Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

An Overview of HDAC Inhibitors and their Synthetic Routes

Author(s): Xiaopeng Peng, Guochao Liao, Pinghua Sun, Zhiqiang Yu and Jianjun Chen*

Volume 19, Issue 12, 2019

Page: [1005 - 1040] Pages: 36

DOI: 10.2174/1568026619666190227221507

Price: $65

Abstract

Epigenetics play a key role in the origin, development and metastasis of cancer. Epigenetic processes include DNA methylation, histone acetylation, histone methylation, and histone phosphorylation, among which, histone acetylation is the most common one that plays important roles in the regulation of normal cellular processes, and is controlled by histone deacetylases (HDACs) and histone acetyltransferases (HATs). HDACs are involved in the regulation of many key cellular processes, such as DNA damage repair, cell cycle control, autophagy, metabolism, senescence and chaperone function, and can lead to oncogene activation. As a result, HDACs are considered to be an excellent target for anti-cancer therapeutics like histone deacetylase inhibitors (HDACi) which have attracted much attention in the last decade. A wide-ranging knowledge of the role of HDACs in tumorigenesis, and of the action of HDACi, has been achieved. The primary purpose of this paper is to summarize recent HDAC inhibitors and the synthetic routes as well as to discuss the direction for the future development of new HDAC inhibitors.

Keywords: Cancer, Epigenetics, DNA, HDAC, Inhibitors, Synthetic routes.

Next »
Graphical Abstract

[1]
Dawson, M.A.; Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell, 2012, 150(1), 12-27. [http://dx.doi.org/10.1016/j.cell.2012.06.013]. [PMID: 22770212].
[2]
Kouzarides, T. Chromatin modifications and their function. Cell, 2007, 128(4), 693-705. [http://dx.doi.org/10.1016/j.cell.2007.02.005]. [PMID: 17320507].
[3]
Strahl, B.D.; Allis, C.D. The language of covalent histone modifications. Nature, 2000, 403(6765), 41-45. [http://dx.doi.org/10.1038/47412]. [PMID: 10638745].
[4]
Bannister, A.J.; Kouzarides, T. Histone methylation: recognizing the methyl mark. Methods Enzymol., 2004, 376, 269-288. [http://dx.doi.org/10.1016/S0076-6879(03)76018-2]. [PMID: 14975312].
[5]
Pogo, B.G.; Allfrey, V.G.; Mirsky, A.E. RNA synthesis and histone acetylation during the course of gene activation in lymphocytes. Proc. Natl. Acad. Sci. USA, 1966, 55(4), 805-812. [http://dx.doi.org/10.1073/pnas.55.4.805]. [PMID: 5219687].
[6]
Fraga, M.F.; Ballestar, E.; Villar-Garea, A.; Boix-Chornet, M.; Espada, J.; Schotta, G.; Bonaldi, T.; Haydon, C.; Ropero, S.; Petrie, K.; Iyer, N.G.; Pérez-Rosado, A.; Calvo, E.; Lopez, J.A.; Cano, A.; Calasanz, M.J.; Colomer, D.; Piris, M.A.; Ahn, N.; Imhof, A.; Caldas, C.; Jenuwein, T.; Esteller, M. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet., 2005, 37(4), 391-400. [http://dx.doi.org/10.1038/ng1531]. [PMID: 15765097].
[7]
Keohane, A.M.; O’neill, L.P.; Belyaev, N.D.; Lavender, J.S.; Turner, B.M. X-Inactivation and histone H4 acetylation in embryonic stem cells. Dev. Biol., 1996, 180(2), 618-630. [http://dx.doi.org/10.1006/dbio.1996.0333]. [PMID: 8954732].
[8]
Zhai, L.; Joo, H.Y.; Wang, H. In vitro and in vivo assays for studying histone ubiquitination and deubiquitination. Methods Mol. Biol., 2009, 523, 295-309. [http://dx.doi.org/10.1007/978-1-59745-190-1_20]. [PMID: 19381930].
[9]
Yang, X.J.; Grégoire, S. Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol. Cell. Biol., 2005, 25(8), 2873-2884. [http://dx.doi.org/10.1128/MCB.25.8.2873-2884.2005]. [PMID: 15798178].
[10]
Lunyak, V.V.; Burgess, R.; Prefontaine, G.G.; Nelson, C.; Sze, S.H.; Chenoweth, J.; Schwartz, P.; Pevzner, P.A.; Glass, C.; Mandel, G.; Rosenfeld, M.G. Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science, 2002, 298(5599), 1747-1752. [http://dx.doi.org/10.1126/science.1076469]. [PMID: 12399542].
[11]
Tong, J.J.; Liu, J.; Bertos, N.R.; Yang, X.J. Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucleic Acids Res., 2002, 30(5), 1114-1123. [http://dx.doi.org/10.1093/nar/30.5.1114]. [PMID: 11861901].
[12]
Guardiola, A.R.; Yao, T.P. Molecular cloning and characterization of a novel histone deacetylase HDAC10. J. Biol. Chem., 2002, 277(5), 3350-3356. [http://dx.doi.org/10.1074/jbc.M109861200]. [PMID: 11726666].
[13]
Hubbert, C.; Guardiola, A.; Shao, R.; Kawaguchi, Y.; Ito, A.; Nixon, A.; Yoshida, M.; Wang, X.F.; Yao, T.P. HDAC6 is a microtubule-associated deacetylase. Nature, 2002, 417(6887), 455-458. [http://dx.doi.org/10.1038/417455a]. [PMID: 12024216].
[14]
Yoshida, M.; Kijima, M.; Akita, M.; Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem., 1990, 265(28), 17174-17179. [PMID: 2211619].
[15]
Gao, L.; Cueto, M.A.; Asselbergs, F.; Atadja, P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem., 2002, 277(28), 25748-25755. [http://dx.doi.org/10.1074/jbc.M111871200]. [PMID: 11948178].
[16]
Finkel, T.; Deng, C.X.; Mostoslavsky, R. Recent progress in the biology and physiology of sirtuins. Nature, 2009, 460(7255), 587-591. [http://dx.doi.org/10.1038/nature08197]. [PMID: 19641587].
[17]
Kao, H.Y.; Lee, C.H.; Komarov, A.; Han, C.C.; Evans, R.M. Isolation and characterization of mammalian HDAC10, a novel histone deacetylase. J. Biol. Chem., 2002, 277(1), 187-193. [http://dx.doi.org/10.1074/jbc.M108931200]. [PMID: 11677242].
[18]
Grozinger, C.M.; Hassig, C.A.; Schreiber, S.L. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl. Acad. Sci. USA, 1999, 96(9), 4868-4873. [http://dx.doi.org/10.1073/pnas.96.9.4868]. [PMID: 10220385].
[19]
Vanommeslaeghe, K.; Van Alsenoy, C.; De Proft, F.; Martins, J.C.; Tourwé, D.; Geerlings, P. Ab initio study of the binding of Trichostatin A (TSA) in the active site of histone deacetylase like protein (HDLP). Org. Biomol. Chem., 2003, 1(16), 2951-2957. [http://dx.doi.org/10.1039/B304707E]. [PMID: 12968347].
[20]
Grant, S.; Easley, C.; Kirkpatrick, P. Vorinostat. Nat. Rev. Drug Discov., 2007, 6(1), 21-22. [http://dx.doi.org/10.1038/nrd2227]. [PMID: 17269160].
[21]
Warrel, R.P.H.L-Z.; Richon, V.; Calleja, E.; Pandolfi, P.P. Therapeutic targeting of transcription in acute promyelocitic leukemia by use of an inhibitor of histone deacetylases. J. Natl. Cancer Inst., 1998, 90, 1621-1625. [http://dx.doi.org/10.1093/jnci/90.21.1621]. [PMID: 9811311].
[22]
Senese, S.; Zaragoza, K.; Minardi, S.; Muradore, I.; Ronzoni, S.; Passafaro, A.; Bernard, L.; Draetta, G.F.; Alcalay, M.; Seiser, C.; Chiocca, S. Role for histone deacetylase 1 in human tumor cell proliferation. Mol. Cell. Biol., 2007, 27(13), 4784-4795. [http://dx.doi.org/10.1128/MCB.00494-07]. [PMID: 17470557].
[23]
Sasaki, H.; Moriyama, S.; Nakashima, Y.; Kobayashi, Y.; Kiriyama, M.; Fukai, I.; Yamakawa, Y.; Fujii, Y. Histone deacetylase 1 mRNA expression in lung cancer. Lung Cancer, 2004, 46(2), 171-178. [http://dx.doi.org/10.1016/j.lungcan.2004.03.021]. [PMID: 15474665].
[24]
Huang, B.H.; Laban, M.; Leung, C.H.; Lee, L.; Lee, C.K.; Salto-Tellez, M.; Raju, G.C.; Hooi, S.C. Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ., 2005, 12(4), 395-404. [http://dx.doi.org/10.1038/sj.cdd.4401567]. [PMID: 15665816].
[25]
Qian, D.Z.; Kachhap, S.K.; Collis, S.J.; Verheul, H.M.; Carducci, M.A.; Atadja, P.; Pili, R. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Res., 2006, 66(17), 8814-8821. [http://dx.doi.org/10.1158/0008-5472.CAN-05-4598]. [PMID: 16951198].
