Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Substitution at Phenyl Rings of Chalcone and Schiff Base Moieties Accounts for their Antiproliferative Activity

Author(s): Marwa S. Salem, Rasha A. Hussein and Wael M. El-Sayed *

Volume 19, Issue 5, 2019

Page: [620 - 626] Pages: 7

DOI: 10.2174/1871520619666190225122338

Price: $65

Abstract

Background: In a continuous combat against cancer, which is one of the leading causes of mortality now, chalcone and Schiff bases moieties have been incorporated and their antiproliferative activities and associated mechanisms against liver (HepG2) and breast (MCF-7) cell lines in addition to normal fibroblasts (WI-38) have been examined.

Methods: Derivatives 4 and 5 of Schiff bases only and chalcone derivatives of Schiff bases 1 and 2 were devoid of any antiproliferative activity. All three compounds (3, 6, and 7) with significant antiproliferative activity were selective and caused no growth inhibition in normal fibroblasts. Derivative 3 was a chalcone only with IC50 of ~20 µM and has a very interesting signature where it enhanced apoptosis in HepG2 by stimulating the expression of downstream execution caspase 3 without affecting neither p53 nor initiator caspase 9. In spite of the structural similarity between compounds 6 and 7, compound 6 discerned itself with a unique IC50 of ~ 10 µM.

Results: The antiproliferative activity of derivative 6 could be attributed to its unique capability of formation of free radicals such as phenoxide radicals which arrested the cell cycle through enhancing the expression of p53 and induced apoptosis by induction of both caspases 9 and 3. It was the only investigated derivative that inhibited the tyrosine kinase activity by 89%.

Conclusions: The antiproliferative activity of the compounds under investigation considerably depended on the nature of the substituent at position 4 in phenyl rings of both chalcone and Schiff base fragments. Derivative 6 with electron withdrawing chlorine substitution on the phenyl ring of Schiff base fragment and an electron donating methoxy group on the phenyl ring of chalcone fragment was the most active member.

Keywords: Chalcone, schiff's base, antiproliferative, apoptosis, p53, tyrosine kinase.

Graphical Abstract

[1]
Prashar, H.; Chawla, A.; Sharma, A.K.; Kharb, R. Chalcone as a versatile moiety for diverse pharmacological activities. Int. J. Pharm. Sci. Res., 2012, 3, 1913-1927.
[2]
Yadav, H.L.; Gupta, P.; Pawar, R.S.; Singour, P.K.; Patil, U.K. Synthesis and biological evaluation of anti-inflammatory activity of 1,3 diphenyl propenone derivatives. Med. Chem. Res., 2011, 20, 461-465.
[3]
Echeverria, C.; Santibañez, J.F.; Tauda, O.D.; Escobar, C.A.; Tagle, R.R. Structural antitumoral activity relationships of synthetic chalcones. Int. J. Mol. Sci., 2009, 10, 221-231.
[4]
Dimmock, J.R.; Jha, A.; Zello, G.A.; Allen, T.M.; Santos, C.L.; Balzarini, J.; De-Clercq, E.; Manavathu, E.K.; Stables, J.P. Cytotoxic 4′-aminochalcones and related compounds. Pharmazie, 2003, 58, 227-232.
[5]
Przybylski, P.; Huczynski, A.; Pyta, K.; Brzezinski, B.; Bartl, F. Biological properties of schiff bases and azo derivatives of phenols. Curr. Org. Chem., 2009, 13, 124-148.
[6]
de Souza, A.O.; Galetti, F.C.S.; Silva, C.L.; Bicalho, B.; Parma, M.M.; Fonseca, S.F.; Fonseca, S.F.; Marsaioli, A.J.; Trindade, A.C.L.B.; Gil, R.P.F.; Bezerra, F.S.; Andrade-Neto, M.; de-Oliveira, M.C.F. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Quim. Nova, 2007, 30, 1563-1566.
[7]
Fahmy, A.M.; Hassan, K.M.; Khalaf, A.A.; Ahmed, R.A. Organic chemistry including medicinal chemistry Ind. J. Chem. Section B., 1987, 26(1-12), 884-887.
[8]
Garg, S.; Raghav, N. Synthesis of novel chalcones of Schiff’s bases and to study their effect on bovine serum albumin. Asian J. Pharm. Clin. Res., 2013, 6(4), 181-184.
[9]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315, 971-979.
[10]
Ozaki, T.; Nakagawara, A. Role of p53 in cell death and human cancers. Cancers, 2011, 3, 994-1013.
[11]
Guicciardi, M.; Gores, G.J. Apoptosis: A mechanism of acute and chronic liver injury. Gut, 2005, 54, 1024-1033.
[12]
Walsh, J.G.; Cullen, S.P.; Sheridan, C.; Lüthi, A.U.; Gerner, C.; Martin, S.J. Executioner caspase-3 and caspase-7 are functionally distinct proteases. PNAS, 2008, 105, 12815-12819.
[13]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase-role and significance in cancer. Int. J. Med. Sci., 2004, 1, 101-115.
[14]
Pestell, K.E. Paul workman on the challenges of cancer drug development. Drug Discov. Today, 2003, 8, 775-777.
[15]
Xu, J.; Zhang, Q.; Chen, L.; Chen, H. Chemoselectivity in reactions of an α-diazo-β-diketone with some conjugative double-bond systems. J. Chem. Soc. Perkin Trans, 2001, 1, 2266-2268.
[16]
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods, 1986, 89, 271-277.
[17]
Hussein, R.A.; El-Husseiny, E.A.; Hassanin, L.A.; El-Sayed, W.M. The prophylactic and therapeutic effects of safranal and selenite on liver damage induced by thyrotoxicosis in adult male albino rats. Int. J. Clin. Pharmacol. Toxicol., 2017, 6, 270-279.
[18]
Ismail, M.A.; Youssef, M.M.; Arafa, R.K.; Al-Shihry, S.S.; El-sayed, W.M. Synthesis and antiproliferative activity of monocationic arylthiophene derivatives. Eur. J. Med. Chem., 2016, 126, 789-798.
[19]
El-Hashash, M.A.E.M.; Salem, M.S.; Al-Mabrook, S.A.M. Synthesis and anticancer activity of novel quinazolinone and benzamide derivatives. Res. Chem. Intermed., 2018, 44, 2545-2559.
[20]
Madkour, H.M.F.; El-Hashash, M.A.E.M.; Salem, M.S.; Mahmoud, A.O.A. Al kahraman, Y.M.S.A. Design, synthesis, and in vitro antileishmanial and antitumor activities of new tetrahydroquinolines. J. Heterocycl. Chem., 2018, 55, 391-401.
[21]
Salem, M.S.; Ali, M.A.M. Novel pyrazolo[3,4-b] pyridine derivatives: Synthesis, characterization, antimicrobial and antiproliferative profile. Biol. Pharm. Bull., 2016, 39, 473-483.
[22]
Salem, M.S.; Farhat, M.; Errayes, A.O.; Madkour, H.M.F. Antioxidant activity of novel fused heterocyclic compounds derived from tetrahydropyrimidine derivative. Chem. Pharm. Bull., 2015, 63, 866-872.
[23]
Shenvi, S.; Kumar, K.; Hatti, K.S.; Rijesh, K.; Diwakar, L.; Reddy, G.C. Synthesis, anticancer and antioxidant activities of 2,4,5-trimethoxy chalcones and analogues from asaronaldehyde: Structure-activity relationship. Eur. J. Med. Chem., 2013, 62, 435-442.
[24]
Rani, P.; Srivastava, V.K.; Kumar, A. Synthesis and antiinflammatory activity of heterocyclic indole derivatives. Eur. J. Med. Chem., 2004, 39, 449-452.
[25]
Dyrager, C.; Wickström, M.; Fridén-Saxin, M.; Friberg, A.; Dahlén, K.; Wallén, E.A.A.; Gullbo, J.; Grøtli, M.; Luthman, K. Inhibitors and promoters of tubulin polymerization: Synthesis and biological evaluation of chalcones and related dienones as potential anticancer agents. Bioorg. Med. Chem., 2011, 19, 2659-2665.
[26]
Prasad, Y.R.; Rao, A.S.; Rambabu, R. Synthesis of some 4 '-amino chalcones and their anti-inflammatory and antimicrobial activity. Asian J. Chem., 2009, 21, 907-914.
[27]
Sun, J.; Wei, Q.; Zhou, Y.; Wang, J.; Lui, Q.; Hua, Xu. A systemic analysis of FDA-approved anticancer drugs. BMC Syst. Biol., 2017, 11, 87-102.
[28]
Acikgoz, E.; Guven, U.; Duzagac, F.; Uslu, R.; Kara, M.; Soner, B.C.; Oktem, G. Enhanced G2/M arrest, caspase related apoptosis and reduced e-cadherin dependent intercellular adhesion by trabectedin in prostate cancer stem cells. PLoS One, 2015, 10, 1-17.
[29]
Olsson, M.; Zhivotovsky, B. Caspases and cancer. Cell Death Differ., 2011, 18, 1441-1449.
[30]
Devarajan, E.; Sahin, A.A.; Chen, J.S.; Krishnamurthy, R.R.; Aggarwal, N.; Brun, A.M.; Sapino, A.; Zhang, F.; Sharma, D.Y.; Ang, X.H.; Tora, A.D.; Mehta, K. Down-regulation of caspase 3 in breast cancer: A possible mechanism for chemoresistance. Oncogene, 2002, 21, 8843-8851.
[31]
Senturk, E.; Manfredi, J.J. p53 and cell cycle effects after DNA Damage. Methods Mol. Biol., 2013, 962, 49-61.
[32]
Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci., 2018, 19, 1-10.
[33]
Putt, K.S.; Chen, G.W.; Pearson, J.M.; Sandhorst, J.S.; Hoagland, M.S.; Kwon, J.T.; Hwang, S.K.; Jin, H.; Churchwell, M.I.; Cho, H.H.; Doerge, D.R.; Helferich, W.G.; Hergenrother, P.J. Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat. Chem. Biol., 2006, 2, 543-550.
[34]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase-role and significance in cancer. Int. J. Med. Sci., 2004, 1, 101-115.
[35]
Yang, E.B.; Guo, Y.J.; Zhang, K.; Chen, Y.Z.; Mack, P. Inhibition of epidermal growth factor receptor tyrosine kinase by chalcone derivatives. Biochim. Biophys. Acta, 2001, 1550, 144-152.
[36]
Ducki, S.; Rennison, D.; Woo, M.; Kendall, A.; Chabert, J.F.D.; McGown, A.T.; Lawrence, N.J. Combretastatin-like chalcones as inhibitors of microtubule polymerization. Part 1: Synthesis and biological evaluation of antivascular activity. Bioorg. Med. Chem., 2009, 17, 7698-7710.
[37]
Sabzevari, O.; Galati, G.; Moridani, M.Y.; Siraki, A.; O’Brien, P.J. Molecular cytotoxic mechanisms of anticancer hydroxychalcones. Chem. Biol. Interact., 2004, 148, 57-67.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy