[1]
HIV/AIDS JUNPo. UNAIDS. 2017.
[2]
Sosa D, Jayant DR, Kaushik A, Nair M. Current status of human immunodeficiency virus vaccine. Vaccin Res Open J 2016; 1(1): e3-5.
[3]
Crisci E, Barcena J, Montoya M. Virus-like particles: the new frontier of vaccines for animal viral infections. Vet Immunol Immunopathol 2012; 148(3-4): 211-25.
[4]
Trovato M, D’Apice L, Prisco A, De Berardinis P. HIV vaccination: A roadmap among advancements and concerns. Int J Mol Sci 2018; 19(4): 1241.
[5]
Rumbwere Dube BN, Marshall TP, Ryan RP, Omonijo M. Predictors of human immunodeficiency virus (HIV) infection in primary care among adults living in developed countries: a systematic review. Syst Rev 2018; 7(1): 82.
[6]
Zhuang GZM. Construction and immunological evaluation of immunostimulatory nanocomposites with vaccine potential. J Infect Dis Ther 2017; 5(5): 1-4.
[7]
Munson P, Liu Y, Bratt D, et al. Therapeutic conserved elements (CE) DNA vaccine induces strong T-cell responses against highly conserved viral sequences during simian-human immunodeficiency virus infection. Hum Vaccin Immunother 2018; 14(7): 1820-31.
[8]
Maxmen A. Promising HIV vaccines could stall without coordinated research. Nature 2018; 555(7694): 17-8.
[9]
Gao Y, McKay PF, Mann JFS. Advances in HIV-1 Vaccine Development. Viruses 2018; 10(4): 167.
[10]
Tissot AC, Renhofa R, Schmitz N, et al. Versatile virus-like particle carrier for epitope based vaccines. PLoS One 2010; 5(3): e9809.
[11]
Roldao A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines 2010; 9(10): 1149-76.
[12]
Bayon E, Morlieras J, Dereuddre-Bosquet N, et al. Overcoming immunogenicity issues of HIV p24 antigen by the use of innovative nanostructured lipid carriers as delivery systems: evidences in mice and non-human primates. NPJ Vaccines 2018; 3(1): 46.
[13]
Walker LM, Phogat SK, Chan-Hui PY, et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 2009; 326(5950): 285-9.
[14]
Moyo N, Vogel AB, Buus S, et al. Efficient induction of T cells against conserved HIV-1 regions by mosaic vaccines delivered as self-amplifying mRNA. Mol Ther Methods Clin Dev 2019; 12: 32-46.
[15]
Wu X, Yang ZY, Li Y, et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 2010; 329(5993): 856-61.
[16]
Andrabi R, Williams C, Wang X-H, et al. Cross-neutralizing activity of human anti-V3 monoclonal antibodies derived from non-B clade HIV-1 infected individuals. Virology 2013; 439(2): 81-8.
[17]
Visciano ML, Diomede L, Tagliamonte M, et al. Generation of HIV-1 Virus-Like Particles expressing different HIV-1 glycoproteins. Vaccine 2011; 29(31): 4903-12.
[18]
Gray GE, Laher F, Lazarus E, Ensoli B, Corey L. Approaches to preventative and therapeutic HIV vaccines. Curr Opin Virol 2016; 17: 104-9.
[19]
Pantophlet R, Wrin T, Cavacini LA, Robinson JE, Burton DR. Neutralizing activity of antibodies to the V3 loop region of HIV-1 gp120 relative to their epitope fine specificity. Virology 2008; 381(2): 251-60.
[20]
Gazarian KG, Palacios-Rodriguez Y, Gazarian TG, Huerta L. HIV-1 V3 loop crown epitope-focused mimotope selection by patient serum from random phage display libraries: implications for the epitope structural features. Mol Immunol 2013; 54(2): 148-56.
[21]
Quan FS, Sailaja G, Skountzou I, et al. Immunogenicity of virus-like particles containing modified human immunodeficiency virus envelope proteins. Vaccine 2007; 25(19): 3841-50.
[22]
Giri M, Ugen KE, Weiner DB. DNA vaccines against human immunodeficiency virus type 1 in the past decade. Clinical microbiology reviews 2004; 17(2): 370-89.
[23]
Koff WC. A shot at AIDS. Curr Opin Biotechnol 2016; 42: 147-51.
[24]
Pawlak EN, Dikeakos JD. HIV-1 Nef: a master manipulator of the membrane trafficking machinery mediating immune evasion. Biochimica et Biophysica Acta (BBA) -. General Subjects 2015; 1850(4): 733-41.
[25]
Kim JH, Excler JL, Michael NL. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu Rev Med 2015; 66: 423-37.
[26]
Tohidi F, Sadat SM, Bolhassani A, Yaghobi R. Construction and production of HIV-VLP harboring MPER-V3 for potential vaccine study. Curr HIV Res 2017; 15(6): 434-9.
[27]
Sadat SMZR, Aghasadeghi MR, Vahabpour R, et al. Application of SCR priming VLP boosting as a novel vaccination strategy against HIV-1. Curr HIV Res 2011; 9(3): 140-7.
[28]
Kuerten S, Nowacki TM, Kleen TO, et al. Dissociated production of perforin, granzyme B, and IFN-gamma by HIV-specific CD8(+) cells in HIV infection. AIDS Res Hum Retroviruses 2008; 24(1): 62-71.
[29]
Chapman R, Jongwe TI, Douglass N, Chege G, Williamson AL. Heterologous prime-boost vaccination with DNA and MVA vaccines, expressing HIV-1 subtype C mosaic Gag virus-like particles, is highly immunogenic in mice. PLoS One 2017; 12(3): e0173352.
