Cell Cycle, 2015, 14(15), 2387-2388.
[http://dx.doi.org/10.1080/15384101.2015.1063296] [PMID: 26083471]
[66]
Riihimäki, M.; Hemminki, A.; Fallah, M.; Thomsen, H.; Sundquist, K.; Sundquist, J.; Hemminki, K. Metastatic sites and survival in lung cancer. Lung Cancer, 2014, 86(1), 78-84.
[http://dx.doi.org/10.1016/j.lungcan.2014.07.020] [PMID: 25130083]
[67]
Tamura, T.; Kurishima, K.; Nakazawa, K.; Kagohashi, K.; Ishikawa, H.; Satoh, H.; Hizawa, N. Specific organ metastases and survival in metastatic non-small-cell lung cancer. Mol. Clin. Oncol., 2015, 3(1), 217-221.
[http://dx.doi.org/10.3892/mco.2014.410] [PMID: 25469298]
[68]
Peng, H.; Wisse, E.; Tian, Z. Liver natural killer cells: subsets and roles in liver immunity. Cell. Mol. Immunol., 2016, 13(3), 328-336.
[http://dx.doi.org/10.1038/cmi.2015.96] [PMID: 26639736]
[69]
Vermijlen, D.; Luo, D.; Froelich, C.J.; Medema, J.P.; Kummer, J.A.; Willems, E.; Braet, F.; Wisse, E. Hepatic natural killer cells exclusively kill splenic/blood natural killer-resistant tumor cells by the perforin/granzyme pathway. J. Leukoc. Biol., 2002, 72(4), 668-676.
[PMID: 12377935]
[70]
Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: a guide for clinicians. CMAJ, 2005, 172(3), 367-379.
[http://dx.doi.org/10.1503/cmaj.1040752] [PMID: 15684121]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy