[1]
Morgan, M.A.; Shilatifard, A. Chromatin signatures of cancer. Genes Dev., 2015, 29, 238-249.
[2]
Kornberg, R.D. Chromatin structure: A repeating unit of histones and DNA. Science, 1974, 184, 868-871.
[3]
Laybourn, P.J.; Kadonaga, J.T. Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science, 1991, 254, 238-245.
[4]
Cutter, A.R.; Hayes, J.J. Linker histones: Novel insights into structure-specific recognition of the nucleosome. Biochem. Cell Biol., 2016, 95, 171-178.
[5]
Campos, E.I.; Reinberg, D. Histones: Annotating chromatin. Annu. Rev. Genet., 2009, 43, 559-599.
[6]
Campos, E.I.; Reinberg, D. New chaps in the histone chaperone arena. Genes Dev., 2010, 24, 1334-1338.
[7]
Lai, W.K.; Pugh, B.F. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat. Rev. Mol. Cell Biol., 2017, 18, 548.
[8]
Biswas, S.; Rao, C.M. Epigenetic tools (the writers, the readers and the erasers) and their implications in cancer therapy. Eur. J. Pharmacol., 2018, 837, 8-24.
[9]
Kadoch, C.; Crabtree, G.R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Science Adv., 2015, 1e1500447
[10]
Verma, M.; Kumar, V. Epigenetic drugs for cancer and precision medicine. In Epigenetics Aging Longevity; Elsevier, 2018, pp. 439-451.
[11]
Dawson, M.A. The cancer epigenome: Concepts, challenges, and therapeutic opportunities. Science, 2017, 355, 1147-1152.
[12]
Shen, H.; Laird, P.W. Interplay between the cancer genome and epigenome. Cell, 2013, 153, 38-55.
[13]
Suvà, M.L.; Riggi, N.; Bernstein, B.E. Epigenetic reprogramming in cancer. Science, 2013, 339, 1567-1570.
[14]
Piunti, A.; Shilatifard, A. Epigenetic balance of gene expression by polycomb and compass families. Science, 2016, 352(6290)aad9780
[15]
Barski, A.; Cuddapah, S.; Cui, K.; Roh, T.Y.; Schones, D.E.; Wang, Z.; Wei, G.; Chepelev, I.; Zhao, K. High-resolution profiling of histone methylations in the human genome. Cell, 2007, 129, 823-837.
[16]
Ziemin-van der Poel, S.; McCabe, N.R.; Gill, H.J.; Espinosa, R.; Patel, Y.; Harden, A.; Rubinelli, P.; Smith, S.D.; LeBeau, M.M.; Rowley, J.D. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc. Natl. Acad. Sci. USA, 1991, 88, 10735-10739.
[17]
Morin, R.D.; Mendez-Lago, M.; Mungall, A.J.; Goya, R.; Mungall, K.L.; Corbett, R.D.; Johnson, N.A.; Severson, T.M.; Chiu, R.; Field, M. Frequent mutation of histone-modifying genes in non-hodgkin lymphoma. Nature, 2011, 476, 298-303.
[18]
Sneeringer, C.J.; Scott, M.P.; Kuntz, K.W.; Knutson, S.K.; Pollock, R.M.; Richon, V.M.; Copeland, R.A. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc. Natl. Acad. Sci. USA, 2010, 107, 20980-20985.
[19]
Yap, D.B.; Chu, J.; Berg, T.; Schapira, M.; Cheng, S.W.; Moradian, A.; Morin, R.D.; Mungall, A.J.; Meissner, B.; Boyle, M.; Marquez, V.E.; Marra, M.A.; Gascoyne, R.D.; Humphries, R.K.; Arrowsmith, C.H.; Morin, G.B.; Aparicio, S.A. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood, 2011, 117, 2451-2459.
[20]
McCabe, M.T.; Graves, A.P.; Ganji, G.; Diaz, E.; Halsey, W.S.; Jiang, Y.; Smitheman, K.N.; Ott, H.M.; Pappalardi, M.B.; Allen, K.E. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc. Natl. Acad. Sci. USA, 2012, 109, 2989-2994.
[21]
Ott, H.M.; Graves, A.; Pappalardi, M.B.; Huddleston, M.; Halsey, W.S.; Hughes, A.; Groy, A.; Dul, E.; Jiang, Y.; Bai, Y. A687V EZH2 is a driver of histone H3 lysine 27 (H3K27) hyper-trimethylation. Mol. Cancer Ther., 2014, 13, 3062-3073.
[22]
McCabe, M.T.; Ott, H.M.; Ganji, G.; Korenchuk, S.; Thompson, C.; Van Aller, G.S.; Liu, Y.; Graves, A.P.; Diaz, E.; LaFrance, L.V. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature, 2012, 492, 108-112.
[23]
Taplin, M-E.; Hussain, A.; Shore, N.D.; Bradley, B.; Trojer, P.; Lebedinsky, C.; Senderowicz, A.M.; Antonarakis, E.S. A phase 1b/2 study of CPI-1205, a small molecule inhibitor of EZH2, combined with enzalutamide (E) or abiraterone/prednisone (A/P) in patients with metastatic castration resistant prostate cancer (mCRPC). J. Clin. Oncol., 2018, 36, s6.
[24]
Italiano, A.; Soria, J-C.; Toulmonde, M.; Michot, J-M.; Lucchesi, C.; Varga, A.; Coindre, J-M.; Blakemore, S.J.; Clawson, A.; Suttle, B. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-hodgkin lymphoma and advanced solid tumours: A first-in-human, open-label, phase 1 study. Lancet Oncol., 2018, 19, 649-659.
[25]
Schwartzentruber, J.; Korshunov, A.; Liu, X-Y.; Jones, D.T.; Pfaff, E.; Jacob, K.; Sturm, D.; Fontebasso, A.M.; Quang, D-A.K.; Tönjes, M. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 2012, 482, 226-231.
[26]
Venneti, S.; Garimella, M.T.; Sullivan, L.M.; Martinez, D.; Huse, J.T.; Heguy, A.; Santi, M.; Thompson, C.B.; Judkins, A.R. Evaluation of h istone 3 lysine 27 trimethylation (H3K27me3) and enhancer of zest 2 (EZH 2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3a K27M mutant glioblastomas. Brain Pathol., 2013, 23, 558-564.
[27]
Lewis, P.W.; Müller, M. Koletsky, M.; Cordero, F.; Lin, S.; Banaszynski, L.; Garcia, B. A.; Muir, T.; Becher, O.; Allis, C. D. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science, 2013, 340, 857-861.
[28]
Li, H.; Kaminski, M.S.; Li, Y.; Yildiz, M.; Ouillette, P.; Jones, S.; Fox, H.; Jacobi, K.; Saiya-Cork, K.; Bixby, D.; Lebovic, D.; Roulston, D.; Shedden, K.; Sabel, M.; Marentette, L.; Cimmino, V.; Chang, A.E.; Malek, S.N. Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma. Blood, 2014, 123, 1487-1498.
[29]
Goll, M.G.; Kirpekar, F.; Maggert, K.A.; Yoder, J.A.; Hsieh, C-L.; Zhang, X.; Golic, K.G.; Jacobsen, S.E.; Bestor, T.H. Methylation of tRNAAsp by the DNA methyltransferase homolog DNMT2. Science, 2006, 311, 395-398.
[30]
Schubeler, D. Function and information content of DNA methylation. Nature, 2015, 517, 321-326.
[31]
Tahiliani, M.; Koh, K.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.; Aravind, L. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 2009, 324, 930-935.
[32]
Branco, M.R.; Ficz, G.; Reik, W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat. Rev. Genet., 2011, 13, 7-13.
[33]
Lister, R.; Pelizzola, M.; Dowen, R.H.; Hawkins, R.D.; Hon, G.; Tonti-Filippini, J.; Nery, J.R.; Lee, L.; Ye, Z.; Ngo, Q-M. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 2009, 462, 315-322.
[34]
Stefansson, O.A.; Moran, S.; Gomez, A.; Sayols, S.; Arribas-Jorba, C.; Sandoval, J.; Hilmarsdottir, H.; Olafsdottir, E.; Tryggvadottir, L.; Jonasson, J.G. A DNA methylation‐based definition of biologically distinct breast cancer subtypes. Mol. Oncol., 2015, 9, 555-568.
[35]
Herman, J.G.; Umar, A.; Polyak, K.; Graff, J.R.; Ahuja, N.; Issa, J.P.; Markowitz, S.; Willson, J.K.; Hamilton, S.R.; Kinzler, K.W.; Kane, M.F.; Kolodner, R.D.; Vogelstein, B.; Kunkel, T.A.; Baylin, S.B. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. U S A., , 1998, 95, 6870-6875.
[36]
Wajed, S.A.; Laird, P.W.; DeMeester, T.R. DNA methylation: An alternative pathway to cancer. Ann. Surg., 2001, 234, 10-20.
[37]
Pistore, C.; Giannoni, E.; Colangelo, T.; Rizzo, F.; Magnani, E.; Muccillo, L.; Giurato, G.; Mancini, M.; Rizzo, S.; Riccardi, M. DNA methylation variations are required for epithelial-to-mesenchymal transition induced by cancer-associated fibroblasts in prostate cancer cells. Oncogene, 2017, 36, 5551-5566.
[38]
Merlo, A.; Herman, J.G.; Mao, L.; Lee, D.J.; Gabrielson, E.; Burger, P.C.; Baylin, S.B.; Sidransky, D. 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat. Med., 1995, 1, 686-692.
[39]
Cameron, E.E.; Bachman, K.E.; Myohanen, S.; Herman, J.G.; Baylin, S.B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet., 1999, 21, 103-107.
[40]
Shin, J.Y.; Kim, H.S.; Park, J.; Park, J.B.; Lee, J.Y. Mechanism for inactivation of the KIP family cyclin-dependent kinase inhibitor genes in gastric cancer cells. Cancer Res., 2000, 60, 262-265.
[41]
Dobrovic, A.; Simpfendorfer, D. Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res., 1997, 57, 3347-3350.
[42]
Catteau, A.; Harris, W.H.; Xu, C-F.; Solomon, E. Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: Correlation with disease characteristics. Oncogene, 1999, 18, 1957-1965.
[43]
Hua, K.T.; Wang, M.Y.; Chen, M.W.; Wei, L.H.; Chen, C.K.; Ko, C.H.; Jeng, Y.M.; Sung, P.L.; Jan, Y.H.; Hsiao, M.; Kuo, M.L.; Yen, M.L. The H3K9 methyltransferase G9a is a marker of aggressive ovarian cancer that promotes peritoneal metastasis. Mol. Cancer, 2014, 13, 189-201.
[44]
Chen, M.W.; Hua, K.T.; Kao, H.J.; Chi, C.C.; Wei, L.H.; Johansson, G.; Shiah, S.G.; Chen, P.S.; Jeng, Y.M.; Cheng, T.Y.; Lai, T.C.; Chang, J.S.; Jan, Y.H.; Chien, M.H.; Yang, C.J.; Huang, M.S.; Hsiao, M.; Kuo, M.L. H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Cancer Res., 2010, 70, 7830-7840.
[45]
Zhong, X.; Chen, X.; Guan, X.; Zhang, H.; Ma, Y.; Zhang, S.; Wang, E.; Zhang, L.; Han, Y. Overexpression of G9a and MCM7 in oesophageal squamous cell carcinoma is associated with poor prognosis. Histopathology, 2015, 66, 192-200.
[46]
Zhang, J.; He, P.; Xi, Y.; Geng, M.; Chen, Y.; Ding, J. Down-regulation of G9a triggers DNA damage response and inhibits colorectal cancer cells proliferation. Oncotarget, 2015, 6, 2917-2927.
[47]
Jones, P.A.; Taylor, S.M. Cellular differentiation, cytidine analogs and DNA methylation. Cell, 1980, 20, 85-93.
[48]
Rius, M.; Stresemann, C.; Keller, D.; Brom, M.; Schirrmacher, E.; Keppler, D.; Lyko, F. Human concentrative nucleoside transporter 1-mediated uptake of 5-azacytidine enhances DNA demethylation. Mol. Cancer Ther., 2009, 8, 225-231.
[49]
Ghoshal, K.; Datta, J.; Majumder, S.; Bai, S.; Kutay, H.; Motiwala, T.; Jacob, S.T. 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol. Cell. Biol., 2005, 25, 4727-4741.
[50]
Stresemann, C.; Lyko, F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int. J. Cancer, 2008, 123, 8-13.
[51]
Hess, J.; Homann, S.; Laureano, N.K.; Tawk, B.; Bieg, M.; Hostenech, X.P.; Freier, K.; Weichert, W.; Zaoui, K. Tumor cell plasticity in the pathogenesis and prognosis of head and neck cancer. Laryngorhinootologie, 2018, 97, S94-S95.
[52]
Griffiths, E.; Choy, G.; Redkar, S.; Taverna, P.; Azab, M.; Karpf, A.R. Sgi-110: DNA methyltransferase inhibitor oncolytic. Drugs Future, 2013, 38, 535-543.
[53]
Issa, J-P.J.; Roboz, G.; Rizzieri, D.; Jabbour, E.; Stock, W.; O’Connell, C.; Yee, K.; Tibes, R.; Griffiths, E.A.; Walsh, K. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: A multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol., 2015, 16, 1099-1110.
[54]
San José-Enériz, E.; Agirre, X.; Rabal, O.; Vilas-Zornoza, A.; Sanchez-Arias, J.A.; Miranda, E.; Ugarte, A.; Roa, S.; Paiva, B.; de Mendoza, A.E-H. Discovery of first-in-class reversible dual small molecule inhibitors against G9a andDNMTs in hematological malignancies. Nat. Commun., 2017, 8, 15424.
[55]
Singh, N.; Dueñas‐González, A.; Lyko, F.; Medina‐Franco, J.L. Molecular modeling and molecular dynamics studies of hydralazine with human DNA methyltransferase 1. ChemMedChem, 2009, 4, 792-799.
[56]
Chuang, J.C.; Yoo, C.B.; Kwan, J.M.; Li, T.W.; Liang, G.; Yang, A.S.; Jones, P.A. Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol. Cancer Ther., 2005, 4, 1515-1520.
[57]
Bedford, M.T.; Van Helden, P.D. Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res., 1987, 47, 5274-5276.
[58]
Wahlfors, J.; Hiltunen, H.; Heinonen, K.; Hamalainen, E.; Alhonen, L.; Janne, J. Genomic hypomethylation in human chronic lymphocytic leukemia. Blood, 1992, 80, 2074-2080.
[59]
Lin, C-H.; Hsieh, S-Y.; Sheen, I-S.; Lee, W-C.; Chen, T-C.; Shyu, W-C.; Liaw, Y-F. Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res., 2001, 61, 4238-4243.
[60]
Kim, Y.I.; Giuliano, A.; Hatch, K.D.; Schneider, A.; Nour, M.A.; Dallal, G.E.; Selhub, J.; Mason, J.B. Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer, 1994, 74, 893-899.
[61]
Veland, N.; Hardikar, S.; Zhong, Y.; Gayatri, S.; Dan, J.; Strahl, B.D.; Rothbart, S.B.; Bedford, M.T.; Chen, T. The arginine methyltransferase PRMT6 regulates DNA methylation and contributes to global DNA hypomethylation in cancer. Cell Rep., 2017, 21, 3390-3397.
[62]
Perez, R.F.; Tejedor, J.R.; Bayon, G.F.; Fernández, A.F.; Fraga, M.F. Distinct chromatin signatures of DNA hypomethylation in aging and cancer. Aging Cell, 2018, 17e12744
[63]
Berger, S.L. The complex language of chromatin regulation during transcription. Nature, 2007, 447, 407-412.
[64]
Buschbeck, M.; Hake, S.B. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat. Rev. Mol. Cell Biol., 2017, 18, 299-314.
[65]
Biswas, S.; Rao, C.M. Epigenetics in cancer: Fundamentals and beyond. Pharmacol. Ther., 2017, 173, 118-134.
[66]
Taverna, S.D.; Li, H.; Ruthenburg, A.J.; Allis, C.D.; Patel, D.J. How chromatin-binding modules interpret histone modifications: Lessons from professional pocket pickers. Nat. Struct. Mol. Biol., 2007, 14, 1025-1040.
[67]
Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov., 2014, 13, 673-691.
[68]
Perego, P.; Zuco, V.; Gatti, L.; Zunino, F. Sensitization of tumor cells by targeting histone deacetylases. Biochem. Pharmacol., 2012, 83, 987-994.
[69]
Wang, L.; Li, H.; Ren, Y.; Zou, S.; Fang, W.; Jiang, X.; Jia, L.; Li, M.; Liu, X.; Yuan, X. Targeting HDAC with a novel inhibitor effectively reverses paclitaxel resistance in non-small cell lung cancer via multiple mechanisms. Cell Death Dis., 2017, 7e2063
[70]
Wei, Y.; Zhou, F.; Lin, Z.; Shi, L.; Huang, A.; Liu, T.; Yu, D.; Wu, G. Antitumor effects of histone deacetylase inhibitor suberoylanilide hydroxamic acid in epidermal growth factor receptor-mutant non-small-cell lung cancer lines in vitro and in vivo. Anticancer Drugs, 2018, 29, 262-270.
[71]
Ye, C.; Han, K.; Lei, J.; Zeng, K.; Zeng, S.; Ju, H.; Yu, L. Inhibition of HDAC7 reverses CNT2 repression in colorectal cancer by up‐regulating histone acetylation state. Br. J. Pharmacol., 2018, 175(22), 4209-4217.
[72]
Ansari, J.; Shackelford, R.E.; El-Osta, H. Epigenetics in non-small cell lung cancer: From basics to therapeutics. Transl. Lung Cancer Res., 2016, 5, 155-171.
[73]
Mukhopadhyay, N.K.; Weisberg, E.; Gilchrist, D.; Bueno, R.; Sugarbaker, D.J.; Jaklitsch, M.T. Effectiveness of trichostatin A as a potential candidate for anticancer therapy in non–small-cell lung cancer. Ann. Thorac. Surg., 2006, 81, 1034-1042.
[74]
Gottlicher, M.; Minucci, S.; Zhu, P.; Kramer, O.H.; Schimpf, A.; Giavara, S.; Sleeman, J.P.; Lo Coco, F.; Nervi, C.; Pelicci, P.G.; Heinzel, T. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J., 2001, 20, 6969-6978.
[75]
Gavrilov, V.; Lavrenkov, K.; Ariad, S.; Shany, S. Sodium valproate, a histone deacetylase inhibitor, enhances the efficacy of vinorelbine-cisplatin-based chemoradiation in non-small cell lung cancer cells. Anticancer Res., 2014, 34, 6565-6572.
[76]
Shirsath, N.; Rathos, M.; Chaudhari, U.; Sivaramakrishnan, H.; Joshi, K. Potentiation of anticancer effect of valproic acid, an antiepileptic agent with histone deacetylase inhibitory activity, by the cyclin-dependent kinase inhibitor P276-00 in human non-small-cell lung cancer cell lines. Lung Cancer, 2013, 82, 214-221.
[77]
Greve, G.; Schiffmann, I.; Pfeifer, D.; Pantic, M.; Schüler, J.; Lübbert, M. The pan-HDAC inhibitor panobinostat acts as a sensitizer for erlotinib activity in EGFR-mutated and-wildtype non-small cell lung cancer cells. BMC Cancer, 2015, 15, 947-956.
[78]
Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W.B.; Fedorov, O.; Morse, E.M.; Keates, T.; Hickman, T.T.; Felletar, I. Selective inhibition of BET bromodomains. Nature, 2010, 468, 1067-1073.
[79]
Sakaguchi, T.; Yoshino, H.; Sugita, S.; Osako, Y.; Yonemori, M.; Miyamoto, K.; Nakagawa, M.; Enokida, H. Bromodomain protein BRD4 inhibition as a novel therapeutic approach in sunitinib-resistant renal cell carcinoma. Eur. Urol. Suppl., 2018, 17e60
[80]
Pérez-Salvia, M.; Esteller, M. Bromodomain inhibitors and cancer therapy: From structures to applications. Epigenetics, 2017, 12, 323-339.
