[1]
Prashar, H.; Chawla, A.; Sharma, A.K.; Kharb, R. Chalcone as a versatile moiety for diverse pharmacological activities. Int. J. Pharm. Sci. Res., 2012, 3, 1913-1927.
[2]
Yadav, H.L.; Gupta, P.; Pawar, R.S.; Singour, P.K.; Patil, U.K. Synthesis and biological evaluation of anti-inflammatory activity of 1,3 diphenyl propenone derivatives. Med. Chem. Res., 2011, 20, 461-465.
[3]
Echeverria, C.; Santibañez, J.F.; Tauda, O.D.; Escobar, C.A.; Tagle, R.R. Structural antitumoral activity relationships of synthetic chalcones. Int. J. Mol. Sci., 2009, 10, 221-231.
[4]
Dimmock, J.R.; Jha, A.; Zello, G.A.; Allen, T.M.; Santos, C.L.; Balzarini, J.; De-Clercq, E.; Manavathu, E.K.; Stables, J.P. Cytotoxic 4′-aminochalcones and related compounds. Pharmazie, 2003, 58, 227-232.
[5]
Przybylski, P.; Huczynski, A.; Pyta, K.; Brzezinski, B.; Bartl, F. Biological properties of schiff bases and azo derivatives of phenols. Curr. Org. Chem., 2009, 13, 124-148.
[6]
de Souza, A.O.; Galetti, F.C.S.; Silva, C.L.; Bicalho, B.; Parma, M.M.; Fonseca, S.F.; Fonseca, S.F.; Marsaioli, A.J.; Trindade, A.C.L.B.; Gil, R.P.F.; Bezerra, F.S.; Andrade-Neto, M.; de-Oliveira, M.C.F. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Quim. Nova, 2007, 30, 1563-1566.
[7]
Fahmy, A.M.; Hassan, K.M.; Khalaf, A.A.; Ahmed, R.A. Organic chemistry including medicinal chemistry Ind. J. Chem. Section B., 1987, 26(1-12), 884-887.
[8]
Garg, S.; Raghav, N. Synthesis of novel chalcones of Schiff’s bases and to study their effect on bovine serum albumin. Asian J. Pharm. Clin. Res., 2013, 6(4), 181-184.
[9]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315, 971-979.
[10]
Ozaki, T.; Nakagawara, A. Role of p53 in cell death and human cancers. Cancers, 2011, 3, 994-1013.
[11]
Guicciardi, M.; Gores, G.J. Apoptosis: A mechanism of acute and chronic liver injury. Gut, 2005, 54, 1024-1033.
[12]
Walsh, J.G.; Cullen, S.P.; Sheridan, C.; Lüthi, A.U.; Gerner, C.; Martin, S.J. Executioner caspase-3 and caspase-7 are functionally distinct proteases. PNAS, 2008, 105, 12815-12819.
[13]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase-role and significance in cancer. Int. J. Med. Sci., 2004, 1, 101-115.
[14]
Pestell, K.E. Paul workman on the challenges of cancer drug development. Drug Discov. Today, 2003, 8, 775-777.
[15]
Xu, J.; Zhang, Q.; Chen, L.; Chen, H. Chemoselectivity in reactions of an α-diazo-β-diketone with some conjugative double-bond systems. J. Chem. Soc. Perkin Trans, 2001, 1, 2266-2268.
[16]
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods, 1986, 89, 271-277.
[17]
Hussein, R.A.; El-Husseiny, E.A.; Hassanin, L.A.; El-Sayed, W.M. The prophylactic and therapeutic effects of safranal and selenite on liver damage induced by thyrotoxicosis in adult male albino rats. Int. J. Clin. Pharmacol. Toxicol., 2017, 6, 270-279.
[18]
Ismail, M.A.; Youssef, M.M.; Arafa, R.K.; Al-Shihry, S.S.; El-sayed, W.M. Synthesis and antiproliferative activity of monocationic arylthiophene derivatives. Eur. J. Med. Chem., 2016, 126, 789-798.
[19]
El-Hashash, M.A.E.M.; Salem, M.S.; Al-Mabrook, S.A.M. Synthesis and anticancer activity of novel quinazolinone and benzamide derivatives. Res. Chem. Intermed., 2018, 44, 2545-2559.
[20]
Madkour, H.M.F.; El-Hashash, M.A.E.M.; Salem, M.S.; Mahmoud, A.O.A. Al kahraman, Y.M.S.A. Design, synthesis, and in vitro antileishmanial and antitumor activities of new tetrahydroquinolines. J. Heterocycl. Chem., 2018, 55, 391-401.
[21]
Salem, M.S.; Ali, M.A.M. Novel pyrazolo[3,4-b] pyridine derivatives: Synthesis, characterization, antimicrobial and antiproliferative profile. Biol. Pharm. Bull., 2016, 39, 473-483.
[22]
Salem, M.S.; Farhat, M.; Errayes, A.O.; Madkour, H.M.F. Antioxidant activity of novel fused heterocyclic compounds derived from tetrahydropyrimidine derivative. Chem. Pharm. Bull., 2015, 63, 866-872.
[23]
Shenvi, S.; Kumar, K.; Hatti, K.S.; Rijesh, K.; Diwakar, L.; Reddy, G.C. Synthesis, anticancer and antioxidant activities of 2,4,5-trimethoxy chalcones and analogues from asaronaldehyde: Structure-activity relationship. Eur. J. Med. Chem., 2013, 62, 435-442.
[24]
Rani, P.; Srivastava, V.K.; Kumar, A. Synthesis and antiinflammatory activity of heterocyclic indole derivatives. Eur. J. Med. Chem., 2004, 39, 449-452.
[25]
Dyrager, C.; Wickström, M.; Fridén-Saxin, M.; Friberg, A.; Dahlén, K.; Wallén, E.A.A.; Gullbo, J.; Grøtli, M.; Luthman, K. Inhibitors and promoters of tubulin polymerization: Synthesis and biological evaluation of chalcones and related dienones as potential anticancer agents. Bioorg. Med. Chem., 2011, 19, 2659-2665.
[26]
Prasad, Y.R.; Rao, A.S.; Rambabu, R. Synthesis of some 4 '-amino chalcones and their anti-inflammatory and antimicrobial activity. Asian J. Chem., 2009, 21, 907-914.
[27]
Sun, J.; Wei, Q.; Zhou, Y.; Wang, J.; Lui, Q.; Hua, Xu. A systemic analysis of FDA-approved anticancer drugs. BMC Syst. Biol., 2017, 11, 87-102.
[28]
Acikgoz, E.; Guven, U.; Duzagac, F.; Uslu, R.; Kara, M.; Soner, B.C.; Oktem, G. Enhanced G2/M arrest, caspase related apoptosis and reduced e-cadherin dependent intercellular adhesion by trabectedin in prostate cancer stem cells. PLoS One, 2015, 10, 1-17.
[29]
Olsson, M.; Zhivotovsky, B. Caspases and cancer. Cell Death Differ., 2011, 18, 1441-1449.
[30]
Devarajan, E.; Sahin, A.A.; Chen, J.S.; Krishnamurthy, R.R.; Aggarwal, N.; Brun, A.M.; Sapino, A.; Zhang, F.; Sharma, D.Y.; Ang, X.H.; Tora, A.D.; Mehta, K. Down-regulation of caspase 3 in breast cancer: A possible mechanism for chemoresistance. Oncogene, 2002, 21, 8843-8851.
[31]
Senturk, E.; Manfredi, J.J. p53 and cell cycle effects after DNA Damage. Methods Mol. Biol., 2013, 962, 49-61.
[32]
Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci., 2018, 19, 1-10.
[33]
Putt, K.S.; Chen, G.W.; Pearson, J.M.; Sandhorst, J.S.; Hoagland, M.S.; Kwon, J.T.; Hwang, S.K.; Jin, H.; Churchwell, M.I.; Cho, H.H.; Doerge, D.R.; Helferich, W.G.; Hergenrother, P.J. Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat. Chem. Biol., 2006, 2, 543-550.
[34]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase-role and significance in cancer. Int. J. Med. Sci., 2004, 1, 101-115.
[35]
Yang, E.B.; Guo, Y.J.; Zhang, K.; Chen, Y.Z.; Mack, P. Inhibition of epidermal growth factor receptor tyrosine kinase by chalcone derivatives. Biochim. Biophys. Acta, 2001, 1550, 144-152.
[36]
Ducki, S.; Rennison, D.; Woo, M.; Kendall, A.; Chabert, J.F.D.; McGown, A.T.; Lawrence, N.J. Combretastatin-like chalcones as inhibitors of microtubule polymerization. Part 1: Synthesis and biological evaluation of antivascular activity. Bioorg. Med. Chem., 2009, 17, 7698-7710.
[37]
Sabzevari, O.; Galati, G.; Moridani, M.Y.; Siraki, A.; O’Brien, P.J. Molecular cytotoxic mechanisms of anticancer hydroxychalcones. Chem. Biol. Interact., 2004, 148, 57-67.