[1]
Shou M, Hayashi M, Pan Y, et al. Modeling, prediction, and in vitro in vivo correlation of CYP3A4 induction. Drug Metab Dispos 2008; 36: 2355-70.
[2]
Kato M, Chiba K, Horikawa M, Sugiyama Y. The quantitative prediction of in vivo enzyme-induction caused by drug exposure from in vitro information on human hepatocytes. Drug Metab Pharmacokinet 2005; 20: 236-43.
[3]
Yamazaki S, Skaptason J, Romero D, Vekich S, Jones HM, Tan W, et al. Prediction of oral pharmacokinetics of cMet kinase inhibitors in humans: Physiologically based pharmacokinetic model versus traditional one-compartment model. Drug Metab Dispos 2011; 39: 383-93.
[4]
Zhu LQ, Yang JW, Zhang Y, Wang YM, Zhang JL, Zhao YY, et al. Prediction of pharmacokinetics and penetration of moxifloxacin in human with intra-abdominal infection based on extrapolated PBPK model. Korean J Physiol Pharmacol 2015; 19(2): 99-104.
[5]
Kuepfer L, Niederalt C, Wendl T, Schlender J, Willmann S, Lippert J, et al. Applied concepts in PBPK modeling: How to build a PBPK/PD model. CPT Pharmacometrics Syst Pharmacol 2016; 5: 516-31.
[6]
Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometrics Syst Pharmacol 2013; 2e63
[7]
Peters SA. Physiologically-Based Pharmacokinetic (PBPK) Modeling and simulations: Principles, Methods, and Applications in the Pharmaceutical Industry. John Wiley & Sons: Hoboken, NJ 2012.
[8]
Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov 2007; 6: 140-8.
[9]
Vinks AA. The future of physiologically based pharmacokinetic modeling to predict drug exposure in pregnant women. CPT Pharmacometrics Syst Pharmacol 2013; 2e33
[10]
Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the ‘bottomup’ and ‘topdown’ approaches in pharmacokinetic modelling: fitting pb pk models to observed clinical data. Br J Clin Pharmacol 2015; 79: 48-55.
[11]
Luzon E, Blake K, Cole S, Nordmark A, Versantvoort C, Berglund EG, et al. Physiologically based pharmacokinetic modeling in regulatory decision-making at the European Medicines Agency. Clin Pharmacol Ther 2016; 102(1): 98-105.
[12]
Wagner C, Zhao P, Pan Y, Hsu V, Grillo J, Huang SM, et al. Application of physiologically based pharmacokinetic (PBPK) modeling to support dose selection: Report of an FDA public workshop on PBPK. CPT Pharmacometrics Syst Pharmacol 2015; 4: 226-30.
[13]
Peters SA. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles. Clin Pharm 2008; 47(4): 245-59.
[14]
Zhuang X, Lu C. PBPK modeling and simulation in drug research and development. Acta Pharm Sin B 2016; 6(5): 430-40.
[15]
Huang SM, Abernethy DR, Wang Y, Zhao P, Zineh I. The utility of modeling and simulation in drug development and regulatory review. J Pharm Sci 2013; 102(9): 2912-23.
[16]
Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res 2009; 26(9): 2039-54.
[17]
Mitch A, Phelps A. Sparreboom CPT-11 Pharmacogenetics: A finished puzzle? J Clin Oncol 2014; 32(22): 2287-9.
[18]
Ayrton A, Morgan P. Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica 2001; 31(8-9): 469-97.
[19]
Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 2001; 42(7): 1007-17.
[20]
Kim RB. Organic anion-transporting polypeptide (OATP) transporter family and drug disposition. Eur J Clin Invest 2003; 33(Suppl. 2): 1-5.
[22]
Mohelnikova-Duchonova B, Melichar B, Soucek P. FOLFOX/FOLFIRI pharmacogenetics: The call for a personalized approachin colorectal cancer therapy. World J Gastroenterol 2014; 20(30): 10316-30.
