[2]
Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A versatile heterocyclic. J. Saudi Chem., 2013, 21(1), 1-2.
[3]
Salahuddin, M.A.; Yar, M.S.; Sarafroz, M. Synthesis and anticonvulsant activity of a combined pharmacophore of 2-oxo-1, 2-dihydroquinoline containing 1, 3, 4-oxadiazole derivatives. Indian J. Heterocyclic. Chem., 2017, 27(1), 33-41.
[4]
Salahuddin, M.A.; Shaharyar, M. Synthesis, antibacterial and anticancer evaluation of 5-substituted (1, 3, 4-oxadiazol-2-yl) quinoline. Med. Chem. Res., 2015, 24(6), 2514-2528.
[5]
Kouznetsov, V.V.; Méndez, L.Y.; Gómez, C.M. Recent progress in the synthesis of quinolines. Curr. Org. Chem., 2005, 9(2), 141-161.
[6]
Kumar, S.; Bawa, S.; Drabu, S.; Kumar, R.; Gupta, H. Biological activities of pyrazoline derivatives. A recent development. Recent Pat Anti-infect. Drug Discov., 2009, 4(3), 154-163.
[7]
Madrid, P.B.; Sherrill, J.; Liou, A.P.; Weisman, J.L.; DeRisi, J.L.; Guy, R.K. Synthesis of ring-substituted 4-aminoquinolines and evaluation of their antimalarial activities. Bioorg. Med. Chem., 2005, 15(4), 1015-1018.
[8]
Kourounakis, A.P.; Galanakis, D.; Tsiakitzis, K.; Rekka, E.A.; Kourounakis, P.N. Synthesis and pharmacological evaluation of novel derivatives of anti‐inflammatory drugs with increased antioxidant and anti‐inflammatory activities. Drug Develop. Res., 1999, 47(1), 9-16.
[9]
Wheate, N.J.; Cullinane, C.; Webster, L.K. Synthesis, cytotoxicity, cell uptake and DNA interstrand cross‐linking of 4, 4′‐dipyrazolylmethane‐linked multinuclear platinum anti‐cancer complexes. Anti-cancer Drug Design., 2001, 16(2), 91-98.
[10]
Eswaran, S.; Adhikari, A.V.; Shetty, N.S. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1, 2, 4-triazole moiety. Eur. J. Chem., 2009, 44(11), 4637-4647.
[11]
Mandewale, M.C.; Thorat, B.R.; Yamgar, R.S. Synthesis and anti-mycobacterium study of some fluorine containing Schiff bases of quinoline and their metal complexes. Der. Pharm Chem., 2015, 7(5), 207-215.
[12]
Strekowski, L.; Mokrosz, J.L.; Honkan, V.A.; Czarny, A.; Cegla, M.T.; Wydra, R.L.; Patterson, S.E.; Schinazi, R.F. Synthesis and quantitative structure-activity relationship analysis of 2-(aryl or heteroaryl) quinolin-4-amines, a new class of anti-HIV-1 agents. Med. J. Chem., 1991, 34(5), 1739-1746.
[13]
Skraup, Z.H. Eine synthese des chinolins. Monatsh. Chem. Verw. Teile Anderer Wiss., 1880, 1(1), 316-318.
[14]
Doebner, O.; Miller, W. Ueber eine dem chinolin homologe base. Ber. Dtsch. Chem. Gesellschaft., 1881, 14(2), 2812-2817.
[15]
Friedlander, P. Synthesis of quinoline. Beruf, 1882, 15, 2572.
[16]
Gould, R.G.; Jacobs, W.A. The synthesis of certain substituted quinolines and 5, 6-benzoquinolines. J. Am. Chem. Soc., 1939, 61(10), 2890-2895.
[17]
Zhang, Y.; Wang, M.; Li, P.; Wang, L. Iron-promoted tandem reaction of anilines with styrene oxides via C-C cleavage for the synthesis of quinolines. Org. Lett., 2012, 14(9), 2206-2209.
[18]
Yan, R.; Liu, X.; Pan, C.; Zhou, X.; Li, X.; Kang, X.; Huang, G. Aerobic synthesis of substituted quinoline from aldehyde and aniline: Copper-catalyzed intermolecular C-H active and C-C formative cyclization. Org. Lett., 2013, 15(18), 4876-4879.
[19]
Gao, Q.; Liu, S.; Wu, X.; Wu, A. Povarov-type reaction using methyl as new input: Direct synthesis of substituted quinolines by i2-mediated formal [3+2+1] cycloaddition. Org. Lett., 2014, 16(17), 4582-4585.
[20]
Iosub, A.V.; Stahl, S.S. Catalytic aerobic dehydrogenation of nitrogen heterocycles using heterogeneous cobalt oxide supported on nitrogen-doped carbon. Org. Lett., 2015, 17(18), 4404-4407.
[21]
Li, J.; Zhang, J.; Yang, H.; Jiang, G. Assembly of diversely substituted quinolines via aerobic oxidative aromatization from simple alcohols and anilines. J. Org. Chem., 2017, 82(6), 3284-3290.
[22]
Jadhav, S.D.; Singh, A. Oxidative annulations involving dmso and formamide: K2S2O8 mediated syntheses of quinolines and pyrimidines. Org. Lett., 2017, 9(20), 5673-5676.
[23]
Camplo, M.; Charvet-Faury, A.S.; Borel, C.; Turin, F.; Hantz, O.; Trabaud, C.; Niddam, V.; Mourier, N.; Graciet, J.C.; Chermann, J.C.; Kraus, J.L. Synthesis and antiviral activity of N-4′-dihydropyridinyl and dihydroquinolinylcarbonyl-2-hydroxymethyl-5-[cytosin-1′-yl]-1, 3-oxathiolane derivatives against human immunodeficiency virus and duck hepatitis B virus. Eur. J. Chem., 1996, 31(7-8), 539-546.
[24]
Fakhfakh, M.A.; Fournet, A.; Prina, E.; Mouscadet, J.F.; Franck, X.; Hocquemiller, R.; Figadère, B. Synthesis and biological evaluation of substituted quinolines: Potential treatment of protozoal and retroviral co-infections. Bioorg. Med. Chem., 2003, 11(23), 5013-5023.
[25]
Briguglio, I.; Loddo, R.; Laurini, E.; Fermeglia, M.; Piras, S.; Corona, P.; Giunchedi, P.; Gavini, E.; Sanna, G.; Giliberti, G.; Ibba, C. Synthesis, cytotoxicity and antiviral evaluation of new series of imidazo [4, 5-g] quinoline and pyrido [2, 3-g] quinoxalinone derivatives. Eur. J. Chem., 2015, 105, 63-79.
[26]
Loddo, R.; Briguglio, I.; Corona, P.; Piras, S.; Loriga, M.; Paglietti, G.; Carta, A.; Sanna, G.; Giliberti, G.; Ibba, C.; Farci, P. Synthesis and antiviral activity of new phenylimidazopyridines and N-benzylidenequinolinamines derived by molecular simplification of phenylimidazo [4, 5-g] quinolines. Eur. J. Chem., 2014, 84, 8-16.
[27]
Carta, A.; Loriga, M.; Paglietti, G.; Ferrone, M.; Fermeglia, M.; Pricl, S.; Sanna, T.; Ibba, C. La, Colla, P.; Loddo, R. Design, synthesis, and preliminary in vitro and in silico antiviral activity of [4, 7] phenantrolines and 1-oxo-1, 4-dihydro-[4, 7] phenantrolines against single-stranded positive-sense RNA genome viruses. Bioorg. Med. Chem., 2007, 15(5), 1914-1927.
[28]
Chen, S.; Chen, R.; He, M.; Pang, R.; Tan, Z.; Yang, M. Design, synthesis, and biological evaluation of novel quinoline derivatives as HIV-1 Tat-TAR interaction inhibitors. Bioorg. Med. Chem., 2009, 17(5), 1948-1956.
[29]
Cheng, P.; Zhang, Q.; Ma, Y.B.; Jiang, Z.Y.; Zhang, X.M.; Zhang, F.X.; Chen, J.J. Synthesis and in vitro anti-hepatitis B virus activities of 4-aryl-6-chloro-quinolin-2-one and 5-aryl-7-chloro-1, 4-benzodiazepine derivatives. Bioorg. Med. Chem., 2008, 18(13), 3787-3789.
[30]
Santos, F.D.; Abreu, P.; Castro, H.C.; Paixão, I.C.; Cirne-Santos, C.C.; Giongo, V.; Barbosa, J.E.; Simonetti, B.R.; Garrido, V.; Bou-Habib, D.C.; Silva, D.D. Synthesis, antiviral activity and molecular modeling of oxoquinoline derivatives. Bioorg. Med. Chem., 2009, 17(15), 5476-5481.
[31]
Moret, V.; Dereudre-Bosquet, N.; Clayette, P.; Laras, Y.; Pietrancosta, N.; Rolland, A.; Weck, C.; Marc, S.; Kraus, J.L. Synthesis and anti-HIV properties of new hydroxyquinoline-polyamine conjugates on cells infected by HIV-1 LAV and HIV-1 BaL viral strains. Bioorg. Med. Chem., 2006, 16(23), 5988-5992.
[32]
Freitas, L.B.; Borgati, T.F.; De Freitas, R.P.; Ruiz, A.L.; Marchetti, G.M.; De Carvalho, J.E.; Da Cunha, E.F.; Ramalho, T.C.; Alves, R.B. Synthesis and antiproliferative activity of 8-hydroxyquinoline derivatives containing a 1,2,3-triazole moiety. Eur. J. Chem., 2014, 84, 595-604.
[33]
Pirol, Ş.C.; Çalışkan, B.; Durmaz, İ.; Atalay, R.; Banoglu, E. Synthesis and preliminary mechanistic evaluation of 5-(p-tolyl)-1-(quinolin-2-yl) pyrazole-3-carboxylic acid amides with potent antiproliferative activity on human cancer cell lines. Eur. J. Chem., 2014, 87, 140-149.
[34]
Chen, M.; Chen, H.; Ma, J.; Liu, X.; Zhang, S. Synthesis and anticancer activity of novel quinoline-docetaxel analogues. Bioorg. Med. Chem., 2014, 24(13), 2867-2870.
[35]
El-Gamal, M.I.; Khan, M.A.; Abdel-Maksoud, M.S.; El-Din, M.M.; Oh, C.H. A new series of diarylamides possessing quinoline nucleus: Synthesis, in vitro anticancer activities, and kinase inhibitory effect. Eur. J. Chem., 2014, 87, 484-492.
[36]
Kayarmar, R.; Nagaraja, G.K.; Naik, P.; Manjunatha, H.; Revanasiddappa, B.C.; Arulmoli, T. Synthesis and characterization of novel imidazoquinoline based 2-azetidinones as potent antimicrobial and anticancer agents. J. Saudi Chem., 2017, 21(1), S434-S444.
[37]
Kumar, K.; Schniper, S.; González-Sarrías, A.; Holder, A.A.; Sanders, N.; Sullivan, D.; Jarrett, W.L.; Davis, K.; Bai, F.; Seeram, N.P.; Kumar, V. Highly potent anti-proliferative effects of a gallium (III) complex with 7-chloroquinoline thiosemicarbazone as a ligand: Synthesis, cytotoxic and antimalarial evaluation. Eur. J. Chem., 2014, 86, 81-86.
[38]
Sangani, C.B.; Makawana, J.A.; Zhang, X.; Teraiya, S.B.; Lin, L.; Zhu, H.L. Design, synthesis and molecular modeling of pyrazole-quinoline-pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur. J. Chem., 2014, 76, 549-557.
[39]
Singh, K.; Verma, V.; Yadav, K.; Sreekanth, V.; Kumar, D.; Bajaj, A.; Kumar, V. Design, regioselective synthesis and cytotoxic evaluation of 2-aminoimidazole-quinoline hybrids against cancer and primary endothelial cells. Eur. J. Chem., 2014, 87, 150-158.
[40]
Tseng, C.H.; Lin, C.K.; Chen, Y.L.; Hsu, C.Y.; Wu, H.N.; Tseng, C.K.; Lee, J.C. Synthesis, antiproliferative and anti-dengue virus evaluations of 2-aroyl-3-arylquinoline derivatives. Eur. J. Chem., 2014, 79, 66-76.
[41]
Vyas, V.K.; Variya, B.; Ghate, M.D. Design, synthesis and pharmacological evaluation of novel substituted quinoline-2-carboxamide derivatives as human dihydroorotate dehydrogenase (hDHODH) inhibitors and anticancer agents. Eur. J. Chem., 2014, 82, 385-393.
[42]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Hamed, M.M.; Noaman, E.; Ghorab, M.M. Synthesis and biological evaluation of 2-amino-7, 7-dimethyl 4-substituted-5-oxo-1-(3, 4, 5-trimethoxy)-1, 4, 5, 6, 7, 8-hexahydro-quinoline-3-carbonitrile derivatives as potential cytotoxic agents. Bioorg. Med. Chem., 2009, 19(24), 6939-6942.
[43]
Beauchard, A.; Jaunet, A.; Murillo, L.; Baldeyrou, B.; Lansiaux, A.; Chérouvrier, J.R.; Domon, L.; Picot, L.; Bailly, C.; Besson, T.; Thiéry, V. Synthesis and antitumoral activity of novel thiazolo-benzotriazole, thiazoloindolo [3, 2-c] quinoline and quinolino-quinoline derivatives. Eur. J. Chem., 2009, 44(10), 3858-3865.
[44]
Chang, Y.H.; Hsu, M.H.; Wang, S.H.; Huang, L.J.; Qian, K.; Morris-Natschke, S.L.; Hamel, E.; Kuo, S.C.; Lee, K.H. Design and synthesis of 2-(3-benzo [b] thienyl)-6, 7-methylenedioxy-quinolin-4-one analogues as potent antitumor agents that inhibit tubulin assembly. Med. J. Chem, 2009, 52(15), 4883-4891.
[45]
Abonia, R.; Insuasty, D.; Castillo, J.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J. Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity. Eur. J. Chem., 2012, 57, 29-40.
[46]
Alegaon, S.G.; Parchure, P.; Araujo, L.D.; Salve, P.S.; Alagawadi, K.R.; Jalalpure, S.S.; Kumbar, V.M. Quinoline-azetidinone hybrids: Synthesis and in vitro antiproliferation activity against Hep G2 and Hep 3B human cell lines. Bioorg. Med. Chem., 2017, 27(7), 1566-1571.
[47]
Al-Said, M.S.; Ghorab, M.M.; Al-qasoumi, S.I.; El-Hossary, E.M.; Noaman, E. Synthesis and in vitro anticancer screening of some novel 4-[2-amino-3-cyano-4-substituted-5, 6, 7, 8-tetrahydro-quin-olin-1-(4H)-yl] benzenesulfonamides. Eur. J. Chem., 2010, 45(7), 3011-3018.
[48]
Al-Trawneh, S.A.; Zahra, J.A.; Kamal, M.R.; El-Abadelah, M.M.; Zani, F.; Incerti, M.; Cavazzoni, A.; Alfieri, R.R.; Petronini, P.G.; Vicini, P. Synthesis and biological evaluation of tetracyclic fluoroquinolones as antibacterial and anticancer agents. Bioorg. Med. Chem., 2010, 18(16), 5873-5884.
[49]
Bondock, S.; Gieman, H.; El-Shafei, A. Selective synthesis, structural studies and antitumor evaluation of some novel unsymmetrical 1-hetaryl-4-(2-chloroquinolin-3-yl) azines. J. Saudi Chem., 2016, 20(6), 695-702.
[50]
Chen, Y.L.; Hung, H.M.; Lu, C.M.; Li, K.C.; Tzeng, C.C. Synthesis and anticancer evaluation of certain indolo [2, 3-b] quinoline derivatives. Bioorg. Med. Chem., 2004, 12(24), 6539-6546.
[51]
El-Damasy, A.K.; Seo, S.H.; Cho, N.C.; Kang, S.B.; Pae, A.N.; Kim, K.S.; Keum, G. Design, synthesis, in vitro antiproliferative activity and kinase profile of new picolinamide based 2-amido and ureido quinoline derivatives. Eur. J. Chem., 2015, 101, 754-768.
[52]
Kakadiya, R.; Dong, H.; Kumar, A.; Narsinh, D.; Zhang, X.; Chou, T.C.; Lee, T.C.; Shah, A.; Su, T.L. Potent DNA-directed alkylating agents: Synthesis and biological activity of phenyl N-mustard-quinoline conjugates having a urea or hydrazinecarboxamide linker. Bioorg. Med. Chem., 2010, 18(6), 2285-2299.
[53]
Koh, E.J.; El-Gamal, M.I.; Oh, C.H.; Lee, S.H.; Sim, T.; Kim, G.; Choi, H.S.; Hong, J.H.; Lee, S.G.; Yoo, K.H. New diarylamides and diarylureas possessing 8-amino (acetamido) quinoline scaffold: synthesis, antiproliferative activities against melanoma cell lines, kinase inhibition, and in silico studies. Eur. J. Chem., 2013, 70, 10-21.
[54]
Lee, E.; Han, S.; Jin, G.H.; Lee, H.J.; Kim, W.Y.; Ryu, J.H.; Jeon, R. Synthesis and anticancer activity of aminodihydroquinoline analogs: Identification of novel proapoptotic agents. Bioorg. Med. Chem., 2013, 23(13), 3976-3978.
[55]
Lu, C.M.; Chen, Y.L.; Chen, H.L.; Chen, C.A.; Lu, P.J.; Yang, C.N.; Tzeng, C.C. Synthesis and antiproliferative evaluation of certain indolo [3, 2-c] quinoline derivatives. Bioorg. Med. Chem., 2010, 18(5), 1948-1957.
[56]
Malayeri, S.O.; Abnous, K.; Arab, A.; Akaberi, M.; Mehri, S.; Zarghi, A.; Ghodsi, R. Design, synthesis and biological evaluation of 7-(aryl)-2, 3-dihydro-[1, 4] dioxino [2, 3-g] quinoline derivatives as potential Hsp90 inhibitors and anticancer agents. Bioorg. Med. Chem., 2017, 25(3), 1294-1302.
[57]
Shi, A.; Nguyen, T.A.; Battina, S.K.; Rana, S.; Takemoto, D.J.; Chiang, P.K.; Hua, D.H. Synthesis and anti-breast cancer activities of substituted quinolines. Bioorg. Med. Chem., 2008, 18(11), 3364-3368.
[58]
Srivastava, V.; Lee, H. Synthesis and bio-evaluation of novel quinolino-stilbene derivatives as potential anticancer agents. Bioorg. Med. Chem., 2015, 23(24), 7629-7640.
[59]
Sun, J.; Zhu, H.; Yang, Z.M.; Zhu, H.L. Synthesis, molecular modeling and biological evaluation of 2-aminomethyl-5-(quinolin-2-yl)-1, 3, 4-oxadiazole-2 (3H)-thione quinolone derivatives as novel anticancer agent. Eur. J. Chem., 2013, 60, 23-28.
[60]
Chandrika, P.M.; Yakaiah, T.; Narsaiah, B.; Sridhar, V.; Venugopal, G.; Rao, J.V.; Kumar, K.P.; Murthy, U.S.; Rao, A. Synthesis leading to novel 2, 4, 6-trisubstituted quinazoline derivatives, their antibacterial and cytotoxic activity against THP-1, HL-60 and A375 cell lines. Indian J. Chem., 2009, 48B, 840-847.
[61]
Tseng, C.H.; Chen, Y.L.; Lu, P.J.; Yang, C.N.; Tzeng, C.C. Synthesis and antiproliferative evaluation of certain indeno [1, 2-c] quinoline derivatives. Bioorg. Med. Chem., 2008, 16(6), 3153-3162.
[62]
Tseng, C.H.; Chen, Y.L.; Chung, K.Y.; Cheng, C.M.; Wang, C.H.; Tzeng, C.C. Synthesis and antiproliferative evaluation of 6-arylindeno [1, 2-c] quinoline derivatives. Bioorg. Med. Chem., 2009, 17(21), 7465-7476.
[63]
Tseng, C.H.; Chen, Y.L.; Yang, C.L.; Cheng, C.M.; Han, C.H.; Tzeng, C.C. Synthesis of 6-substituted 9-methoxy-11H-indeno [1, 2-c] quinoline-11-one derivatives as potential anticancer agents. Bioorg. Med. Chem., 2012, 20(14), 4397-4404.
[64]
Vazquez, M.T.; Romero, M.; Pujol, M.D. Synthesis of novel 2, 3-dihydro-1, 4-dioxino [2, 3-g] quinoline derivatives as potential antitumor agents. Bioorg. Med. Chem., 2004, 12(5), 949-956.
[65]
Zhu, X.F.; Zhang, J.; Sun, S.; Guo, Y.C.; Cao, S.X.; Zhao, Y.F. Synthesis and structure-activity relationships study of α-aminophosphonate derivatives containing a quinoline moiety. Chin. Chem. Lett., 2017.
[66]
Sun, N.; Du, R.L.; Zheng, Y.Y.; Huang, B.H.; Guo, Q.; Zhang, R.F.; Wong, K.Y.; Lu, Y.J. Antibacterial activity of N-methylbenzofuro [3, 2-b] quinoline and N-methylbenzoindolo [3, 2-b]-quinoline derivatives and study of their mode of action. Eur. J. Chem., 2017, 135, 1-1.
[67]
Asghari, S.; Ramezani, S.; Mohseni, M. Synthesis and antibacterial activity of ethyl 2-amino-6-methyl-5-oxo-4-aryl-5, 6-dihydro-4H-pyrano [3, 2-c] quinoline-3-carboxylate. Chin. Chem. Lett., 2014, 25(3), 431-434.
[68]
Dolan, N.; Gavin, D.P.; Eshwika, A.; Kavanagh, K.; McGinley, J.; Stephens, J.C. Synthesis, antibacterial and anti-MRSA activity, in vivo toxicity and a structure-activity relationship study of a quinoline thiourea. Bioorg. Med. Chem., 2016, 26(2), 630-635.
[69]
Eswaran, S.; Adhikari, A.V.; Kumar, R.A. New 1, 3-oxazolo [4, 5-c] quinoline derivatives: Synthesis and evaluation of antibacterial and antituberculosis properties. Eur. J. Chem., 2010, 45(3), 957-966.
[70]
Hazra, A.; Mondal, S.; Maity, A.; Naskar, S.; Saha, P.; Paira, R.; Sahu, K.B.; Paira, P.; Ghosh, S.; Sinha, C.; Samanta, A. Amberlite-IRA-402 (OH) ion exchange resin mediated synthesis of indolizines, pyrrolo [1, 2-a] quinolines and isoquinolines: Antibacterial and antifungal evaluation of the products. Eur. J. Chem., 2011, 46(6), 2132-2140.
[71]
Naik, H.R.; Naik, H.S.; Naik, T.R.; Naika, H.R.; Gouthamchandra, K.; Mahmood, R.; Ahamed, B.K. Synthesis of novel benzo [h] quinolines: wound healing, antibacterial, DNA binding and in vitro antioxidant activity. Eur. J. Chem., 2009, 44(3), 981-989.
[72]
Sharma, P.C.; Jain, A.; Yar, M.S.; Pahwa, R.; Singh, J.; Chanalia, P. Novel fluoroquinolone derivatives bearing N-thiomide linkage with 6-substituted-2-aminobenzothiazoles: synthesis and antibac-terial evaluation. Arab. J. Chem., 2017, 10, 568-575.
[73]
Sharma, P.C.; Jain, A.; Yar, M.S.; Pahwa, R.; Singh, J.; Goel, S. Synthesis and antibacterial evaluation of novel analogs of fluoroquinolones annulated with 6-substituted-2-aminobenzo-thiazoles. Arab. J. Chem., 2015, 8(5), 671-677.
[74]
Sun, X.Y.; Wu, R.; Wen, X.; Guo, L.; Zhou, C.P.; Li, J.; Quan, Z.S.; Bao, J. Synthesis and evaluation of antibacterial activity of 7-alkyloxy-4, 5-dihydro-imidazo [1, 2-a] quinoline derivatives. Eur. J. Chem., 2013, 60, 451-455.
[75]
Tabatabaeian, K.; Shojaei, A.F.; Shirini, F.; Hejazi, S.Z.; Rassa, M. A green multicomponent synthesis of bioactive pyrimido [4, 5-b] quinoline derivatives as antibacterial agents in water catalyzed by RuCl3xH2O. Chin. Chem. Lett., 2014, 25(2), 308-312.
[76]
Behbehani, H.; Ibrahim, H.M.; Makhseed, S.; Elnagdi, M.H.; Mahmoud, H. Aminothiophenes as building blocks in heterocyclic synthesis: Synthesis and antimicrobial evaluation of a new class of pyrido [1, 2-a] thieno [3, 2-e] pyrimidine, quinoline and pyridin-2-one derivatives. Eur. J. Chem., 2012, 52, 51-65.
[77]
Bhat, A.R.; Azam, A.; Choi, I.; Athar, F. 3-(1, 3, 4-Thiadiazole-2-yl) quinoline derivatives: synthesis, characterization and anti-microbial activity. Eur. J. Chem., 2011, 46(7), 3158-3166.
[78]
El-Behery, M.; El-Twigry, H. Synthesis, magnetic, spectral, and antimicrobial studies of Cu (II), Ni (II) Co (II), Fe (III), and UO2 (II) complexes of a new Schiff base hydrazone derived from 7-chloro-4-hydrazinoquinoline. Spectrochim Acta Part A. Mol. Biomol. Spectrosc., 2007, 66(1), 28-36.
[79]
El‐Sayed, O.A.; Aboul‐Enein, H.Y. Synthesis and antimicrobial activity of novel pyrazolo [3, 4‐b] quinoline derivatives. Archiv. der Pharmazie., 2001, 334(4), 117-120.
[80]
Sureshkumar, K.; Maheshwaran, V.; Rao, T.D.; Khamrang, T.; Ponnuswamy, M.N.; Saraboji, K.; Saravanan, D. Synthesis, characterization, crystal structure, in vitro anti-inflammatory and molecular docking studies of 5-mercapto-1-substituted tetrazole incorporated quinoline derivative. J. Mol. Stru., 2017, 1146, 314-323.
[81]
Abadi, A.H.; Hegazy, G.H.; El-Zaher, A.A. Synthesis of novel 4-substituted-7-trifluoromethylquinoline derivatives with nitric oxide releasing properties and their evaluation as analgesic and anti-inflammatory agents. Bioorg. Med. Chem., 2005, 13(20), 5759-5765.
[82]
Abdelrahman, M.H.; Youssif, B.G.; Abdelazeem, A.H.; Ibrahim, H.M.; Abd El Ghany, A.M.; Treamblu, L.; Bukhari, S.N. Synthesis, biological evaluation, docking study and ulcerogenicity profiling of some novel quinoline-2-carboxamides as dual COXs/LOX inhibitors endowed with anti-inflammatory activity. Eur. J. Chem., 2017, 127, 972-985.
[83]
Chen, Y.L.; Chen, I.L.; Lu, C.M.; Tzeng, C.C.; Tsao, L.T.; Wang, J.P. Synthesis and anti-inflammatory evaluation of 9-phenoxya-cridine and 4-phenoxyfuro [2, 3-b] quinoline derivatives. Part 2. Bioorg. Med. Chem., 2003, 11(18), 3921-3927.
[84]
Chen, Y.L.; Chen, I.L.; Lu, C.M.; Tzeng, C.C.; Tsao, L.T.; Wang, J.P. Synthesis and anti-inflammatory evaluation of 4-anilinofuro [2, 3-b] quinoline and 4-phenoxyfuro [2, 3-b] quinoline derivatives. Part 3. Bioorg. Med. Chem., 2004, 12(2), 387-392.
[85]
Chen, Y.L.; Zhao, Y.L.; Lu, C.M.; Tzeng, C.C.; Wang, J.P. Synthesis, cytotoxicity, and anti-inflammatory evaluation of 2-(furan-2-yl)-4-(phenoxy) quinoline derivatives. Part 4. Bioorg. Med. Chem., 2006, 14(13), 4373-4378.
[86]
Chia, E.W.; Pearce, A.N.; Berridge, M.V.; Larsen, L.; Perry, N.B.; Sansom, C.E.; Godfrey, C.A.; Hanton, L.R.; Lu, G.L.; Walton, M.; Denny, W.A. Synthesis and anti-inflammatory structure-activity relationships of thiazine-quinoline-quinones: Inhibitors of the neutrophil respiratory burst in a model of acute gouty arthritis. Bioorg. Med. Chem., 2008, 16(21), 9432-9442.
[87]
El-Gazzar, A.R.; El-Enany, M.M.; Mahmoud, M.N. Synthesis, analgesic, anti-inflammatory, and antimicrobial activity of some novel pyrimido [4, 5-b] quinolin-4-ones. Bioorg. Med. Chem., 2008, 16(6), 3261-3273.
[88]
Durrani, N.; Leslie, T.; Rahim, S.; Graham, K.; Ahmad, F.; Rowland, M. Efficacy of combination therapy with artesunate plus amodiaquine compared to monotherapy with chloroquine, amodiaquine or sulfadoxine-pyrimethamine for treatment of uncomplicated Plasmodium falciparum in Afghanistan. Trop. Med. Int. Health, 2005, 10(6), 521-529.
[89]
Price, R.N.; Uhlemann, A.C.; Brockman, A.; McGready, R.; Ashley, E.; Phaipun, L.; Patel, R.; Laing, K.; Looareesuwan, S.; White, N.J.; Nosten, F. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. The Lancet, 2004, 364(9432), 438-447.
[90]
Neftel, K.A.; Woodtly, W.; Schmid, M.; Frick, P.G.; Fehr, J. Amodiaquine induced agranulocytosis and liver damage. Br. Med. J. (Clin. Res. Ed.), 1986, 292(6522), 721-723.
[91]
Dern, R.J.; Beutler, E.; Alving, A.S. The hemolytic effect of primaquine, II. The natural course of the hemolytic anemia and the mechanism of its self-limited character. J. Lab. Clin. Med., 1954, 44(2), 171-176.
[92]
Beloqui, A. Solinís, M.Á.; Gascón, A.R.; del Pozo-Rodríguez, A.; des Rieux, A.; Préat, V. Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. J. Control. Release, 2013, 166(2), 115-123.
[93]
Blondeau, J.M. Fluoroquinolones: Mechanism of action, classification, and development of resistance. Surv. Ophthalmol., 2004, 49(2), 73-78.
[94]
Denis, A.; Moreau, N.J. Mechanisms of quinolone resistance in clinical isolates: Accumulation of sparfloxacin and of fluoroquinolones of various hydrophobicity, and analysis of membrane composition. J. Antimicrob. Chemother., 1993, 32(3), 379-392.
[95]
Kwatra, D.; Vadlapatla, R.K.; Vadlapudi, A.D.; Pal, D.; Mitra, A.K. Interaction of gatifloxacin with efflux transporters: A possible mechanism for drug resistance. Int. J. Pharm., 2010, 395(1), 114-121.
[96]
Bareggi, S.R.; Cornelli, U. Clioquinol: Review of its mechanisms of action and clinical uses in neurodegenerative disorders. CNS Neurosci. Ther., 2012, 18(1), 41-46.
[97]
Pica-Mattoccia, L.; Carlini, D.; Guidi, A.; Cimica, V.; Vigorosi, F.; Cioli, D. The schistosome enzyme that activates oxamniquine has the characteristics of a sulfotransferase. Mem. Inst. Oswaldo Cruz, 2006, 101, 307-312.
[98]
Arita, K.; Utsumi, T.; Kato, A.; Kanno, T.; Kobuchi, H.; Inoue, B.; Akiyama, J.; Utsumi, K. Mechanism of dibucaine-induced apoptosis in promyelocytic leukemia cells (HL-60). Biochem. Pharmacol., 2000, 60(7), 905-915.
[99]
Anderson, R.; Theron, A.J.; Gravett, C.M.; Steel, H.C.; Tintinger, G.R.; Feldman, C. Montelukast inhibits neutrophil pro‐inflammatory activity by a cyclic AMP‐dependent mechanism. Br. J. Clin. Pharmacol., 2009, 156(1), 105-115.
[100]
Hsiang, Y.H.; Lihou, M.G.; Liu, L.F. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Clin. Cancer Res., 1989, 49(18), 5077-5082.
[101]
Xu, Y.; Villalona-Calero, M.A. Irinotecan: Mechanisms of tumor resistance and novel strategies for modulating its activity. . Ann. Oncol., 2002, 13(12), 1841-1851.
[102]
Palchaudhuri, R.; Hergenrother, P.J. DNA as a target for anticancer compounds: Methods to determine the mode of binding and the mechanism of action. Curr. Opin. Biotechnol., 2007, 18(6), 497-503.
[103]
Potkin, S.G.; Saha, A.R.; Kujawa, M.J.; Carson, W.H.; Ali, M.; Stock, E.; Stringfellow, J.; Ingenito, G.; Marder, S.R. Aripiprazole, an antipsychotic with a novel mechanism of action, and risperidone vs. placebo in patients with schizophrenia and schizoaffective disorder. Arch. Gen. Psychiat, 2003, 60(7), 681-690.
[104]
Stahl, S.M. Mechanism of action of brexpiprazole: Comparison with aripiprazole. CNS Spectrums., 2016, 21(1), 1-6.
[105]
Takayanagi, I.; Koike, K. A possible mechanism of action of a beta-adrenergic partial agonist (carteolol) in guinea pig taenia caecum. J. Pharmacobiodyn., 1983, 6(1), 56-59.
[106]
Serra, V.; Markman, B.; Scaltriti, M.; Eichhorn, P.J.; Valero, V.; Guzman, M.; Botero, M.L.; Llonch, E.; Atzori, F. Di, Cosimo, S.; Maira, M. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Clin. Cancer Res., 2008, 68(19), 8022-8030.
[107]
Kiyuna, T.; Murakami, T.; Tome, Y.; Kawaguchi, K.; Igarashi, K.; Zhang, Y.; Zhao, M.; Li, Y.; Bouvet, M.; Kanaya, F.; Singh, A. High efficacy of tumor-targeting Salmonella typhimurium A1-R on a doxorubicin-and dactolisib-resistant follicular dendritic-cell sarcoma in a patient-derived orthotopic xenograft PDOX nude mouse model. Oncotarget, 2016, 7(22), 33046.
[108]
Maher, T.M.; Bareille, P.; Costa, M.J.; Fahy, W.A.; Harrison, S.A.; Holman, B.F.; Lukey, P.; Man, Y.; Saunders, P.; Simpson, J.K.; Toshner, R.A. Randomised, placebo-controlled, double-blind, repeat dose escalation study with omipalisib (GSK2126458) in patients with Idiopathic Pulmonary Fibrosis (IPF). Am. J. Respir. Crit. Care Med., 2017, 195, A7010.
[109]
Lurje, G.; Lenz, H.J. EGFR signaling and drug discovery. Oncology, 2009, 77(6), 400-410.
[110]
Wong, K.K.; Fracasso, P.M.; Bukowski, R.M.; Lynch, T.J.; Munster, P.N.; Shapiro, G.I.; Jänne, P.A.; Eder, J.P.; Naughton, M.J.; Ellis, M.J.; Jones, S.F. A phase I study with neratinib (HKI-272), an irreversible pan ErbB receptor tyrosine kinase inhibitor, in patients with solid tumors. Clin. Cancer Res., 2009, 15(7), 2552-2558.
[111]
Nosov, D.A.; Esteves, B.; Lipatov, O.N.; Lyulko, A.A.; Anischenko, A.A.; Chacko, R.T.; Doval, D.C.; Strahs, A.; Slichenmyer, W.J.; Bhargava, P. Antitumor activity and safety of tivozanib (AV-951) in a phase II randomized discontinuation trial in patients with renal cell carcinoma. J. Clin. Oncol., 2012, 30(14), 1678-1685.
[112]
Desai, N.C.; Pandit, U.P.; Dodiya, A. Thiazolidinedione compounds: A patent review (2010-present). Expert Opin. Ther. Pat., 2015, 25(4), 479-488.
[113]
Wang, K.F.; Yang, H.; Jiang, W.Q.; Li, S.; Cai, Y.C. Puquitinib mesylate (XC-302) induces autophagy via inhibiting the PI3K/AKT/mTOR signaling pathway in nasopharyngeal cancer cells. Int. J. Mol. Med., 2015, 36(6), 1556-1562.
[114]
Goldberg, F.W.; Daunt, P.; Pearson, S.E.; Greenwood, R.; Grist, M.; Debreczeni, J.É. Identification and optimisation of a series of N-(4-anilino-2-pyridyl) acetamide activin receptor-like kinase 1 (ALK1) inhibitors. MedChemComm, 2016, 7(6), 1204-1208.
[115]
Sinclair, A.; Metz, D.; Cushing, T.; Liu, L.; Brake, R.; Starnes, C.; Means, G.; Henne, K.; Archibeque, I.; Mattson, B.; Drew, A. Phosphatidylinositol-3 kinase delta (PI3Kδ) inhibitor AMG 319 is a potent, selective and orally bioavailable small molecule inhibitor that suppresses PI3K-mediated signaling and viability in neoplastic B-cells. Blood, 2011, 118, 4964.
[116]
Zou, H.Y.; Li, Q.; Lee, J.H.; Arango, M.E.; Burgess, K.; Qiu, M.; Engstrom, L.D.; Yamazaki, S.; Parker, M.; Timofeevski, S.; Cui, J.J. Sensitivity of selected human tumor models to PF-04217903, a novel selective c-Met kinase inhibitor. Mol. Cancer Ther., 2012, 11(4), 1036-1047.
[117]
Chon, H.J.; Bae, K.J.; Lee, Y.; Kim, J. The casein kinase 2 inhibitor, CX-4945, as an anti-cancer drug in treatment of human hematological malignancies. Front. Pharmacol., 2015, 6, 70.
[118]
Shah, M.A.; Wainberg, Z.A.; Catenacci, D.V.; Hochster, H.S.; Ford, J.; Kunz, P.; Lee, F.C.; Kallender, H.; Cecchi, F.; Rabe, D.C.; Keer, H. Phase II study evaluating 2 dosing schedules of oral foretinib (GSK1363089), cMET/VEGFR2 inhibitor, in patients with metastatic gastric cancer. PLoS One, 2013, 8(3)e54014