[26]
Chauchereau, A.; Mathieu, M.; de Saintignon, J.; Ferreira, R.; Pritchard, L.L.; Mishal, Z.; Dejean, A.; Harel-Bellan, A. HDAC4 mediates transcriptional repression by the acute promyelocytic leukaemia-associated protein PLZF. Oncogene, 2004, 23(54), 8777-8784. [http://dx.doi.org/10.1038/sj.onc.1208128]. [PMID: 15467736].
[27]
Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature, 1997, 389(6649), 349-352. [http://dx.doi.org/10.1038/38664]. [PMID: 9311776].
[28]
Hassig, C.A.; Schreiber, S.L. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr. Opin. Chem. Biol., 1997, 1(3), 300-308. [http://dx.doi.org/10.1016/S1367-5931(97)80066-X]. [PMID: 9667866].
[29]
Baek, Y.S.; Haas, S.; Hackstein, H.; Bein, G.; Hernandez-Santana, M.; Lehrach, H.; Sauer, S.; Seitz, H. Identification of novel transcriptional regulators involved in macrophage differentiation and activation in U937 cells. BMC Immunol., 2009, 10, 18. [http://dx.doi.org/10.1186/1471-2172-10-18]. [PMID: 19341462].
[30]
Ueki, N.; Zhang, L.; Hayman, M.J. Ski can negatively regulates macrophage differentiation through its interaction with PU.1. Oncogene, 2008, 27(3), 300-307. [http://dx.doi.org/10.1038/sj.onc.1210654]. [PMID: 17621263].
[31]
Into, T.; Inomata, M.; Niida, S.; Murakami, Y.; Shibata, K. Regulation of MyD88 aggregation and the MyD88-dependent signaling pathway by sequestosome 1 and histone deacetylase 6. J. Biol. Chem., 2010, 285(46), 35759-35769. [http://dx.doi.org/10.1074/jbc.M110.126904]. [PMID: 20837465].
[32]
Chen, Lf. Fischle, W.; Verdin, E.; Greene, W.C. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science, 2001, 293(5535), 1653-1657. [http://dx.doi.org/10.1126/science.1062374]. [PMID: 11533489].
[33]
Elsharkawy, A.M.; Oakley, F.; Lin, F.; Packham, G.; Mann, D.A.; Mann, J. The NF-kappaB p50:p50:HDAC-1 repressor complex orchestrates transcriptional inhibition of multiple pro-inflammatory genes. J. Hepatol., 2010, 53(3), 519-527. [http://dx.doi.org/10.1016/j.jhep.2010.03.025]. [PMID: 20579762].
[34]
Choi, Y.S.; Jeong, S. PI3-kinase and PDK-1 regulate HDAC1-mediated transcriptional repression of transcription factor NF-kappaB. Mol. Cells, 2005, 20(2), 241-246. [PMID: 16267399].
[35]
Ashburner, B.P.; Westerheide, S.D.; Baldwin, A.S., Jr The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol. Cell. Biol., 2001, 21(20), 7065-7077. [http://dx.doi.org/10.1128/MCB.21.20.7065-7077.2001]. [PMID: 11564889].
[36]
Pakala, S.B.; Bui-Nguyen, T.M.; Reddy, S.D.; Li, D.Q.; Peng, S.; Rayala, S.K.; Behringer, R.R.; Kumar, R. Regulation of NF-kappaB circuitry by a component of the nucleosome remodeling and deacetylase complex controls inflammatory response homeostasis. J. Biol. Chem., 2010, 285(31), 23590-23597. [http://dx.doi.org/10.1074/jbc.M110.139469]. [PMID: 20519513].
[37]
Shim, J.Y.; Bertalovitz, A.C.; Kendall, D.A. Identification of essential cannabinoid-binding domains: structural insights into early dynamic events in receptor activation. J. Biol. Chem., 2011, 286(38), 33422-33435. [http://dx.doi.org/10.1074/jbc.M111.261651]. [PMID: 21795705].
[38]
Kim, S.H.; Jeong, J.W.; Park, J.A.; Lee, J.W.; Seo, J.H.; Jung, B.K.; Bae, M.K.; Kim, K.W. Regulation of the HIF-1alpha stability by histone deacetylases. Oncol. Rep., 2007, 17(3), 647-651. [PMID: 17273746].
[39]
Cao, W.; Bao, C.; Padalko, E.; Lowenstein, C.J. Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J. Exp. Med., 2008, 205(6), 1491-1503. [http://dx.doi.org/10.1084/jem.20071728]. [PMID: 18504304].
[40]
Nusinzon, I.; Horvath, C.M. Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation. Mol. Cell. Biol., 2006, 26(8), 3106-3113. [http://dx.doi.org/10.1128/MCB.26.8.3106-3113.2006]. [PMID: 16581785].
[41]
Nencioni, A.; Beck, J.; Werth, D.; Grünebach, F.; Patrone, F.; Ballestrero, A.; Brossart, P. Histone deacetylase inhibitors affect dendritic cell differentiation and immunogenicity. Clin. Cancer Res., 2007, 13(13), 3933-3941. [http://dx.doi.org/10.1158/1078-0432.CCR-06-2903]. [PMID: 17606727].
[42]
Salvi, V.; Bosisio, D.; Mitola, S.; Andreoli, L.; Tincani, A.; Sozzani, S. Trichostatin A blocks type I interferon production by activated plasmacytoid dendritic cells. Immunobiology, 2010, 215(9-10), 756-761. [http://dx.doi.org/10.1016/j.imbio.2010.05.023]. [PMID: 20573419].
[43]
Bode, K.A.; Schroder, K.; Hume, D.A.; Ravasi, T.; Heeg, K.; Sweet, M.J.; Dalpke, A.H. Histone deacetylase inhibitors decrease Toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment. Immunology, 2007, 122(4), 596-606. [http://dx.doi.org/10.1111/j.1365-2567.2007.02678.x]. [PMID: 17635610].
[44]
Murphy, P.J.; Morishima, Y.; Kovacs, J.J.; Yao, T.P.; Pratt, W.B. Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone. J. Biol. Chem., 2005, 280(40), 33792-33799. [http://dx.doi.org/10.1074/jbc.M506997200]. [PMID: 16087666].
[45]
Tang, X.; Gao, J.S.; Guan, Y.J.; McLane, K.E.; Yuan, Z.L.; Ramratnam, B.; Chin, Y.E. Acetylation-dependent signal transduction for type I interferon receptor. Cell, 2007, 131(1), 93-105. [http://dx.doi.org/10.1016/j.cell.2007.07.034]. [PMID: 17923090].
[46]
Zupkovitz, G.; Tischler, J.; Posch, M.; Sadzak, I.; Ramsauer, K.; Egger, G.; Grausenburger, R.; Schweifer, N.; Chiocca, S.; Decker, T.; Seiser, C. Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol. Cell. Biol., 2006, 26(21), 7913-7928. [http://dx.doi.org/10.1128/MCB.01220-06]. [PMID: 16940178].
[47]
Klampfer, L.; Huang, J.; Swaby, L.A.; Augenlicht, L. Requirement of histone deacetylase activity for signaling by STAT1. J. Biol. Chem., 2004, 279(29), 30358-30368. [http://dx.doi.org/10.1074/jbc.M401359200]. [PMID: 15123634].
[48]
Antunes, F.; Marg, A.; Vinkemeier, U. STAT1 signaling is not regulated by a phosphorylation-acetylation switch. Mol. Cell. Biol., 2011, 31(14), 3029-3037. [http://dx.doi.org/10.1128/MCB.05300-11]. [PMID: 21576370].
[49]
Xu, D.; Holko, M.; Sadler, A.J.; Scott, B.; Higashiyama, S.; Berkofsky-Fessler, W.; McConnell, M.J.; Pandolfi, P.P.; Licht, J.D.; Williams, B.R. Promyelocytic leukemia zinc finger protein regulates interferon-mediated innate immunity. Immunity, 2009, 30(6), 802-816. [http://dx.doi.org/10.1016/j.immuni.2009.04.013]. [PMID: 19523849].
[50]
Villagra, A.; Cheng, F.; Wang, H.W.; Suarez, I.; Glozak, M.; Maurin, M.; Nguyen, D.; Wright, K.L.; Atadja, P.W.; Bhalla, K.; Pinilla-Ibarz, J.; Seto, E.; Sotomayor, E.M. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat. Immunol., 2009, 10(1), 92-100. [http://dx.doi.org/10.1038/ni.1673]. [PMID: 19011628].
[51]
Zika, E.; Greer, S.F.; Zhu, X.S.; Ting, J.P. Histone deacetylase 1/mSin3A disrupts gamma interferon-induced CIITA function and major histocompatibility complex class II enhanceosome formation. Mol. Cell. Biol., 2003, 23(9), 3091-3102. [http://dx.doi.org/10.1128/MCB.23.9.3091-3102.2003]. [PMID: 12697811].