[23]
US Cancer Statistics Working Group United States Cancer Statistics: 1999-2013 Incidence and Mortality Web-based Report. Atlanta, GA: Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute 2016.
[24]
Center MM, Jemal A, Smith RA. Worldwide variations in colorectal cancer. CA Cancer J Clin 2009; 59: 366-78.
[25]
Ferlay J, Soerjomataram I, Ervik M. Globo Can 2012 v1.0, Cancer
Incidence and Mortality Worldwide: IARC Cancer Base No.11.
Lyon, France: International Agency for Research on Cancer, 2013;
64(3): 381-7.
[26]
Rothenberg ML. CPT-11(CPT-11): Recent developments and future directions-colorectal cancer and beyond. Oncologist 2001; 6: 66-80.
[27]
Kohne CH, Thuss-Patience P, Catane R. A phase II trial of CPT-11 in patients (pts) with advanced gastric carcinoma (AGC). Ann of Oncol 1998; 9: 46-6.
[28]
Sevinc A, Kalender ME, Altinbas M, Ozkan M, Dikilitas M, Camci C. Anatolian Society of Medical Oncology (ASMO) irinotecan as a second-line monotherapy for small cell lung cancer. Asian Pac J Cancer Prev 2011; 12(4): 1055-9.
[29]
Noble CO, Krauze MT, Drummond DC, Yamashita Y, Saito R, Berger MS, et al. Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: Pharmacology and efficacy. Cancer Res 2006; 66: 2801-6.
[30]
Bayever E, Fitzgerald JB, Kim J, Klinz S. Treatment of breast
cancer with liposomal CPT-11. WO2016094402 (2016).
[31]
Heinrich G, Kerb R. Use of irinotecan for improved treatment of
cancer based on MDR1. WO2003013535 (2003).
[32]
Bayever E, Dhindsa N, Fitzgerald J B, Laivins P, Moyo V, Niyikiza C. Methods for treating pancreatic cancer using combination
therapies comprising liposomal irinotecan. US9339497 (2016).
[33]
Bayever E, Dhindsa N, Fitzgerald JB, Laivins P, Moyo V, Niyikiza C. Treatment of pancreatic cancer with liposomal irinotecan.
US20170202840 (2017).
[34]
Chen J, Higgins B, Kolinsky K. Combined treatment with irinotecan
and an epidermal growth factor receptor kinase inhibitor.
US20050272737 (2005).
[35]
Govindarajan R, Zeitlin A. Methods of using thalidomide in
combination with irinotecan. US7479499 (2009).
[36]
Bissery MC, Chiron-Blondel M, Lejeune P, Vrignaud P. Antitumor
combinations containing a VEGf inhibiting agent and irinotecan.
EP2173349 (2011).
[37]
Emanuel D, Ramachandra S. Combination of irinotecan and
revimid for the treating multiple myeloma. WO2004100953
(2004).
[38]
Marsh S, Hoskins JM. Irinotecan pharmacogenomics. APJCP 2010; 11(7): 1003-10.
[39]
Hatfield MJ. Organ-specific carboxylesterase profiling identifies the small intestine and kidney as major contributors of activation of the anticancer prodrug CPT-11. Biochem Pharmacol 2001; 81(1): 24-31.
[40]
Wallace BD. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 2010; 330(6005): 831-5.
[41]
Imran A, Aquilur R, Zhang J A. SN-38 lipid complexes and
their methods of use. US7390502 (2008).
[42]
Govindan SV, Gale JB, Holman NJ, Goldenberg DM. Antibody-
SN-38 Immunoconjugates with a CL2A linker. US,
US9629926 (2017).
[43]
Paulik A, Grim J, Filip S. Predictors of irinotecan toxicity and efficacy in treatment of metastatic colorectral cancer. Acta Med (Hradec Kralove) 2012; 55(4): 153-9.
[44]
Innocenti F, Kroetz DL, Schuetz E, Dolan ME, Ramírez J, Relling M, et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol 2009; 27(16): 2604-14.
[45]
Ratain MJ. Methods and compositions for predicting irinotecan
toxicity. WO2004108954 (2006).
[46]
Govindan SV, Goldenberg DM. Dosages of immunoconjugates
of antibodies and SN-38 for improved efficacy and decreased toxicity.
US9493574 (2016).
[47]
Iusuf D, Ludwig M, Elbatsh A, van Esch A, van de Steeg E, Wagenaar E, et al. OATP1A/1B transporters affect irinotecan and SN-38 pharmacokinetics and carboxylesterase expression in knockout and humanized transgenic mice. Mol Cancer Ther 2014; 13(2): 492-503.
[49]
Rowland M, Balant L, Peck C. Physiologically based pharmacokinetics in drug development and regulatory science: A workshop report. AAPS J 2004; 6: 56-67.
[50]
Gerlowski LE, Jain RK. Physiologically based pharmacokinetic modeling: Principles and applications. J Pharm Sci 1983; 72(10): 1103-27.
[51]
Gospavic R, Knoll P, Mirzaei S, Popov V. Physiologically Based Pharmacokinetic (PBPK) model for biodistribution of radiolabeled peptides in patients with neuroendocrine tumours. Asia Ocean J Nucl Med Biol 2016; 4(2): 90-8.
[52]
Jadhav PR, Cook J, Sinha V, Zhao P, Rostami‐Hodjegan A, Sahasrabudhe V, et al. A proposal for scientific framework enabling specific population drug dosing recommendations. J Clin Pharmacol 2015; 55(10): 1073-8.
[53]
Jamei M, Dickinson GL, Rostami-Hodjegan A. A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: A tale of ‘bottom-up’ vs ‘top-down’ recognition of covariates. Drug Metab Pharmacokinet 2009; 24(1): 53-75.
[54]
Chandrani G. Drug metabolism and pharmacokinetics in drug discovery: A primer for bio-analytical chemists. Curr Sep 2001; 19: 3-11.
[55]
Zhao J, Cao Y, Jusko WJ. Across-species scaling of monoclonal antibody pharmacokinetics using a minimal PBPK model. Pharm Res 2015; 32(10): 3269-81.
[56]
Clewell HJ, Reddy MB, Lave T, Andersen ME. Physiologically Based Pharmacokinetic Modeling. In: Gad SC, Ed. Preclinical Drug Development Handbook. Hoboken: John Wiley & Sons 2008; pp. 1167-227.
[57]
Rivory LP, Haaz MC, Canal P, Lokiec F, Armand JP, Robert J. Pharmacokinetic interrelationships of irinotecan (CPT-11) and its three major plasma metabolites in patients enrolled in Phase I/II trials. Clin Cancer Res 1997; 3: 1261-6.
[58]
Kimie S, Naoko K. A new metabolite of CPT-11 in which formation is mediated by human hepatic cytochrome p-450 3a4. Drug Metab Dispos 2001; 29(11): 1505-13.
[59]
Dodds HM, Haaz MC, Riou JF, Robert J, Rivory LP. Identification of a new metabolite of CPT-11 (irinotecan): Pharmacological properties and activation to SN-38. J Pharmacol Exp Ther 1998; 286: 578-83.
[60]
Leslie E, Carlini N, Meropol J. UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. Clin Cancer Res 2005; 11(3): 1226-36.
[61]
Goodman G. Pharmacokinetics and pharmacodynamics 11 Ed.
Chapter 1. The McGraw-Hill Companies, Inc; 2005. The Pharmacological
Basis of Therapeutics. ISBN:0-07-142280-3.
[62]
Fan Y, Mansoor N, Ahmad T. Physiologically based pharmacokinetic modeling for predicting Irinotecan exposure in human body. Oncotarget 2017; 8(29): 48178-85.
[63]
Takimoto CH. Pharmacokinetics and pharmacodynamic biomarkers in early oncology drug development. Eur J Cancer 2009; 45: 436-8.
[64]
Yap TA, Sandhu SK, Workman P, De Bono JS. Envisioning the future of early anticancer drug development. Nat Rev Cancer 2010; 10(7): 514-9.