[30]
Cheong ChCJ, Vitale L.
Improved cellular and humoral immune responses
in vivo
following targeting of HIV Gag to dendritic cells within human anti–human DEC205 monoclonal antibody.
Blood 2010; 116: 3828-40.
[31]
Barouch DH. OBK, Simmons NL. Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys. Nat Med 2010; 16: 319-23.
[32]
Munier CM, Andersen CR, Kelleher AD. HIV vaccines: progress to date. Drugs 2011; 71(4): 387-414.
[33]
Achour A, Biquard J-M, Krsmanovic V, et al. Induction of human immunodeficiency virus (HIV-1) envelope specific cell-mediated immunity by a non-homologous synthetic peptide. PLoS One 2007; 2(11): e1214.
[34]
Maggiorella MT, Sernicola L, Crostarosa F, et al. Multiprotein genetic vaccine in the SIV‐Macaca animal model: a promising approach to generate sterilizing immunity to HIV infectio. J Med Primatol 2007; 36: 180-94.
[35]
Buonaguro L, Tagliamonte M, Visciano ML, Tornesello ML, Buonaguro FM. Developments in virus-like particle-based vaccines for HIV. Expert Rev Vaccines 2013; 12(2): 119-27.
[36]
Zeltins A. Construction and characterization of virus-like particles: a review. Mol Biotechnol 2013; 53(1): 92-107.
[37]
Wang JW, Roden RBS. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Exp Rev Vaccin 2013; 12(2): 129-41.
[38]
Chroboczek J, Szurgot I, Szolajska E. Virus-like particles as vaccine. Acta Biochim Pol 2014; 61(3): 531-9.
[39]
Ruedl C, Storni T, Lechner F, Bachi T, Bachmann MF. Cross-presentation of virus-like particles by skin-derived CD8(-) dendritic cells: a dispensable role for TAP. Eur J Immunol 2002; 32(3): 818-25.
[40]
Zhao C, Ao Z, Yao X. Current Advances in Virus-Like Particles as a Vaccination Approach against HIV Infection. Vaccines 2016; 4(1): pii:E2.
[41]
Chen Y, Wang S, Lu S. DNA Immunization for HIV Vaccine Development. Vaccines 2014; 2(1): 138-59.
[42]
Archin NM, Sung JM, Garrido C, Soriano-Sarabia N, Margolis DM. Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nat Rev Microbiol 2014; 12: 750.
[43]
Fomsgaard A. Therapeutic HIV peptide vaccine. Methods Mol Biol 2015; 1348: 351-7.
[44]
Mona Sadat L, Seyed Mehdi S, Azam B, et al. In silico design and immunologic evaluation of HIV-1 p24-Nef fusion protein to approach a therapeutic vaccine candidate. Curr HIV Res 2018; 16(5): 322-37.
[45]
Milani A, Bolhassani A, Shahbazi S, et al. Small heat shock protein 27: An effective adjuvant for enhancement of HIV-1 Nef antigen-specific immunity. Immunol Lett 2017; 191: 16-22.
[46]
Benen TD, Tonks P, Kliche A, et al. Development and immunological assessment of VLP-based immunogens exposing the membrane-proximal region of the HIV-1 gp41 protein. J Biomed Sci 2014; 21: 79.
[47]
Letvin NL, Robinson S, Rohne D, et al. Vaccine-elicited V3 loop-specific antibodies in rhesus monkeys and control of a simian-human immunodeficiency virus expressing a primary patient human immunodeficiency virus type 1 isolate envelope. J Virol 2001; 75(9): 4165-75.
[48]
Ruprecht CR, Krarup A, Reynell L, et al. MPER-specific antibodies induce gp120 shedding and irreversibly neutralize HIV-1. The Journal of experimental medicine 2011; 208(3): 439-54.
[49]
Gangadhara S, Kwon YM, et al. Vaccination with combination DNA and virus-like particles enhances humoral and cellular immune responses upon boost with recombinant modified vaccinia virus ankara expressing human immunodeficiency virus envelope proteins. Vaccines 2017; 5(52): 2-14.
[50]
Bolhassani A, Kardani K, Vahabpour R, et al. Prime/boost immunization with HIV-1 MPER-V3 fusion construct enhances humoral and cellular immune responses. Immunol Lett 2015; 168(2): 366-73.
[51]
Matthaei KI, Foster P, Young IG.
The role of interleukin-5 (IL-5)
in vivo
: studies with IL-5 deficient mice.
Mem Inst Oswaldo Cruz 1997; 92(Suppl. 2): 63-8.
[52]
Mailliard RB, Smith KN, Fecek RJ, et al. Selective induction of CTL helper rather than killer activity by natural epitope variants promotes dendritic cell-mediated HIV-1 dissemination. J Immunol 2013; 191(5): 2570-80.
[53]
Genescà M. Characterization of an effective CTL response against HIV and SIV infections. J Biomed Biotechnol 2011; 2011: 103924.
[54]
Demers KR, Reuter MA, Betts MR. CD8(+) T-cell effector function and transcriptional regulation during HIV pathogenesis. Immunol Rev 2013; 254(1): 190-206.
[55]
Lu S. Heterologous prime-boost vaccination. Curr Opin Immunol 2009; 21(3): 346-51.
[56]
Mahdavi M, Ebtekar M, Hassan ZM, et al. An HIV-1 Mini Vaccine Induced Long-lived Cellular and Humoral Immune Responses. Int J Mol Cell Med 2015; 4(4): 218-26.
[57]
Kadkhodayan S, Jafarzade BS, Sadat SM, et al. Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunol Lett 2017; 188: 38-45.