[52]
Kong, X.; Fang, M.; Li, P.; Fang, F.; Xu, Y. HDAC2 deacetylates class II transactivator and suppresses its activity in macrophages and smooth muscle cells. J. Mol. Cell. Cardiol., 2009, 46(3), 292-299. [http://dx.doi.org/10.1016/j.yjmcc.2008.10.023]. [PMID: 19041327].
[53]
Aung, H.T.; Schroder, K.; Himes, S.R.; Brion, K.; van Zuylen, W.; Trieu, A.; Suzuki, H.; Hayashizaki, Y.; Hume, D.A.; Sweet, M.J.; Ravasi, T. LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression. FASEB J., 2006, 20(9), 1315-1327. [http://dx.doi.org/10.1096/fj.05-5360com]. [PMID: 16816106].
[54]
Gilchrist, M.; Thorsson, V.; Li, B.; Rust, A.G.; Korb, M.; Roach, J.C.; Kennedy, K.; Hai, T.; Bolouri, H.; Aderem, A. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature, 2006, 441(7090), 173-178. [http://dx.doi.org/10.1038/nature04768]. [PMID: 16688168].
[55]
Foster, S.L.; Hargreaves, D.C.; Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature, 2007, 447(7147), 972-978. [http://dx.doi.org/10.1038/nature05836]. [PMID: 17538624].
[56]
Micelli, C.; Rastelli, G. Histone deacetylases: structural determinants of inhibitor selectivity. Drug Discov. Today, 2015, 20(6), 718-735. [http://dx.doi.org/10.1016/j.drudis.2015.01.007]. [PMID: 25687212].
[57]
Estiu, G.; Greenberg, E.; Harrison, C.B.; Kwiatkowski, N.P.; Mazitschek, R.; Bradner, J.E.; Wiest, O. Structural origin of selectivity in class II-selective histone deacetylase inhibitors. J. Med. Chem., 2008, 51(10), 2898-2906. [http://dx.doi.org/10.1021/jm7015254]. [PMID: 18412327].
[58]
Roche, J.; Bertrand, P. Inside HDACs with more selective HDAC inhibitors. Eur. J. Med. Chem., 2016, 121, 451-483. [http://dx.doi.org/10.1016/j.ejmech.2016.05.047]. [PMID: 27318122].
[59]
Furumai, R.; Matsuyama, A.; Kobashi, N.; Lee, K.H.; Nishiyama, M.; Nakajima, H.; Tanaka, A.; Komatsu, Y.; Nishino, N.; Yoshida, M.; Horinouchi, S. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res., 2002, 62(17), 4916-4921. [PMID: 12208741].
[60]
Riggs, M.G.; Whittaker, R.G.; Neumann, J.R.; Ingram, V.M. n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature, 1977, 268(5619), 462-464. [http://dx.doi.org/10.1038/268462a0]. [PMID: 268489].
[61]
Hu, E.; Dul, E.; Sung, C.M.; Chen, Z.; Kirkpatrick, R.; Zhang, G.F.; Johanson, K.; Liu, R.; Lago, A.; Hofmann, G.; Macarron, R.; de los Frailes, M.; Perez, P.; Krawiec, J.; Winkler, J.; Jaye, M. Identification of novel isoform-selective inhibitors within class I histone deacetylases. J. Pharmacol. Exp. Ther., 2003, 307(2), 720-728. [http://dx.doi.org/10.1124/jpet.103.055541]. [PMID: 12975486].
[62]
Halili, M.A.; Andrews, M.R.; Sweet, M.J.; Fairlie, D.P. Histone deacetylase inhibitors in inflammatory disease. Curr. Top. Med. Chem., 2009, 9(3), 309-319. [http://dx.doi.org/10.2174/156802609788085250]. [PMID: 19355993].
[63]
Kazantsev, A.G.; Thompson, L.M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat. Rev. Drug Discov., 2008, 7(10), 854-868. [http://dx.doi.org/10.1038/nrd2681]. [PMID: 18827828].
[64]
Tan, J.; Cang, S.; Ma, Y.; Petrillo, R.L.; Liu, D. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J. Hematol. Oncol., 2010, 3, 5. [http://dx.doi.org/10.1186/1756-8722-3-5]. [PMID: 20132536].
[65]
Wagner, J.M.; Hackanson, B.; Lübbert, M.; Jung, M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin. Epigenetics, 2010, 1(3-4), 117-136. [http://dx.doi.org/10.1007/s13148-010-0012-4]. [PMID: 21258646].
[66]
FDA approval and new drug application (NDA) documents for Zolinza (Available at: http://www.accessdata.fda.gov/ drugsatfda_docs/nda/2006/021-991s000_ZolinzaTOC.cfm
[67]
Meng, J.; Li, Y.; Camarillo, C.; Yao, Y.; Zhang, Y.; Xu, C.; Jiang, L. The anti-tumor histone deacetylase inhibitor SAHA and the natural flavonoid curcumin exhibit synergistic neuroprotection against amyloid-beta toxicity. PLoS One, 2014, 9(1)e85570 [http://dx.doi.org/10.1371/journal.pone.0085570]. [PMID: 24409332].
[68]
Leng, Y.; Marinova, Z.; Reis-Fernandes, M.A.; Nau, H.; Chuang, D.M. Potent neuroprotective effects of novel structural derivatives of valproic acid: potential roles of HDAC inhibition and HSP70 induction. Neurosci. Lett., 2010, 476(3), 127-132. [http://dx.doi.org/10.1016/j.neulet.2010.04.013]. [PMID: 20394799].
[69]
Nau, H.; Wittfoht, W.; Schäfer, H.; Jakobs, C.; Rating, D.; Helge, H. Valproic acid and several metabolites: quantitative determination in serum, urine, breast milk and tissues by gas chromatography-mass spectrometry using selected ion monitoring. J. Chromatogr. A, 1981, 226(1), 69-78. [http://dx.doi.org/10.1016/S0378-4347(00)84207-3]. [PMID: 6798056].
[70]
Cheng, K.; Masters, S.; Stephenson, T.; Cooke, R.; Ferner, R.; Ashworth, M.; Nunn, A.J. Identification of suspected fatal adverse drug reactions by paediatricians: a UK surveillance study. Arch. Dis. Child., 2008, 93(7), 609-611. [http://dx.doi.org/10.1136/adc.2006.107789]. [PMID: 17588966].
[71]
Phiel, C.J.; Zhang, F.; Huang, E.Y.; Guenther, M.G.; Lazar, M.A.; Klein, P.S. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem., 2001, 276(39), 36734-36741. [http://dx.doi.org/10.1074/jbc.M101287200]. [PMID: 11473107].
[72]
Göttlicher, M.; Minucci, S.; Zhu, P.; Krämer, O.H.; Schimpf, A.; Giavara, S.; Sleeman, J.P.; Lo Coco, F.; Nervi, C.; Pelicci, P.G.; Heinzel, T. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J., 2001, 20(24), 6969-6978. [http://dx.doi.org/10.1093/emboj/20.24.6969]. [PMID: 11742974].
[73]
Lu, Q.; Wang, D.S.; Chen, C.S.; Hu, Y.D.; Chen, C.S. Structure-based optimization of phenylbutyrate-derived histone deacetylase inhibitors. J. Med. Chem., 2005, 48(17), 5530-5535. [http://dx.doi.org/10.1021/jm0503749]. [PMID: 16107152].
[74]
Shirakawa, K.; Chavez, L.; Hakre, S.; Calvanese, V.; Verdin, E. Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbiol., 2013, 21(6), 277-285. [http://dx.doi.org/10.1016/j.tim.2013.02.005]. [PMID: 23517573].
[75]
Schiattarella, G.G.; Sannino, A.; Toscano, E.; Cattaneo, F.; Trimarco, B.; Esposito, G.; Perrino, C. Cardiovascular effects of histone deacetylase inhibitors epigenetic therapies: Systematic review of 62 studies and new hypotheses for future research. Int. J. Cardiol., 2016, 219, 396-403. [http://dx.doi.org/10.1016/j.ijcard.2016.06.012]. [PMID: 27362830].
[76]
Jønsson, K.L.; Tolstrup, M.; Vad-Nielsen, J.; Kjær, K.; Laustsen, A.; Andersen, M.N.; Rasmussen, T.A.; Søgaard, O.S.; Østergaard, L.; Denton, P.W.; Jakobsen, M.R. Histone deacetylase inhibitor romidepsin inhibits de novo HIV-1 infections. Antimicrob. Agents Chemother., 2015, 59(7), 3984-3994. [http://dx.doi.org/10.1128/AAC.00574-15]. [PMID: 25896701].
[77]
Stenzel, K.; Hamacher, A.; Hansen, F.K.; Gertzen, C.G.W.; Senger, J.; Marquardt, V.; Marek, L.; Marek, M.; Romier, C.; Remke, M.; Jung, M.; Gohlke, H.; Kassack, M.U.; Kurz, T. Alkoxyurea-based histone deacetylase inhibitors increase cisplatin potency in chemoresistant cancer cell lines. J. Med. Chem., 2017, 60(13), 5334-5348. [http://dx.doi.org/10.1021/acs.jmedchem.6b01538]. [PMID: 28581289].
[78]
Mitchell, A.E.; Zheng, J.; Hammock, B.D.; Lo Bello, M.; Jones, A.D. Structural and functional consequences of haloenol lactone inactivation of murine and human glutathione S-transferase. Biochemistry, 1998, 37(19), 6752-6759. [http://dx.doi.org/10.1021/bi971846r]. [PMID: 9578559].
[79]
Wu, Z.; Minhas, G.S.; Wen, D.; Jiang, H.; Chen, K.; Zimniak, P.; Zheng, J. Design, synthesis, and structure-activity relationships of haloenol lactones: site-directed and isozyme-selective glutathione S-transferase inhibitors. J. Med. Chem., 2004, 47(12), 3282-3294. [http://dx.doi.org/10.1021/jm0499615]. [PMID: 15163208].
[80]
Hood, K.; Shah, A. Belinostat for relapsed or refractory peripheral T-Cell lymphoma. J. Adv. Pract. Oncol., 2016, 7(2), 209-218. [PMID: 28090369].
[81]
Burgers, P.T.; Poolman, R.W.; Van Bakel, T.M.; Tuinebreijer, W.E.; Zielinski, S.M.; Bhandari, M.; Patka, P.; Van Lieshout, E.M. Reliability, validity, and responsiveness of the Western Ontario and McMaster Universities Osteoarthritis Index for elderly patients with a femoral neck fracture. J. Bone Joint Surg. Am., 2015, 97(9), 751-757. [http://dx.doi.org/10.2106/JBJS.N.00542]. [PMID: 25948522].
[82]
Qian, J.Z.G.; Qin, H.; Zhu, Y.; Xiao, Y. Method for synthesizing belinostat., China Patent 102786448 A, December 03. 2012.
[83]
Yang, L.X.X.Z.Y. Simple and Efficient Synthesis of Belinostat. Synth. Commun., 2010, 40, 2520-2540. [http://dx.doi.org/10.1080/00397910903277870].
[84]
Wang, Q.L. A process for preparing belinostat cis-isomer, China Patent 105367455 A, October 24 2016.
[85]
Bao, X.S.D.; Qiao, X.; Zhao, X.; Chen, G. The Belinostat. Org. Process Res. Dev., 2016, 20(8), 1482-1488. [http://dx.doi.org/10.1021/acs.oprd.6b00170].
[86]
Savickiene, J.; Borutinskaite, V.V.; Treigyte, G.; Magnusson, K.E.; Navakauskiene, R. The novel histone deacetylase inhibitor BML-210 exerts growth inhibitory, proapoptotic and differentiation stimulating effects on the human leukemia cell lines. Eur. J. Pharmacol., 2006, 549(1-3), 9-18. [http://dx.doi.org/10.1016/j.ejphar.2006.08.010]. [PMID: 16978604].
[87]
Herman, D.; Jenssen, K.; Burnett, R.; Soragni, E.; Perlman, S.L.; Gottesfeld, J.M. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat. Chem. Biol., 2006, 2(10), 551-558. [http://dx.doi.org/10.1038/nchembio815]. [PMID: 16921367].
[88]
Wang, H.; Guo, Y.; Fu, M.; Liang, X.; Zhang, X.; Wang, R.; Lin, C.; Qian, H. Antitumor activity of Chidamide in hepatocellular carcinoma cell lines. Mol. Med. Rep., 2012, 5(6), 1503-1508. [PMID: 22484326].
[89]
Gong, K.; Xie, J.; Yi, H.; Li, W. CS055 (Chidamide/HBI-8000), a novel histone deacetylase inhibitor, induces G1 arrest, ROS-dependent apoptosis and differentiation in human leukaemia cells. Biochem. J., 2012, 443(3), 735-746. [http://dx.doi.org/10.1042/BJ20111685]. [PMID: 22339555].
[90]
Yin, Z.; Wu, Z.; Lan, Y.L.C.; Shan, S. LI Z, Ning Z, Lu X, Li Z., Synthesis of chidamide,a new histone deacetylase (HDAC) inhibitor. Zhongguo Xin Yao Zazhi, 2004, 13(6), 536-538.
[91]
Todoerti, K.; Barbui, V.; Pedrini, O.; Lionetti, M.; Fossati, G.; Mascagni, P.; Rambaldi, A.; Neri, A.; Introna, M.; Lombardi, L.; Golay, J. Pleiotropic anti-myeloma activity of ITF2357: inhibition of interleukin-6 receptor signaling and repression of miR-19a and miR-19b. Haematologica, 2010, 95(2), 260-269. [http://dx.doi.org/10.3324/haematol.2009.012088]. [PMID: 19713220].
[92]
Bertolini, G.B.M.; Leoni, F.; Mizrahi, J.; Pavich, G.; Mascagni, P. Preparation of benzohydroxamic acids as antiinflammatory and immunosuppressive agents. PCT Int. Appl., 1997, 9743251, 20.
[93]
Wash, P.L.; Hoffman, T.Z.; Wiley, B.M.; Bonnefous, C.; Smith, N.D.; Sertic, M.S.; Lawrence, C.M.; Symons, K.T.; Nguyen, P.M.; Lustig, K.D.; Guo, X.; Annable, T.; Noble, S.A.; Hager, J.H.; Hassig, C.A.; Malecha, J.W. Alpha-mercaptoketone based histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(24), 6482-6485. [http://dx.doi.org/10.1016/j.bmcl.2008.10.058]. [PMID: 18954984].
[94]
Vanommeslaeghe, K.; Loverix, S.; Geerlings, P.; Tourwé, D. DFT-based ranking of zinc-binding groups in histone deacetylase inhibitors. Bioorg. Med. Chem., 2005, 13(21), 6070-6082. [http://dx.doi.org/10.1016/j.bmc.2005.06.009]. [PMID: 16006131].
[95]
Hassig, C.A.; Symons, K.T.; Guo, X.; Nguyen, P.M.; Annable, T.; Wash, P.L.; Payne, J.E.; Jenkins, D.A.; Bonnefous, C.; Trotter, C.; Wang, Y.; Anzola, J.V.; Milkova, E.L.; Hoffman, T.Z.; Dozier, S.J.; Wiley, B.M.; Saven, A.; Malecha, J.W.; Davis, R.L.; Muhammad, J.; Shiau, A.K.; Noble, S.A.; Rao, T.S.; Smith, N.D.; Hager, J.H. KD5170, a novel mercaptoketone-based histone deacetylase inhibitor that exhibits broad spectrum antitumor activity in vitro and in vivo. Mol. Cancer Ther., 2008, 7(5), 1054-1065. [http://dx.doi.org/10.1158/1535-7163.MCT-07-2347]. [PMID: 18483295].
[96]
Payne, J.E.; Bonnefous, C.; Hassig, C.A.; Symons, K.T.; Guo, X.; Nguyen, P.M.; Annable, T.; Wash, P.L.; Hoffman, T.Z.; Rao, T.S.; Shiau, A.K.; Malecha, J.W.; Noble, S.A.; Hager, J.H.; Smith, N.D. Identification of KD5170: a novel mercaptoketone-based histone deacetylase inhibitor. Bioorg. Med. Chem. Lett., 2008, 18(23), 6093-6096. [http://dx.doi.org/10.1016/j.bmcl.2008.10.029]. [PMID: 18954983].
[97]
Catley, L.; Weisberg, E.; Tai, Y.T.; Atadja, P.; Remiszewski, S.; Hideshima, T.; Mitsiades, N.; Shringarpure, R.; LeBlanc, R.; Chauhan, D.; Munshi, N.C.; Schlossman, R.; Richardson, P.; Griffin, J.; Anderson, K.C. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood, 2003, 102(7), 2615-2622. [http://dx.doi.org/10.1182/blood-2003-01-0233]. [PMID: 12816865].
[98]
Yeung, A.; Bhargava, R.K.; Ahn, R.; Bahna, S.; Kang, N.H.; Lacoul, A.; Niles, L.P. HDAC inhibitor M344 suppresses MCF-7 breast cancer cell proliferation. Biomed. Pharmacother., 2012, 66(3), 232-236. [http://dx.doi.org/10.1016/j.biopha.2011.06.007]. [PMID: 22436652].
[99]
Jung, M.; Brosch, G.; Kölle, D.; Scherf, H.; Gerhäuser, C.; Loidl, P. Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differentiation. J. Med. Chem., 1999, 42(22), 4669-4679. [http://dx.doi.org/10.1021/jm991091h]. [PMID: 10579829].
[100]
Suzuki, T.; Nagano, Y.; Kouketsu, A.; Matsuura, A.; Maruyama, S.; Kurotaki, M.; Nakagawa, H.; Miyata, N. Novel inhibitors of human histone deacetylases: design, synthesis, enzyme inhibition, and cancer cell growth inhibition of SAHA-based non-hydroxamates. J. Med. Chem., 2005, 48(4), 1019-1032. [http://dx.doi.org/10.1021/jm049207j]. [PMID: 15715470].
[101]
Martirosyan, A.; Leonard, S.; Shi, X.; Griffith, B.; Gannett, P.; Strobl, J. Actions of a histone deacetylase inhibitor NSC3852 (5-nitroso-8-quinolinol) link reactive oxygen species to cell differentiation and apoptosis in MCF-7 human mammary tumor cells. J. Pharmacol. Exp. Ther., 2006, 317(2), 546-552. [http://dx.doi.org/10.1124/jpet.105.096891]. [PMID: 16497787].
[102]
Zhou, W.; Tang, W.; Sun, Z.; Li, Y.; Dong, Y.; Pei, H.; Peng, Y.; Wang, J.; Shao, T.; Jiang, Z.; Yi, Z.; Chen, Y. Discovery and optimization of N-Substituted 2-(4-pyridinyl)thiazole carboxamides against tumor growth through regulating angiogenesis signaling pathways. Sci. Rep., 2016, 6, 33434. [http://dx.doi.org/10.1038/srep33434]. [PMID: 27633259].
[103]
Ibeanu, F.O.E.; Ibezim, A.; Okoro, U. Synthesis, characterization, computational and biological study of novel azabenzo [a]phenothiazine and azabenzo[b]phenoxazine heterocycles as potential antibiotic agent. Med. Chem. Res., 2018, 27, 1093-1102.
[104]
Strobl, J.S.; Seibert, C.W.; Li, Y.; Nagarkatti, R.; Mitchell, S.M.; Rosypal, A.C.; Rathore, D.; Lindsay, D.S. Inhibition of Toxo-plasma gondii and Plasmodium falciparum infections in vitro by NSC3852, a redox active antiproliferative and tumor cell differentiation agent. J. Parasitol., 2009, 95(1), 215-223. [http://dx.doi.org/10.1645/GE-1608.1]. [PMID: 18837587].
[105]
Scuto, A.; Kirschbaum, M.; Kowolik, C.; Kretzner, L.; Juhasz, A.; Atadja, P.; Pullarkat, V.; Bhatia, R.; Forman, S.; Yen, Y.; Jove, R. The novel histone deacetylase inhibitor, LBH589, induces expression of DNA damage response genes and apoptosis in Ph- acute lymphoblastic leukemia cells. Blood, 2008, 111(10), 5093-5100. [http://dx.doi.org/10.1182/blood-2007-10-117762]. [PMID: 18349321].
[106]
Siripragada, M.R.; Irfan, V.; Chirag, P.; Mayur, B.; Akash, J.; Ananda, B.T.; Pinky, P. Preparation of novel salts and polymorphic forms of Panobinostat., PCT Int. Appl., 2017221163, December 28. 2017.
[107]
Buggy, J.J.; Cao, Z.A.; Bass, K.E.; Verner, E.; Balasubramanian, S.; Liu, L.; Schultz, B.E.; Young, P.R.; Dalrymple, S.A. CRA-024781: a novel synthetic inhibitor of histone deacetylase enzymes with antitumor activity in vitro and in vivo. Mol. Cancer Ther., 2006, 5(5), 1309-1317. [http://dx.doi.org/10.1158/1535-7163.MCT-05-0442]. [PMID: 16731764].
[108]
Bass, K.B., S.; Young, P. Heteroarylamides and related compounds and their preparation, pharmaceutical compositions, and a method of monitoring anti-tumor activity of an HDAC inhibitor., PCT Int. Appl., 2006042035, May 26. 2006.
[109]
Wang, H.; Yu, N.; Chen, D.; Lee, K.C.; Lye, P.L.; Chang, J.W.; Deng, W.; Ng, M.C.; Lu, T.; Khoo, M.L.; Poulsen, A.; Sangthongpitag, K.; Wu, X.; Hu, C.; Goh, K.C.; Wang, X.; Fang, L.; Goh, K.L.; Khng, H.H.; Goh, S.K.; Yeo, P.; Liu, X.; Bonday, Z.; Wood, J.M.; Dymock, B.W.; Kantharaj, E.; Sun, E.T. Discovery of (2E)-3-2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile. J. Med. Chem., 2011, 54(13), 4694-4720. [http://dx.doi.org/10.1021/jm2003552]. [PMID: 21634430].
[110]
Mandl-Weber, S.; Meinel, F.G.; Jankowsky, R.; Oduncu, F.; Schmidmaier, R.; Baumann, P. The novel inhibitor of histone deacetylase resminostat (RAS2410) inhibits proliferation and induces apoptosis in multiple myeloma (MM) cells. Br. J. Haematol., 2010, 149(4), 518-528. [http://dx.doi.org/10.1111/j.1365-2141.2010.08124.x]. [PMID: 20201941].
[111]
Duan, W.; Li, J.; Inks, E.S.; Chou, C.J.; Jia, Y.; Chu, X.; Li, X.; Xu, W.; Zhang, Y. Design, synthesis, and antitumor evaluation of novel histone deacetylase inhibitors equipped with a phenylsulfonylfuroxan module as a nitric oxide donor. J. Med. Chem., 2015, 58(10), 4325-4338. [http://dx.doi.org/10.1021/acs.jmedchem.5b00317]. [PMID: 25906087].
[112]
Good, K.V.; Martínez de Paz, A.; Tyagi, M.; Cheema, M.S.; Thambirajah, A.A.; Gretzinger, T.L.; Stefanelli, G.; Chow, R.L.; Krupke, O.; Hendzel, M.; Missiaen, K.; Underhill, A.; Landsberger, N.; Ausió, J. Trichostatin A decreases the levels of MeCP2 expression and phosphorylation and increases its chromatin binding affinity. Epigenetics, 2017, 12(11), 934-944. [http://dx.doi.org/10.1080/15592294.2017.1380760]. [PMID: 29099289].
[113]
Hakami, N.Y.; Dusting, G.J.; Peshavariya, H.M.; Trichostatin, A. a histone deacetylase inhibitor suppresses NADPH Oxidase 4-derived redox signalling and angiogenesis. J. Cell. Mol. Med., 2016, 20(10), 1932-1944. [http://dx.doi.org/10.1111/jcmm.12885]. [PMID: 27297729].
[114]
Vigushin, D.M.; Ali, S.; Pace, P.E.; Mirsaidi, N.; Ito, K.; Adcock, I.; Coombes, R.C. Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin. Cancer Res., 2001, 7(4), 971-976. [PMID: 11309348].
[115]
Mori, K.K.K. Synthesis of trichostatin A, a potent differentiation inducer of Friend leukemic cells, and its antipode. Tetrahedron, 1988, 44(19), 6013-6020. [http://dx.doi.org/10.1016/S0040-4020(01)89789-1].
[116]
Zhang, S.D.W.; Wang, W. Efficient, enantioselective organocatalytic synthesis of trichostatin A. Adv. Synth. Catal., 2006, 348, 1228-1234. [http://dx.doi.org/10.1002/adsc.200606106].
[117]
Chatterjee, A.; Richer, J.; Hulett, T.; Iska, V.B.; Wiest, O.; Helquist, P. An efficient synthesis of (+/-)-trichostatic Acid and analogues: a new route to (+/-)-trichostatin A. Org. Lett., 2010, 12(4), 832-834. [http://dx.doi.org/10.1021/ol9029116]. [PMID: 20104892].
[118]
Cosner, C.C.; Helquist, P. Concise, convergent syntheses of (±)-trichostatin A utilizing a Pd-catalyzed ketone enolate α-alkeny-lation reaction. Org. Lett., 2011, 13(14), 3564-3567. [http://dx.doi.org/10.1021/ol200964m]. [PMID: 21688856].
[119]
Henning, S.W. 178 Preclinical characterization of 4SC-202, a novel isotype specific HDAC inhibitor. Eur. J. Cancer, Suppl., 2010, 8(7), 61. [http://dx.doi.org/10.1016/S1359-6349(10)71883-8].
[120]
Maier, T.B. N-Sulfonylpyrroles and their preparation, pharmaceutical compositions, and use as histone deacetylase inhibitors. PCT Int. Appl., 2006097474 2006.
[121]
Qian, C.; Lai, C.J.; Bao, R.; Wang, D.G.; Wang, J.; Xu, G.X.; Atoyan, R.; Qu, H.; Yin, L.; Samson, M.; Zifcak, B.; Ma, A.W.; DellaRocca, S.; Borek, M.; Zhai, H.X.; Cai, X.; Voi, M. Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin. Cancer Res., 2012, 18(15), 4104-4113. [http://dx.doi.org/10.1158/1078-0432.CCR-12-0055]. [PMID: 22693356].
[122]
Bao, R. Treatment of cancers having K-Ras mutations.. PCT Int. Appl., 2011032683 2011.
[123]
Hess-Stumpp, H. Histone deacetylase inhibitors and cancer: From cell biology to the clinic. Eur. J. Cell Biol., 2005, 84(2-3), 109-121. [http://dx.doi.org/10.1016/j.ejcb.2004.12.010]. [PMID: 15819394].
[124]
Trapani, D.; Esposito, A.; Criscitiello, C.; Mazzarella, L.; Locatelli, M.; Minchella, I.; Minucci, S.; Curigliano, G. Entinostat for the treatment of breast cancer. Expert Opin. Investig. Drugs, 2017, 26(8), 965-971. [http://dx.doi.org/10.1080/13543784.2017.1353077]. [PMID: 28718331].
[125]
Saito, A.; Yamashita, T.; Mariko, Y.; Nosaka, Y.; Tsuchiya, K.; Ando, T.; Suzuki, T.; Tsuruo, T.; Nakanishi, O. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc. Natl. Acad. Sci. USA, 1999, 96(8), 4592-4597. [http://dx.doi.org/10.1073/pnas.96.8.4592]. [PMID: 10200307].
[126]
Gediya, L.K.; Belosay, A.; Khandelwal, A.; Purushottamachar, P.; Njar, V.C. Improved synthesis of histone deacetylase inhibitors (HDIs) (MS-275 and CI-994) and inhibitory effects of HDIs alone or in combination with RAMBAs or retinoids on growth of human LNCaP prostate cancer cells and tumor xenografts. Bioorg. Med. Chem., 2008, 16(6), 3352-3360. [http://dx.doi.org/10.1016/j.bmc.2007.12.007]. [PMID: 18166465].
[127]
Fournel, M.; Bonfils, C.; Hou, Y.; Yan, P.T.; Trachy-Bourget, M.C.; Kalita, A.; Liu, J.; Lu, A.H.; Zhou, N.Z.; Robert, M.F.; Gillespie, J.; Wang, J.J.; Ste-Croix, H.; Rahil, J.; Lefebvre, S.; Moradei, O.; Delorme, D.; Macleod, A.R.; Besterman, J.M.; Li, Z. MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Mol. Cancer Ther., 2008, 7(4), 759-768. [http://dx.doi.org/10.1158/1535-7163.MCT-07-2026]. [PMID: 18413790].
[128]
Zhou, N.; Moradei, O.; Raeppel, S.; Leit, S.; Frechette, S.; Gaudette, F.; Paquin, I.; Bernstein, N.; Bouchain, G.; Vaisburg, A.; Jin, Z.; Gillespie, J.; Wang, J.; Fournel, M.; Yan, P.T.; Trachy-Bourget, M.C.; Kalita, A.; Lu, A.; Rahil, J.; MacLeod, A.R.; Li, Z.; Besterman, J.M.; Delorme, D. Discovery of N-(2-aminophenyl)-4-[(4-pyridin-3-ylpyrimidin-2-ylamino)methyl]benzamide (MGCD0103), an orally active histone deacetylase inhibitor. J. Med. Chem., 2008, 51(14), 4072-4075. [http://dx.doi.org/10.1021/jm800251w]. [PMID: 18570366].
[129]
Butler, L.M.; Webb, Y.; Agus, D.B.; Higgins, B.; Tolentino, T.R.; Kutko, M.C.; LaQuaglia, M.P.; Drobnjak, M.; Cordon-Cardo, C.; Scher, H.I.; Breslow, R.; Richon, V.M.; Rifkind, R.A.; Marks, P.A. Inhibition of transformed cell growth and induction of cellular differentiation by pyroxamide, an inhibitor of histone deacetylase. Clin. Cancer Res., 2001, 7(4), 962-970. [PMID: 11309347].
[130]
Remiszewski, S.W.; Sambucetti, L.C.; Atadja, P.; Bair, K.W.; Cornell, W.D.; Green, M.A.; Howell, K.L.; Jung, M.; Kwon, P.; Trogani, N.; Walker, H. Inhibitors of human histone deacetylase: synthesis and enzyme and cellular activity of straight chain hydroxamates. J. Med. Chem., 2002, 45(4), 753-757. [http://dx.doi.org/10.1021/jm015568c]. [PMID: 11831887].
[131]
Arts, J.; King, P.; Mariën, A.; Floren, W.; Beliën, A.; Janssen, L.; Pilatte, I.; Roux, B.; Decrane, L.; Gilissen, R.; Hickson, I.; Vreys, V.; Cox, E.; Bol, K.; Talloen, W.; Goris, I.; Andries, L.; Du Jardin, M.; Janicot, M.; Page, M.; van Emelen, K.; Angibaud, P. JNJ-26481585, a novel “second-generation” oral histone deacetylase inhibitor, shows broad-spectrum preclinical antitumoral activity. Clin. Cancer Res., 2009, 15(22), 6841-6851. [http://dx.doi.org/10.1158/1078-0432.CCR-09-0547]. [PMID: 19861438].
[132]
Dickens, J.H. Monohydrochloric salt of N-hydroxy-2-[4-([(1- methyl-1H-indol-3-yl)methyl]aminomethyl)-1-piperidinyl]-5- pyrimidinecarboxamide as HDAC inhibitors and its preparation, pharmaceutical compositions and use in the treatment of cancer. PCT Int. Appl., 2008138918 2008.
[133]
Soragni, E.; Miao, W.; Iudicello, M.; Jacoby, D.; De Mercanti, S.; Clerico, M.; Longo, F.; Piga, A.; Ku, S.; Campau, E.; Du, J.; Penalver, P.; Rai, M.; Madara, J.C.; Nazor, K.; O’Connor, M.; Maximov, A.; Loring, J.F.; Pandolfo, M.; Durelli, L.; Gottesfeld, J.M.; Rusche, J.R. Epigenetic therapy for Friedreich ataxia. Ann. Neurol., 2014, 76(4), 489-508. [http://dx.doi.org/10.1002/ana.24260]. [PMID: 25159818].
[134]
Sandi, C.; Pinto, R.M.; Al-Mahdawi, S.; Ezzatizadeh, V.; Barnes, G.; Jones, S.; Rusche, J.R.; Gottesfeld, J.M.; Pook, M.A. Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model. Neurobiol. Dis., 2011, 42(3), 496-505. [http://dx.doi.org/10.1016/j.nbd.2011.02.016]. [PMID: 21397024].
[135]
Rusche, J.P. Preparation of 6-aminohexanoic acid derivatives as HDAC inhibitors. PCT Int. Appl., 2010028192, June 10 2014.
[136]
Sasakawa, Y.; Naoe, Y.; Inoue, T.; Sasakawa, T.; Matsuo, M.; Manda, T.; Mutoh, S. Effects of FK228, a novel histone deacetylase inhibitor, on human lymphoma U-937 cells in vitro and in vivo. Biochem. Pharmacol., 2002, 64(7), 1079-1090. [http://dx.doi.org/10.1016/S0006-2952(02)01261-3]. [PMID: 12234611].
[137]
Blagosklonny, M.V.; Robey, R.; Sackett, D.L.; Du, L.; Traganos, F.; Darzynkiewicz, Z.; Fojo, T.; Bates, S.E. Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol. Cancer Ther., 2002, 1(11), 937-941. [PMID: 12481415].
[138]
Kaneda, M.; Sueyoshi, K.; Teruya, T.; Ohno, H.; Fujii, N.; Oishi, S. Total synthesis of odoamide, a novel cyclic depsipeptide, from an Okinawan marine cyanobacterium. Org. Biomol. Chem., 2016, 14(38), 9093-9104. [http://dx.doi.org/10.1039/C6OB01583B]. [PMID: 27722687].
[139]
Greshock, T.J.; Johns, D.M.; Noguchi, Y.; Williams, R.M. Improved total synthesis of the potent HDAC inhibitor FK228 (FR-901228). Org. Lett., 2008, 10(4), 613-616. [http://dx.doi.org/10.1021/ol702957z]. [PMID: 18205373].
[140]
Wen, S.; Packham, G.; Ganesan, A. Macrolactamization versus macrolactonization: Total synthesis of FK228, the depsipeptide histone deacetylase inhibitor. J. Org. Chem., 2008, 73(23), 9353-9361. [http://dx.doi.org/10.1021/jo801866z]. [PMID: 18991384].
[141]
Jones, P.; Steinkühler, C. From natural products to small molecule ketone histone deacetylase inhibitors: Development of new class specific agents. Curr. Pharm. Des., 2008, 14(6), 545-561. [http://dx.doi.org/10.2174/138161208783885317]. [PMID: 18336299].
[142]
Su, G.H.; Sohn, T.A.; Ryu, B.; Kern, S.E. A novel histone deacetylase inhibitor identified by high-throughput transcriptional screening of a compound library. Cancer Res., 2000, 60(12), 3137-3142. [PMID: 10866300].
[143]
Sharma, V.; Koul, N.; Joseph, C.; Dixit, D.; Ghosh, S.; Sen, E. HDAC inhibitor, scriptaid, induces glioma cell apoptosis through JNK activation and inhibits telomerase activity. J. Cell. Mol. Med., 2010, 14(8), 2151-2161. [http://dx.doi.org/10.1111/j.1582-4934.2009.00844.x]. [PMID: 19583803].
[144]
Gerova, M.P.O. A Convenient Synthesis of the New Histone Deacetylase Inhibitor Scriptaid. Org. Prep. Proced. Int., 2014, 46, 76-79. [http://dx.doi.org/10.1080/00304948.2014.866471].
[145]
Fleming, C.L.; Ashton, T.D.; Nowell, C.; Devlin, M.; Natoli, A.; Schreuders, J.; Pfeffer, F.M. A fluorescent histone deacetylase (HDAC) inhibitor for cellular imaging. Chem. Commun. (Camb.), 2015, 51(37), 7827-7830. [http://dx.doi.org/10.1039/C5CC02059J]. [PMID: 25853994].
[146]
Graziano, M.J.; Spoon, T.A.; Cockrell, E.A.; Rowse, P.E.; Gonzales, A.J. Induction of apoptosis in rat peripheral blood lymphocytes by the anticancer drug CI-994 (Acetyldinaline)(*). J. Biomed. Biotechnol., 2001, 1(2), 52-61. [http://dx.doi.org/10.1155/S1110724301000146]. [PMID: 12488610].
[147]
Beckers, T.; Burkhardt, C.; Wieland, H.; Gimmnich, P.; Ciossek, T.; Maier, T.; Sanders, K. Distinct pharmacological properties of second generation HDAC inhibitors with the benzamide or hydroxamate head group. Int. J. Cancer, 2007, 121(5), 1138-1148. [http://dx.doi.org/10.1002/ijc.22751]. [PMID: 17455259].
[148]
Schölz, C.; Weinert, B.T.; Wagner, S.A.; Beli, P.; Miyake, Y.; Qi, J.; Jensen, L.J.; Streicher, W.; McCarthy, A.R.; Westwood, N.J.; Lain, S.; Cox, J.; Matthias, P.; Mann, M.; Bradner, J.E.; Choudhary, C. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotechnol., 2015, 33(4), 415-423. [http://dx.doi.org/10.1038/nbt.3130]. [PMID: 25751058].
[149]
Wang, Y.; Stowe, R.L.; Pinello, C.E.; Tian, G.; Madoux, F.; Li, D.; Zhao, L.Y.; Li, J.L.; Wang, Y.; Wang, Y.; Ma, H.; Hodder, P.; Roush, W.R.; Liao, D. Identification of histone deacetylase inhibitors with benzoylhydrazide scaffold that selectively inhibit class I histone deacetylases. Chem. Biol., 2015, 22(2), 273-284. [http://dx.doi.org/10.1016/j.chembiol.2014.12.015]. [PMID: 25699604].
[150]
Liao, D.R., W.; Stowe, R. Benzohydrazides and related compounds as HDAC inhibitors and their preparation and use for the treatment of cell proliferation diseases., WO Patent 2015153516A1, October 08, 2015.
[151]
Chateauvieux, S.; Morceau, F.; Dicato, M.; Diederich, M. Molecular and therapeutic potential and toxicity of valproic acid. J. Biomed. Biotechnol., 2010, 2010479364 [doi: 10.1155/2010/479364].
[152]
F., C., Towards the rehabilitation of the Mathews’ ‘dry’ hydrolysis reaction using microwave technology. Tetrahedron Lett., 2002, 43, 5555-5557. [http://dx.doi.org/10.1016/S0040-4039(02)01127-9].
[153]
Palmieri, A.; Gabrielli, S.; Ballinia, R. Michael Reaction of Nitroalkanes with b-Nitroacrylates under a Solid Promoter: Advanced Regio- and Diastereoselective Synthesis of Nitro-Functionalized a,b-Unsaturated Esters and 1,3-Butadiene-2-carboxylates. Adv. Synth. Catal., 2010, 352, 1485-1492. [http://dx.doi.org/10.1002/adsc.201000142].
[154]
Salmi-Smail, C.; Fabre, A.; Dequiedt, F.; Restouin, A.; Castellano, R.; Garbit, S.; Roche, P.; Morelli, X.; Brunel, J.M.; Collette, Y. Modified cap group suberoylanilide hydroxamic acid histone deacetylase inhibitor derivatives reveal improved selective antileukemic activity. J. Med. Chem., 2010, 53(8), 3038-3047. [http://dx.doi.org/10.1021/jm901358y]. [PMID: 20218673].
[155]
Nebbioso, A.; Manzo, F.; Miceli, M.; Conte, M.; Manente, L.; Baldi, A.; De Luca, A.; Rotili, D.; Valente, S.; Mai, A.; Usiello, A.; Gronemeyer, H.; Altucci, L. Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC-MEF2 complexes. EMBO Rep., 2009, 10(7), 776-782. [http://dx.doi.org/10.1038/embor.2009.88]. [PMID: 19498465].
[156]
Nebbioso, A.; Dell’Aversana, C.; Bugge, A.; Sarno, R.; Valente, S.; Rotili, D.; Manzo, F.; Teti, D.; Mandrup, S.; Ciana, P.; Maggi, A.; Mai, A.; Gronemeyer, H.; Altucci, L. HDACs class II-selective inhibition alters nuclear receptor-dependent differentiation. J. Mol. Endocrinol., 2010, 45(4), 219-228. [http://dx.doi.org/10.1677/JME-10-0043]. [PMID: 20639404].
[157]
Mai, A.; Massa, S.; Pezzi, R.; Simeoni, S.; Rotili, D.; Nebbioso, A.; Scognamiglio, A.; Altucci, L.; Loidl, P.; Brosch, G.; Class, I.I.; Class, I.I. IIa)-selective histone deacetylase inhibitors. 1. Synthesis and biological evaluation of novel (aryloxopropenyl)pyrrolyl hydroxyamides. J. Med. Chem., 2005, 48(9), 3344-3353. [http://dx.doi.org/10.1021/jm049002a]. [PMID: 15857140].
[158]
Fleming, C.L.; Ashton, T.D.; Gaur, V.; McGee, S.L.; Pfeffer, F.M. Improved synthesis and structural reassignment of MC1568: a class IIa selective HDAC inhibitor. J. Med. Chem., 2014, 57(3), 1132-1135. [http://dx.doi.org/10.1021/jm401945k]. [PMID: 24450497].
[159]
Darkin-Rattray, S.J.; Gurnett, A.M.; Myers, R.W.; Dulski, P.M.; Crumley, T.M.; Allocco, J.J.; Cannova, C.; Meinke, P.T.; Colletti, S.L.; Bednarek, M.A.; Singh, S.B.; Goetz, M.A.; Dombrowski, A.W.; Polishook, J.D.; Schmatz, D.M. Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc. Natl. Acad. Sci. USA, 1996, 93(23), 13143-13147. [http://dx.doi.org/10.1073/pnas.93.23.13143]. [PMID: 8917558].
[160]
Deshmukh, P.H.; Schulz‐Fademrecht, C.; Procopiou, P.A.; Vigushin, D.A.; Coombes, R.C.; Barretta, A.G.M. Ring-closing metathesis in the synthesis of biologically active peptidomimetics of Apicidin A. Adv. Synth. Catal., 2007, 349, 175-183. [http://dx.doi.org/10.1002/adsc.200600421].
[161]
Horne, W.S.; Olsen, C.A.; Beierle, J.M.; Montero, A.; Ghadiri, M.R. Probing the bioactive conformation of an archetypal natural product HDAC inhibitor with conformationally homogeneous triazole-modified cyclic tetrapeptides. Angew. Chem. Int. Ed. Engl., 2009, 48(26), 4718-4724. [http://dx.doi.org/10.1002/anie.200805900]. [PMID: 19267380].
[162]
Ralph, M. Inhibitors of histone deacetylase., PCT Int. Appl., 2015069693, May 14. 2015.
[163]
Wood, T.E.; Dalili, S.; Simpson, C.D.; Sukhai, M.A.; Hurren, R.; Anyiwe, K.; Mao, X.; Suarez Saiz, F.; Gronda, M.; Eberhard, Y.; MacLean, N.; Ketela, T.; Reed, J.C.; Moffat, J.; Minden, M.D.; Batey, R.A.; Schimmer, A.D. Selective inhibition of histone deacetylases sensitizes malignant cells to death receptor ligands. Mol. Cancer Ther., 2010, 9(1), 246-256. [http://dx.doi.org/10.1158/1535-7163.MCT-09-0495]. [PMID: 20053768].
[164]
Malvaez, M.; McQuown, S.C.; Rogge, G.A.; Astarabadi, M.; Jacques, V.; Carreiro, S.; Rusche, J.R.; Wood, M.A. HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc. Natl. Acad. Sci. USA, 2013, 110(7), 2647-2652. [http://dx.doi.org/10.1073/pnas.1213364110]. [PMID: 23297220].
[165]
Vincent, J.; James, R.; Jasbir, S.; Norton, P. Preparation of N-(2- aminophenyl) heteroarylacrylamides as histone deacetylase inhibitors. PCT Int. Appl., 2012118782, September 07 2012.
[166]
Chung, Y.M.; Wei, C.K.; Chuang, D.W.; El-Shazly, M.; Hsieh, C.T.; Asai, T.; Oshima, Y.; Hsieh, T.J.; Hwang, T.L.; Wu, Y.C.; Chang, F.R. An epigenetic modifier enhances the production of anti-diabetic and anti-inflammatory sesquiterpenoids from Aspergillus sydowii. Bioorg. Med. Chem., 2013, 21(13), 3866-3872. [http://dx.doi.org/10.1016/j.bmc.2013.04.004]. [PMID: 23647825].
[167]
Balasubramanian, S.; Ramos, J.; Luo, W.; Sirisawad, M.; Verner, E.; Buggy, J.J. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia, 2008, 22(5), 1026-1034. [http://dx.doi.org/10.1038/leu.2008.9]. [PMID: 18256683].