[81]
Zhang, Y.; Reinberg, D. Transcription regulation by histone methylation: Interplay between different covalent modifications of the core histone tails. Genes Dev., 2001, 15, 2343-2360.
[82]
Viré, E.; Brenner, C.; Deplus, R.; Blanchon, L.; Fraga, M.; Didelot, C.; Morey, L.; Van Eynde, A.; Bernard, D.; Vanderwinden, J-M. The polycomb group protein EZH2 directly controls DNA methylation. Nature, 2006, 439, 871-874.
[83]
Song, Y.; Wu, F.; Wu, J. Targeting histone methylation for cancer therapy: Enzymes, inhibitors, biological activity and perspectives. J. Hematol. Oncol., 2016, 9, 49.
[84]
Kim, W.; Kim, R.; Park, G.; Park, J-W.; Kim, J-E. Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation. J. Biol. Chem., 2012, 287, 5588-5599.
[85]
Daigle, S.R.; Olhava, E.J.; Therkelsen, C.A.; Majer, C.R.; Sneeringer, C.J.; Song, J.; Johnston, L.D.; Scott, M.P.; Smith, J.J.; Xiao, Y. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell, 2011, 20, 53-65.
[86]
Blanc, R.S.; Richard, S. Arginine methylation: The coming of age. Mol. Cell, 2017, 65, 8-24.
[87]
Chan-Penebre, E.; Kuplast, K.G.; Majer, C.R.; Boriack-Sjodin, P.A.; Wigle, T.J.; Johnston, L.D.; Rioux, N.; Munchhof, M.J.; Jin, L.; Jacques, S.L. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat. Chem. Biol., 2015, 11, 432-437.
[88]
Avasarala, S.; Van Scoyk, M.; Rathinam, M.K.K.; Zerayesus, S.; Zhao, X.; Zhang, W.; Pergande, M.R.; Borgia, J.A.; DeGregori, J.; Port, J.D. PRMT1 is a novel regulator of epithelial-mesenchymal-transition in non-small cell lung cancer. J. Biol. Chem., 2015, 290, 13479-13489.
[89]
Yao, R.; Jiang, H.; Ma, Y.; Wang, L.; Wang, L.; Du, J.; Hou, P.; Gao, Y.; Zhao, L.; Wang, G. PRMT7 induces epithelial-to-mesenchymal transition and promotes metastasis in breast cancer. Cancer Res., 2014, 74, 5656-5667.
[90]
Rossetto, D.; Avvakumov, N.; Côté, J. Histone phosphorylation: A chromatin modification involved in diverse nuclear events. Epigenetics, 2012, 7, 1098-1108.
[91]
Li, B.; Huang, G.; Zhang, X.; Li, R.; Wang, J.; Dong, Z.; He, Z. Increased phosphorylation of histone H3 at serine 10 is involved in Epstein-Barr virus latent membrane protein-1-induced carcinogenesis of nasopharyngeal carcinoma. BMC Cancer, 2013, 13, 124.
[92]
Kouzarides, T. Chromatin modifications and their function. Cell, 2007, 128, 693-705.
[93]
Fischle, W.; Tseng, B.S.; Dormann, H.L.; Ueberheide, B.M.; Garcia, B.A.; Shabanowitz, J.; Hunt, D.F.; Funabiki, H.; Allis, C.D. Regulation of HP1–chromatin binding by histone H3 methylation and phosphorylation. Nature, 2005, 438, 1116-1122.
[94]
Li, M.; Dong, Q.; Zhu, B. Aurora Kinase B phosphorylates histone H3.3 at serine 31 during mitosis in mammalian cells. J. Mol. Biol., 2017, 429, 2042-2045.
[95]
Aihara, H.; Nakagawa, T.; Yasui, K.; Ohta, T.; Hirose, S.; Dhomae, N.; Takio, K.; Kaneko, M.; Takeshima, Y.; Muramatsu, M. Nucleosomal histone kinase-1 phosphorylates H2A Thr 119 during mitosis in the early Drosophila embryo. Genes Dev., 2004, 18, 877-888.
[96]
Sawicka, A.; Seiser, C. Sensing core histone phosphorylation-a matter of perfect timing. Biochim. Biophys. Acta. Gene Regul. Mech., 2014, 1839, 711-718.
[97]
Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem., 2001, 70, 503-533.
[98]
Goldknopf, I.; Taylor, C.W.; Baum, R.M.; Yeoman, L.C.; Olson, M.; Prestayko, A.; Busch, H. Isolation and characterization of protein A24, a "histone-like" non-histone chromosomal protein. J. Biol. Chem., 1975, 250, 7182-7187.
[99]
Osley, M.A. Regulation of histone H2A and H2B ubiquitylation. Brief. Funct. Genomics, 2006, 5, 179-189.
[100]
McClurg, U.L.; Robson, C.N. Deubiquitinating enzymes as oncotargets. Oncotarget, 2015, 6, 9657-9668.
[101]
Davie, J.R.; Murphy, L.C. Inhibition of transcription selectively reduces the level of ubiquitinated histone H2B in chromatin. Biochem. Biophys. Res. Commun., 1994, 203, 344-350.
[102]
Dwane, L.; Gallagher, W.M.; Chonghaile, T.N.; O’Connor, D.P. The emerging role of non-traditional ubiquitination in oncogenic pathways. J. Biol. Chem., 2017, 292, 3543-3551.
[103]
Melchior, F. SUMO-nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol., 2000, 16, 591-626.
[104]
Gostissa, M.; Hengstermann, A.; Fogal, V.; Sandy, P.; Schwarz, S.E.; Scheffner, M.; Del Sal, G. Activation of p53 by conjugation to the ubiquitin‐like protein SUMO‐1. EMBO J., 1999, 18, 6462-6471.
[105]
Buschmann, T.; Fuchs, S.Y.; Lee, C-G.; Pan, Z-Q.; Ronai, Z. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell, 2000, 101, 753-762.
[106]
Müller, S.; Matunis, M.J.; Dejean, A. Conjugation with the ubiquitin‐related modifier SUMO‐1 regulates the partitioning of PML within the nucleus. EMBO J., 1998, 17, 61-70.
[107]
Shiio, Y.; Eisenman, R.N. Histone sumoylation is associated with transcriptional repression. Proc. Natl. Acad. Sci. USA, 2003, 100, 13225-13230.
[108]
Dhall, A.; Weller, C.E.; Chu, A.; Shelton, P.M.; Chatterjee, C. Chemically sumoylated histone H4 stimulates intranucleosomal demethylation by the LSD1-CoREST complex. ACS Chem. Biol., 2017, 12, 2275-2280.
[109]
Shanmugam, M.K.; Arfuso, F.; Arumugam, S.; Chinnathambi, A.; Jinsong, B.; Warrier, S.; Wang, L.Z.; Kumar, A.P.; Ahn, K.S.; Sethi, G. Role of novel histone modifications in cancer. Oncotarget, 2018, 9, 11414-11426.
[110]
Fukuto, A.; Ikura, M.; Ikura, T.; Sun, J.; Horikoshi, Y.; Shima, H.; Igarashi, K.; Kusakabe, M.; Harata, M.; Horikoshi, N. SUMO modification system facilitates the exchange of histone variant H2A. Z-2 at DNA damage sites. Nucleus, 2018, 9, 87-94.
[111]
Han, Z-J.; Feng, Y-H.; Gu, B-H.; Li, Y-M.; Chen, H. The post-translational modification, sumoylation, and cancer. Int. J. Oncol., 2018, 52, 1081-1094.
[112]
Kamitani, T.; Kito, K.; Nguyen, H.P.; Yeh, E.T. Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J. Biol. Chem., 1997, 272, 28557-28562.
[113]
Duda, D.M.; Borg, L.A.; Scott, D.C.; Hunt, H.W.; Hammel, M.; Schulman, B.A. Structural insights into NEDD8 activation of cullin-RING ligases: Conformational control of conjugation. Cell, 2008, 134, 995-1006.
[114]
Salon, C.; Brambilla, E.; Brambilla, C.; Lantuejoul, S.; Gazzeri, S.; Eymin, B. Altered pattern of Cul‐1 protein expression and neddylation in human lung tumours: Relationships with CAND1 and cyclin E protein levels. J. Pathol., 2007, 213, 303-310.
[115]
Zhou, L.; Zhang, W.; Sun, Y.; Jia, L. Protein neddylation and its alterations in human cancers for targeted therapy. Cell. Signal., 2018, •••, 92-102.
[116]
Li, L.; Wang, M.; Yu, G.; Chen, P.; Li, H.; Wei, D.; Zhu, J.; Xie, L.; Jia, H.; Shi, J. Overactivated neddylation pathway as a therapeutic target in lung cancer. J. Natl. Cancer Inst., 2014, 106dju083
[117]
Li, T.; Guan, J.; Huang, Z.; Hu, X.; Zheng, X. RNF168-mediated H2A neddylation antagonizes ubiquitylation of H2A and regulates DNA damage repair. J. Cell Sci., 2014, 127, 2238-2248.
[118]
Ma, T.; Chen, Y.; Zhang, F.; Yang, C-Y.; Wang, S.; Yu, X. RNF111-dependent neddylation activates DNA damage-induced ubiquitination. Mol. Cell, 2013, 49, 897-907.
[119]
Soucy, T.A.; Smith, P.G.; Milhollen, M.A.; Berger, A.J.; Gavin, J.M.; Adhikari, S.; Brownell, J.E.; Burke, K.E.; Cardin, D.P.; Critchley, S. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature, 2009, 458, 732-736.
[120]
Swords, R.T.; Savona, M.R.; Maris, M.B.; Erba, H.P.; Berdeja, J.G.; Foran, J.M.; Hua, Z.; Faessel, H.M.; Dash, A.B.; Sedarati, F. Pevonedistat (MLN4924), an investigational, first-in-class NAE inhibitor, in combination with azacitidine in elderly patients with acute myeloid leukemia (AML) considered unfit for conventional chemotherapy: Updated results from the phase 1 C15009 trial. Blood, 2014, 124, 2313.
[121]
Liu, N.; Pan, T. RNA epigenetics. Translational Res., 2015, 165, 28-35.
[122]
Song, X.; Nazar, R.N. Modification of rRNA as a ‘quality control mechanism’in ribosome biogenesis. FEBS Lett., 2002, 523, 182-186.
[123]
Agris, P.F. Decoding the genome: A modified view. Nucleic Acids Res., 2004, 32, 223-238.
[124]
Wei, C-M.; Gershowitz, A.; Moss, B. N6, O2′-dimethyladenosine a novel methylated ribonucleoside next to the 5′ terminal of animal cell and virus mRNAs. Nature, 1975, 257, 251-253.
[125]
Narayan, P.; Rottman, F.M. An in vitro system for accurate methylation of internal adenosine residues in messenger RNA. Science, 1988, 242, 1159-1162.
[126]
Squires, J.E.; Patel, H.R.; Nousch, M.; Sibbritt, T.; Humphreys, D.T.; Parker, B.J.; Suter, C.M.; Preiss, T. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res., 2012, 40, 5023-5033.
[127]
Bokar, J.A. The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA. In Fine-tuning of RNA functions by modification and editing; Springer, 2005, pp. 141-177.
[128]
Lin, S.; Choe, J.; Du, P.; Triboulet, R.; Gregory, R.I. The m 6 A methyltransferase METTL3 promotes translation in human cancer cells. Mol. Cell, 2016, 62, 335-345.
[129]
Batista, P.J.; Molinie, B.; Wang, J.; Qu, K.; Zhang, J.; Li, L.; Bouley, D.M.; Lujan, E.; Haddad, B.; Daneshvar, K. M6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell, 2014, 15, 707-719.
[130]
Geula, S.; Moshitch-Moshkovitz, S.; Dominissini, D.; Mansour, A.A.; Kol, N.; Salmon-Divon, M.; Hershkovitz, V.; Peer, E.; Mor, N.; Manor, Y.S. M6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science, 2015, 347, 1002-1006.
[131]
Xiang, Y.; Laurent, B.; Hsu, C-H.; Nachtergaele, S.; Lu, Z.; Sheng, W.; Xu, C.; Chen, H.; Ouyang, J.; Wang, S. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature, 2017, 543, 573-576.
[132]
Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer, 2006, 6, 857-866.
[133]
Friedman, R.C.; Farh, K.K-H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009, 19, 92-105.
[134]
Lopez-Serra, P.; Esteller, M. DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene, 2012, 31, 1609-1622.
[135]
Guil, S.; Esteller, M. DNA methylomes, histone codes and miRNAs: Tying it all together. Int. J. Biochem. Cell Biol., 2009, 41, 87-95.
[136]
Anastasiadou, E.; Jacob, L.S.; Slack, F.J. Non-coding RNA networks in cancer. Nat. Rev. Cancer, 2018, 18, 5-18.
[137]
Schmitt, A.M.; Chang, H.Y. Long noncoding RNAs in cancer pathways. Cancer Cell, 2016, 29, 452-463.
[138]
Chu, C.; Zhang, Q.C.; Da Rocha, S.T.; Flynn, R.A.; Bharadwaj, M.; Calabrese, J.M.; Magnuson, T.; Heard, E.; Chang, H.Y. Systematic discovery of Xist RNA binding proteins. Cell, 2015, 161, 404-416.
[139]
Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M-C.; Hung, T.; Argani, P.; Rinn, J.L. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464, 1071-1076.
[140]
Morlando, M.; Fatica, A. Alteration of epigenetic regulation by long noncoding RNAs in cancer. Int. J. Mol. Sci., 2018, 19E570
[141]
Kurdyukov, S.; Bullock, M. DNA methylation analysis: Choosing the right method. Biology, 2016, 5, 3-24.
[142]
Smith, E.; Jones, M.E.; Drew, P.A. Quantitation of DNA methylation by melt curve analysis. BMC Cancer, 2009, 9, 123.
[143]
Mundade, R.; Ozer, H.G.; Wei, H.; Prabhu, L.; Lu, T. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond. Cell Cycle, 2014, 13, 2847-2852.
[144]
Natarajan, A.; Yardımcı, G.G.; Sheffield, N.C.; Crawford, G.E.; Ohler, U. Predicting cell-type–specific gene expression from regions of open chromatin. Genome Res., 2012, 22, 1711-1722.
[145]
Tripathi, R.; Chakraborty, P.; Varadwaj, P.K. Unraveling long non-coding RNAs through analysis of high-throughput RNA-sequencing data. Noncoding RNA Res., 2017, 2, 111-118.
[146]
Peleg, S.; Sananbenesi, F.; Zovoilis, A.; Burkhardt, S.; Bahari-Javan, S.; Agis-Balboa, R.C.; Cota, P.; Wittnam, J.L.; Gogol-Doering, A.; Opitz, L. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science, 2010, 328, 753-756.
[147]
Lin, H.S.; Hu, C.Y.; Chan, H.Y.; Liew, Y.Y.; Huang, H.P.; Lepescheux, L.; Bastianelli, E.; Baron, R.; Rawadi, G.; Clément‐Lacroix, P. Anti‐rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen‐induced arthritis in rodents. Br. J. Pharmacol., 2007, 150, 862-872.
[148]
Hockly, E.; Richon, V.M.; Woodman, B.; Smith, D.L.; Zhou, X.; Rosa, E.; Sathasivam, K.; Ghazi-Noori, S.; Mahal, A.; Lowden, P.A. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. USA, 2003, 100, 2041-2046.
[149]
Alarcón, J.M.; Malleret, G.; Touzani, K.; Vronskaya, S.; Ishii, S.; Kandel, E.R.; Barco, A. Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: A model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron, 2004, 42, 947-959.
[150]
Brogdon, J.L.; Xu, Y.; Szabo, S.J.; An, S.; Buxton, F.; Cohen, D.; Huang, Q. Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood, 2007, 109, 1123-1130.
[151]
Adcock, I. Hdac inhibitors as anti‐inflammatory agents. Br. J. Pharmacol., 2007, 150, 829-831.
[152]
Qing, H.; He, G.; Ly, P.T.; Fox, C.J.; Staufenbiel, M.; Cai, F.; Zhang, Z.; Wei, S.; Sun, X.; Chen, C-H. Valproic acid inhibits Aβ production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J. Exp. Med., 2008, 205, 2781-2789.
[153]
Tao, R.; De Zoeten, E.F.; Özkaynak, E.; Chen, C.; Wang, L.; Porrett, P.M.; Li, B.; Turka, L.A.; Olson, E.N.; Greene, M.I. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med., 2007, 13, 1299-1307.
[154]
McGee, S.L.; Hargreaves, M. Exercise and skeletal muscle glucose transporter 4 expression: Molecular mechanisms. Clin. Exp. Pharmacol. Physiol., 2006, 33, 395-399.
[155]
Daneshpajooh, M.; Bacos, K.; Bysani, M.; Bagge, A.; Laakso, E.O.; Vikman, P.; Eliasson, L.; Mulder, H.; Ling, C. HDAC7 is overexpressed in human diabetic islets and impairs insulin secretion in rat islets and clonal beta cells. Diabetologia, 2017, 60, 116-125.
[156]
Xu, Z.; Tong, Q.; Zhang, Z.; Wang, S.; Zheng, Y.; Liu, Q.; Qian, L.; Chen, S-y.; Sun, J.; Cai, L. Inhibition of HDAC3 prevents diabetic cardiomyopathy in OVE26 mice via epigenetic regulation of DUSP5-ERK1/2 pathway. Clin. Sci., 2017, 131, 1841-1857.
[157]
Dong, E.; Grayson, D.R.; Guidotti, A.; Ruzicka, W.; Veldic, M.; Costa, E. Reviewing the role of DNA (cytosine-5) methyltransferase overexpression in the cortical GABAergic dysfunction associated with psychosis vulnerability. Epigenetics, 2007, 2, 29-36.
[158]
Matt, S.M.; Zimmerman, J.D.; Lawson, M.A.; Bustamante, A.C.; Uddin, M.; Johnson, R.W. Inhibition of DNA methylation with zebularine alters lipopolysaccharide-induced sickness behavior and neuroinflammation in mice. Front. Neurosci., 2018, 12, 636.
[159]
Fonteneau, M.; Filliol, D.; Anglard, P.; Befort, K.; Romieu, P.; Zwiller, J. Inhibition of DNA methyltransferases regulates cocaine self‐administration by rats: A genome‐wide DNA methylation study. Genes Brain Behav., 2017, 16, 313-327.
[160]
Hedrich, C.M.; Mäbert, K.; Rauen, T.; Tsokos, G.C. DNA methylation in systemic lupus erythematosus. Epigenomics, 2017, 9, 505-525.
[161]
Sato, T.; Issa, J.; Kropf, P.; Hypomethylating Drugs, D.N.A. Drugs in Cancer
Therapy. Cold Spring Harb. Perspect. Med., 2017, 7a026948
[162]
Castro, K.; Casaccia, P. Epigenetic modifications in brain and immune cells of multiple sclerosis patients. Mult. Scler. J., 2018, 24, 69-74.
[163]
Zhao, Y. Garcia, B.A. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb. Perspect. Biol., 2015, 7a025064
[164]
Dawson, M.A. Bannister; A.J.; Göttgens B.; Foster, S.D.; Bartke, T.; Green, A.R.; Kouzarides, T. JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin. Nature, 2009, 461, 819-822.
[165]
Chou, R.H. Wang, Y.N.; Hsieh, Y.H.; Li, L.Y.; Xia, W.; Chang, W.C.; Chang, L.C.; Cheng, C. C.; Lai, C.C.; Hsu, J.L.; Chang, W.J.; Chiang, S.Y.; Lee, H. J.; Liao, H. W.; Chuang, P. H.; Chen, H.Y.; Wang, H.L.; Kuo, S.C.; Chen, C.H.; Yu, Y.L.; Hung, M.C. EGFR modulates DNA synthesis and repair through Tyr phosphorylation of histone H4. Dev. Cell, 2014, 30, 224-237.