[1]
Costerton, J.; Lewandowski, Z.; Caldwell, D.; Korber, D.; Lappin-Scott, H. Microbial Biofilms. Annu. Rev. Microbiol., 1995, 49, 711-745.
[2]
Stewart, P.S. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol., 2002, 292(2), 107-113.
[3]
Simoes, M. Antimicrobial strategies effective against infectious bacterial biofilms. Curr. Med. Chem., 2011, 18(14), 2129-2145.
[4]
Stewart, P.S.; Costerton, W.J. Antibiotic resistance of bacteria in biofilms. Lancet, 2001, 358(9276), 135-138.
[5]
Singh, S.; Singh, S.K.; Chowdhury, I.; Singh, R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J., 2017, 11(1), 53-62.
[6]
Kint, C.I.; Verstraeten, N.; Fauvart, M.; Michiels, J. New-found fundamentals of bacterial persistence. Trends Microbiol., 2012, 20(12), 577-585.
[7]
Amani, H.; Habibey, R.; Hajmiresmail, S.J.; Latifi, S.; Pazoki-Toroudi, H.; Akhavan, O. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J. Mater. Chem. B., 2017, 5(48), 9452-9476.
[8]
Shleeva, M.; Goncharenko, A.; Kudykina, Y.; Young, D.; Young, M.; Kaprelyants, A. Cyclic Amp-dependent resuscitation of dormant mycobacteria by exogenous free fatty acids. PLoS One, 2013, 8(12), e82914.
[9]
Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.; Bonsu, E.; Sintim, H.O. Agents that inhibit bacterial biofilm formation. Future Med. Chem., 2015, 7(5), 647-671.
[10]
Estrela, A.B.; Abraham, W.R. Combining biofilm-controlling compounds and antibiotics as a promising new way to control biofilm infections. Pharmaceuticals, 2010, 3(5), 1374-1393.
[11]
Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, Mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol., 2010, 85(6), 1629-1642.
[12]
Doronina, N.; Ivanova, E.; Trotsenko, Y.; Pshenichnikova, A.; Kalinina, E.; Shvets, V. Methylophilus quaylei Sp. nov., a new aerobic obligately methylotrophic bacterium. Syst. Appl. Microbiol., 2005, 28(4), 303-309.
[13]
Pshenichnikova, A.B.; Gavrilova, E.S.; Shvets, V.I. Influence of physico-chemical properties of the gram-negative bacteria cell surface on the resistance to streptomycin. Vestnik MITHT, 2011, 6(2), 43-50.
[14]
Mohamed, A.M.H.A.; Amzaeva, D.N.; Pshenichnikova, A.B.; Shvets, V.I. Influence of polymyxin B on the formation of biofilms by bacterium Methylophilus quaylei on polypropylene and teflon. Fine Chem. Technol, 2018, 13(2), 31-39.
[15]
Otman, S.A.M.; Pshenichnikova, A.B.; Shvets, V.I. Effect of exogenous fatty acids on the growth and production of exopolysaccharides of obligately methylotrophic bacterium Methylophilus quaylei. Appl. Biochem. Microbiol., 2012, 48(2), 200-205.
[16]
Brudzynski, K.; Sjaarda, C. Antibacterial compounds of canadian honeys target bacterial cell wall inducing phenotype changes, growth inhibition and cell lysis that resemble action of β-lactam antibiotics. PLoS One, 2014, 9(9), e106967.
[17]
Buettner, F.F.R.; Maas, A.; Gerlach, G.F. An Actinobacillus pleuropneumoniae ArcA deletion mutant is attenuated and deficient in biofilm formation. Vet. Microbiol., 2008, 127(1-2), 106-115.
[18]
Whittenbury, R.; Dalton, H. The methylotrophic bacteria introduction to the methanotrophs. Prokaryotes, 1977, 71(1-2), 894-902.
[19]
Donlan, R.M. Biofilms and device-associated infections. Emerg. Infect. Dis., 2001, 7(2), 277-281.
[20]
Kumar, C.G.; Anand, S. Significance of microbial biofilms in food industry: A review. Int. J. Food Microbiol., 1998, 42(1), 9-27.
[21]
Giles, D.K.; Hankins, J.V.; Guan, Z.; Trent, M.S. Remodelling of the Vibrio cholerae membrane by incorporation of exogenous fatty acids from host and aquatic environments. Mol. Microbiol., 2011, 79(3), 716-728.
[22]
Funari, S.S.; Barceló, F.; Escribá, P.V. Effects of oleic acid and its congeners, elaidic and stearic acids, on the structural properties of phosphatidylethanolamine membranes. J. Lipid Res., 2003, 44(3), 567-575.
[23]
Muranushi, N.; Takagi, S.; Muranishi, H. Sezaki. Effect of fatty-acids and monoglycerides on permeability of lipid bilayer. Chem. Phys. Lipids, 1981, 28(3), 269-279.
[24]
Ibarguren, M.; López, D.J.; Escribá, P.V. The effect of natural and
synthetic fatty acids on membrane structure, microdomain
organization, cellular functions and human health. Biochim.
Biophys. Acta - Biomembr, 2014, 1838(6), 1518-1528.
[25]
Kenny, J.G.; Ward, D.; Josefsson, E.; Jonsson, I.M.; Hinds, J.; Rees, H.H.; Lindsay, J.A.; Tarkowski, A.; Horsburgh, M.J. The Staphylococcus aureus response to unsaturated long chain free fatty acids: Survival mechanisms and virulence implications. PLoS One, 2009, 4(2), e4344.
[26]
Terekhova, E.A.; Stepicheva, N.A.; Pshenichnikova, A.B.; Shvets, V.I. Stearic acid methyl ester: A new extracellular metabolite of the obligate methylotrophic bacterium Methylophilus quaylei. Appl. Biochem. Microbiol., 2010, 46(2), 166-172.
[27]
Corcoran, B.M.; Stanton, C.; Fitzgerald, G.F.; Ross, R.P. Growth of probiotic lactobacilli in the presence of oleic acid enhances subsequent survival in gastric juice. Microbiology, 2007, 153(1), 291-299.
[28]
Davies, D.G.; Marques, C.N.H. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol., 2009, 191(5), 1393-1403.
[29]
Nicol, M.; Alexandre, S.; Luizet, J.B.; Skogman, M.; Jouenne, T.; Salcedo, S.P.; Dé, E. Unsaturated fatty acids affect quorum sensing communication system and inhibit motility and biofilm formation of Acinetobacter baumannii. Int. J. Mol. Sci., 2018, 19(1), 1-10.
[30]
Stenz, L.; François, P.; Fischer, A.; Huyghe, A.; Tangomo, M.; Hernandez, D.; Cassat, J.; Linder, P.; Schrenzel, J. impact of oleic acid (Cis-9-Octadecenoic Acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiol. Lett., 2008, 287(2), 149-155.
[31]
Kaplan, J.B. Antibiotic-induced biofilm formation. Int. J. Artif. Organs, 2011, 34(9), 737-751.
[32]
Wu, S.; Li, X.; Gunawardana, M.; Maguire, K.; Guerrero-Given, D.; Schaudinn, C.; Wang, C.; Baum, M.M.; Webster, P. Beta- lactam antibiotics stimulate biofilm formation in non-typeable Haemophilus influenzae by up-regulating carbohydrate metabolism. PLoS One, 2014, 9(7), e99204.
[33]
Pandit, S.; Ravikumar, V.; Abdel-Haleem, A.M.; Derouiche, A.; Mokkapati, V.R.S.S.; Sihlbom, C.; Mineta, K.; Gojobori, T.; Gao, X.; Westerlund, F.; Mijakovic, I. Low concentrations of vitamin C reduce the synthesis of extracellular polymers and destabilize bacterial biofilms. Front. Microbiol., 2017, 8(DEC), 1-11.
[34]
Jennings, J.A.; Courtney, H.S.; Haggard, W.O. Cis-2-decenoic acid inhibits S. aureus growth and biofilm in vitro: A pilot study basic research. Clin. Orthop. Relat. Res., 2012, 470(10), 2663-2670.
[35]
Cai, J.N.; Kim, M.A.; Jung, J.E.; Pandit, S.; Song, K.Y.; Jeon, J.G. Effects of combined oleic acid and fluoride at sub-MIC levels on EPS formation and viability of Streptococcus mutans UA159 biofilms. Biofouling, 2015, 31(7), 555-563.