[168]
Olson, D.E.; Udeshi, N.D.; Wolfson, N.A.; Pitcairn, C.A.; Sullivan, E.D.; Jaffe, J.D.; Svinkina, T.; Natoli, T.; Lu, X.; Paulk, J.; McCarren, P.; Wagner, F.F.; Barker, D.; Howe, E.; Lazzaro, F.; Gale, J.P.; Zhang, Y.L.; Subramanian, A.; Fierke, C.A.; Carr, S.A.; Holson, E.B. An unbiased approach to identify endogenous substrates of “histone” deacetylase 8. ACS Chem. Biol., 2014, 9(10), 2210-2216. [http://dx.doi.org/10.1021/cb500492r]. [PMID: 25089360].
[169]
Pavlik, C.M.; Wong, C.Y.; Ononye, S.; Lopez, D.D.; Engene, N.; McPhail, K.L.; Gerwick, W.H.; Balunas, M.J.; Santacruzamate, A. Santacruzamate A, a potent and selective histone deacetylase inhibitor from the Panamanian marine cyanobacterium cf. Symploca sp. J. Nat. Prod., 2013, 76(11), 2026-2033. [http://dx.doi.org/10.1021/np400198r]. [PMID: 24164245].
[170]
Marek, L.; Hamacher, A.; Hansen, F.K.; Kuna, K.; Gohlke, H.; Kassack, M.U.; Kurz, T. Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells. J. Med. Chem., 2013, 56(2), 427-436. [http://dx.doi.org/10.1021/jm301254q]. [PMID: 23252603].
[171]
Lobera, M.; Madauss, K.P.; Pohlhaus, D.T.; Wright, Q.G.; Trocha, M.; Schmidt, D.R.; Baloglu, E.; Trump, R.P.; Head, M.S.; Hofmann, G.A.; Murray-Thompson, M.; Schwartz, B.; Chakravorty, S.; Wu, Z.; Mander, P.K.; Kruidenier, L.; Reid, R.A.; Burkhart, W.; Turunen, B.J.; Rong, J.X.; Wagner, C.; Moyer, M.B.; Wells, C.; Hong, X.; Moore, J.T.; Williams, J.D.; Soler, D.; Ghosh, S.; Nolan, M.A. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat. Chem. Biol., 2013, 9(5), 319-325. [http://dx.doi.org/10.1038/nchembio.1223]. [PMID: 23524983].
[172]
Baloglu, E.; Ghosh, S.; Lobera, M.; Schmidt, D. Preparation of five membered heterocycle-containing benzamide and nicotinamide compounds as inhibitors of histone deacetylase (HDAC) enzymes. PCT Int. Appl., 2011088181 2011.
[173]
Olsson, A.; Björk, A.; Vallon-Christersson, J.; Isaacs, J.T.; Leanderson, T. Tasquinimod (ABR-215050), a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors. Mol. Cancer, 2010, 9, 107. [http://dx.doi.org/10.1186/1476-4598-9-107]. [PMID: 20470445].
[174]
Guerriero, J.L.; Sotayo, A.; Ponichtera, H.E.; Castrillon, J.A.; Pourzia, A.L.; Schad, S.; Johnson, S.F.; Carrasco, R.D.; Lazo, S.; Bronson, R.T.; Davis, S.P.; Lobera, M.; Nolan, M.A.; Letai, A. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature, 2017, 543(7645), 428-432. [http://dx.doi.org/10.1038/nature21409]. [PMID: 28273064].
[175]
Butler, K.V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.; Kozikowski, A.P. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc., 2010, 132(31), 10842-10846. [http://dx.doi.org/10.1021/ja102758v]. [PMID: 20614936].
[176]
Hong, J.X.X.; Das, D.; Yang, P.Y.; Chen, S.H.; Li, G. A New Approach to Tubacin. Lett. Org. Chem., 2010, 7, 50-53. [http://dx.doi.org/10.2174/157017810790533913].
[177]
Steven, Q; Teru, H; Kenneth, C A Pharmaceutical combinations comprising a histone deacetylase inhibitor and a programmed death-ligand 1 (PD-L1) inhibitor and methods of use thereof. PCT Int. Appl., 2018098168 2018.
[178]
Jochems, J.; Boulden, J.; Lee, B.G.; Blendy, J.A.; Jarpe, M.; Mazitschek, R.; Van Duzer, J.H.; Jones, S.; Berton, O. Antidepressant-like properties of novel HDAC6-selective inhibitors with improved brain bioavailability. Neuropsychopharmacology, 2014, 39(2), 389-400. [http://dx.doi.org/10.1038/npp.2013.207]. [PMID: 23954848].
[179]
Simon, J.S.; Eva, S.; Pinilla, I.J.; Simon, J.S.S.Q.N.; Eva, S.; Pinilla, I.J. HDAC inhibitors, alone or in combination with BTK inhibitors, for treating chronic lymphocytic leukemia., PCT Int. Appl., 2017184774. 2017.
[180]
Yu, J.; Ma, M.; Ma, Z.; Fu, J. HDAC6 inhibition prevents TNF-α-induced caspase 3 activation in lung endothelial cell and maintains cell-cell junctions. Oncotarget, 2016, 7(34), 54714-54722. [http://dx.doi.org/10.18632/oncotarget.10591]. [PMID: 27419634].
[181]
Kozikowski, A.P.; Tapadar, S.; Luchini, D.N.; Kim, K.H.; Billadeau, D.D. Use of the nitrile oxide cycloaddition (NOC) reaction for molecular probe generation: a new class of enzyme selective histone deacetylase inhibitors (HDACIs) showing picomolar activity at HDAC6. J. Med. Chem., 2008, 51(15), 4370-4373. [http://dx.doi.org/10.1021/jm8002894]. [PMID: 18642892].
[182]
Lee, J.H.; Mahendran, A.; Yao, Y.; Ngo, L.; Venta-Perez, G.; Choy, M.L.; Kim, N.; Ham, W.S.; Breslow, R.; Marks, P.A. Development of a histone deacetylase 6 inhibitor and its biological effects. Proc. Natl. Acad. Sci. USA, 2013, 110(39), 15704-15709. [http://dx.doi.org/10.1073/pnas.1313893110]. [PMID: 24023063].
[183]
Bergman, J.A.; Woan, K.; Perez-Villarroel, P.; Villagra, A.; Sotomayor, E.M.; Kozikowski, A.P. Selective histone deacetylase 6 inhibitors bearing substituted urea linkers inhibit melanoma cell growth. J. Med. Chem., 2012, 55(22), 9891-9899. [http://dx.doi.org/10.1021/jm301098e]. [PMID: 23009203].
[184]
Suzuki, T.; Kouketsu, A.; Itoh, Y.; Hisakawa, S.; Maeda, S.; Yoshida, M.; Nakagawa, H.; Miyata, N. Highly potent and selective histone deacetylase 6 inhibitors designed based on a small-molecular substrate. J. Med. Chem., 2006, 49(16), 4809-4812. [http://dx.doi.org/10.1021/jm060554y]. [PMID: 16884291].
[185]
Itoh, Y.; Suzuki, T.; Kouketsu, A.; Suzuki, N.; Maeda, S.; Yoshida, M.; Nakagawa, H.; Miyata, N. Design, synthesis, structure--selectivity relationship, and effect on human cancer cells of a novel series of histone deacetylase 6-selective inhibitors. J. Med. Chem., 2007, 50(22), 5425-5438. [http://dx.doi.org/10.1021/jm7009217]. [PMID: 17929798].
[186]
Kozlov, M.V.A.; Konduktorov, K.A.; Kochetkov, S.N. A new synthesis of 6-N-hydroxy-4-(2-methyl-1,2,3,4-tetrahydro-pyrido-[4,3-b]indol-5-ylmethyl)benzamide, tubastatin a, a highly selective inhibitor of histone deacetylase. Russ. J. Bioorganic Chem., 2013, 39(1), 102-105. [http://dx.doi.org/10.1134/S1068162012060076].
[187]
Bots, M.; Johnstone, R.W. Rational combinations using HDAC inhibitors. Clin. Cancer Res., 2009, 15(12), 3970-3977. [http://dx.doi.org/10.1158/1078-0432.CCR-08-2786]. [PMID: 19509171].
[188]
Ali, M.; Hom, R.A.; Blakeslee, W.; Ikenouye, L.; Kutateladze, T.G. Diverse functions of PHD fingers of the MLL/KMT2 subfamily. Biochim. Biophys. Acta, 2014, 1843(2), 366-371. [http://dx.doi.org/10.1016/j.bbamcr.2013.11.016]. [PMID: 24291127].
[189]
Arrowsmith, C.H.; Bountra, C.; Fish, P.V.; Lee, K.; Schapira, M. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov., 2012, 11(5), 384-400. [http://dx.doi.org/10.1038/nrd3674]. [PMID: 22498752].
[190]
Kalakonda, N.; Fischle, W.; Boccuni, P.; Gurvich, N.; Hoya-Arias, R.; Zhao, X.; Miyata, Y.; Macgrogan, D.; Zhang, J.; Sims, J.K.; Rice, J.C.; Nimer, S.D. Histone H4 lysine 20 monomethylation promotes transcriptional repression by L3MBTL1. Oncogene, 2008, 27(31), 4293-4304. [http://dx.doi.org/10.1038/onc.2008.67]. [PMID: 18408754].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy