[2]
Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched chain amino acids: Beyond nutrition metabolism. Int. J. Mol. Sci., 2018, 19, 954.
[3]
Cefalu, W.T.; Bray, G.A.; Home, P.D.; Garvey, W.T.; Klein, S.; Pi-Sunyer, F.X.; Hu, F.B.; Raz, I.; Van Gaal, L.; Wolfe, B.M.; Ryan, D.H. Advances in the science, treatment, and prevention of the disease of obesity: Reflections from a diabetes care editors’ expert forum. Diabetes Care, 2015, 38, 1567-1582.
[4]
Ma, X.; Ding, W.; Wang, J.; Wu, G.; Zhang, H.; Yin, J.; Zhou, L.; Li, D. LOC66273 isoform 2, a novel protein highly expressed in white adipose tissue, induces adipogenesis in 3T3-L1 cells. J. Nutr., 2012, 142, 448-455.
[5]
Ma, X. Signal proteins involved in glucose and lipid metabolism regulation. Curr. Protein Pept. Sci., 2017, 18, 524.
[6]
Hu, S.; Han, M.; Rezaei, A.; Li, D.; Wu, G.; Ma, X. L-arginine modulates glucose and lipid metabolism in obesity and diabetes. Curr. Protein Pept. Sci., 2017, 18, 599-608.
[7]
Ionut, V.; Burch, M.; Youdim, A.; Bergman, R.N. Gastrointestinal hormones and bariatric surgery-induced weight loss. Obesity (Silver Spring), 2013, 21, 1093-1103.
[8]
Tamboli, R.A.; Antoun, J.; Sidani, R.M.; Clements, A.; Harmata, E.E.; Marks-Shulman, P.; Gaylinn, B.D.; Williams, B.; Clements, R.H.; Albaugh, V.L.; Abumrad, N.N. Metabolic responses to exogenous ghrelin in obesity and early after Roux-en-Y gastric bypass in humans. Diabetes Obes. Metab., 2017, 19, 1267-1275.
[9]
Manning, S.; Pucci, A.; Batterham, R.L. Roux-en-Y gastric bypass: effects on feeding behavior and underlying mechanisms. J. Clin. Invest., 2015, 125, 939-948.
[10]
Yanovski, S.Z.; Yanovski, J.A. Long-term drug treatment for obesity: a systematic and clinical review. JAMA, 2014, 311, 74-86.
[11]
Hall, J.E.; do Carmo, J.M.; da Silva, A.A.; Wang, Z.; Hall, M.E. Obesity-induced hypertension: Interaction of neurohumoral and renal mechanisms. Circ. Res., 2015, 116, 991-1006.
[12]
Lee, E.B.; Mattson, M.P. The neuropathology of obesity: Insights from human disease. Acta Neuropathol., 2014, 127, 3-28.
[13]
Ueno, H.; Nakazato, M. Mechanistic relationship between the vagal afferent pathway, central nervous system and peripheral organs in appetite regulation. J. Diabetes Investig., 2016, 7, 812-818.
[14]
Banks, W.A. Evidence for a cholecystokinin gut-brain axis with modulation by bombesin. Peptides, 1980, 1, 347-351.
[15]
Latorre, R.; Sternini, C.; De Giorgio, R.; Greenwood-Van Meerveld, B. Enteroendocrine cells: A review of their role in brain-gut communication. Neurogastroenterol. Motil., 2016, 28, 620-630.
[16]
Mayer, E.A. Gut feelings: The emerging biology of gut-brain communication. Nat. Rev. Neurosci., 2011, 12, 453-466.
[17]
Guarino, D.; Nannipieri, M.; Iervasi, G.; Taddei, S.; Bruno, R.M. The role of the autonomic nervous system in the pathophysiology of obesity. Front. Physiol., 2017, 8, 665.
[18]
Newgreen, D.F.; Dufour, S.; Howard, M.J.; Landman, K.A. Simple rules for a “simple” nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation. Dev. Biol., 2013, 382, 305-319.
[19]
Chandrasekharan, B.; Srinivasan, S. Diabetes and the enteric nervous system. Neurogastroenterol. Motil., 2007, 19, 951-960.
[20]
Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol., 2015, 28, 203-209.
[21]
Baudry, C.; Reichardt, F.; Marchix, J.; Bado, A.; Schemann, M.; des Varannes, S.B.; Neunlist, M.; Moriez, R. Diet-induced obesity has neuroprotective effects in murine gastric enteric nervous system: Involvement of leptin and glial cell line-derived neurotrophic factor. J. Physiol., 2012, 590, 533-544.
[22]
Agustí, A.; García-Pardo, M.P.; López-Almela, I.; Campillo, I.; Maes, M.; Romaní-Pérez, M.; Sanz, Y. Interplay between the gut-brain axis, obesity and cognitive function. Front. Neurosci., 2018, 12, 155.
[23]
Adamska, E.; Ostrowska, L.; Górska, M.; Krętowski, A. The role of gastrointestinal hormones in the pathogenesis of obesity and type 2 diabetes. Prz. Gastroenterol., 2014, 9, 69-76.
[24]
Alamshah, A.; McGavigan, A.K.; Spreckley, E.; Kinsey-Jones, J.S.; Amin, A.; Tough, I.R.; O’Hara, H.C.; Moolla, A.; Banks, K.; France, R.; Hyberg, G.; Norton, M.; Cheong, W.; Lehmann, A.; Bloom, S.R.; Cox, H.M.; Murphy, K.G. L-arginine promotes gut hormone release and reduces food intake in rodents. Diabetes Obes. Metab., 2016, 18, 508-518.
[25]
Ma, N.; Guo, P.; Zhang, J.; He, T.; Kim, S.W.; Zhang, G.; Ma, X. Nutrients mediate intestinal bacteria-mucosal immune crosstalk. Front. Immunol., 2018, 9, 5.
[26]
Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: A double-edged sword for health? Adv. Nutr., 2018, 9, 21-29.
[27]
Magkos, F.; Fraterrigo, G.; Yoshino, J.; Luecking, C.; Kirbach, K.; Kelly, S.C.; de Las Fuentes, L.; He, S.; Okunade, A.L.; Patterson, B.W.; Klein, S. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab., 2016, 23, 591-601.
[28]
Clemmensen, C.; Müller, T.D.; Woods, S.C.; Berthoud, H.R.; Seeley, R.J.; Tschöp, M.H. Gut-brain cross-talk in metabolic control. Cell, 2017, 168, 758-774.
[29]
Fan, P.; Li, L.; Rezaei, A.; Eslamfam, S.; Che, D.; Ma, X. Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Curr. Protein Pept. Sci., 2015, 16, 646-654.
[30]
Tan, T.; Behary, P.; Tharakan, G.; Minnion, J.; Al-Najim, W.; Albrechtsen, N.J.W.; Holst, J.J.; Bloom, S.R. The effect of a subcutaneous infusion of GLP-1, OXM, and PYY on energy intake and expenditure in obese volunteers. J. Clin. Endocrinol. Metab., 2017, 102, 2364-2372.
[31]
Iepsen, E.W.; Zhang, J.; Thomsen, H.S.; Hansen, E.L.; Hollensted, M.; Madsbad, S.; Hansen, T.; Holst, J.J.; Holm, J.C.; Torekov, S.S. Patients with obesity caused by melanocortin-4 receptor mutations can be treated with a glucagon-like peptide-1 receptor agonist. Cell Metab., 2018, 28, 23-32.
[32]
Stephens, R.W.; Arhire, L.; Covasa, M. Gut microbiota: From microorganisms to metabolic organ influencing obesity. Obesity (Silver Spring), 2018, 26, 801-809.
[33]
Bauer, P.V.; Hamr, S.C.; Duca, F.A. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell. Mol. Life Sci., 2016, 73, 737-755.
[34]
van de Wouw, M.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. Microbiota-gut-brain axis: modulator of host metabolism and appetite. J. Nutr., 2017, 147, 727-745.
[35]
Priyadarshini, M.; Wicksteed, B.; Schiltz, G.E.; Gilchrist, A.; Layden, B.T. SCFA receptors in pancreatic β cells: Novel diabetes targets? Trends Endocrinol. Metab., 2016, 27, 653-664.
[36]
Tang, C.; Offermanns, S. FFA2 and FFA3 in metabolic regulation. Handb. Exp. Pharmacol., 2017, 236, 205-220.
[37]
Breton, J.; Tennoune, N.; Lucas, N.; Francois, M.; Legrand, R.; Jacquemot, J.; Goichon, A.; Guérin, C.; Peltier, J.; Pestel-Caron, M.; Chan, P.; Vaudry, D.; do Rego, J.C.; Liénard, F.; Pénicaud, L.; Fioramonti, X.; Ebenezer, I.S.; Hökfelt, T.; Déchelotte, P.; Fetissov, S.O. Gut commensal e. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab., 2016, 23, 324-334.
[38]
Perry, R.J.; Peng, L.; Barry, N.A.; Cline, G.W.; Zhang, D.; Cardone, R.L.; Petersen, K.F.; Kibbey, R.G.; Goodman, A.L.; Shulman, G.I. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature, 2016, 534, 213-217.
[39]
Kanoski, S.E.; Hayes, M.R.; Skibicka, K.P. GLP-1 and weight loss: Unraveling the diverse neural circuitry. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2016, 310, R885-R895.
[40]
Dailey, M.J.; Moran, T.H. Glucagon-like peptide 1 and appetite. Trends Endocrinol. Metab., 2013, 24, 85-91.
[41]
Narayanaswami, V.; Dwoskin, L.P. Obesity: Current and potential pharmacotherapeutics and targets. Pharmacol. Ther., 2017, 170, 116-147.
[42]
Huang, T.; Zheng, Y.; Hruby, A.; Williamson, D.A.; Bray, G.A.; Shen, Y.; Sacks, F.M.; Qi, L. Dietary protein modifies the effect of the MC4R genotype on 2-year changes in appetite and food craving: The POUNDS lost trial. J. Nutr., 2017, 147, 439-444.
[43]
Painchaud Guérard, G. Lemieux, S1.; Doucet, É.; Pomerleau, S.; Provencher, V. Influence of nutrition claims on appetite sensations according to sex, weight status, and restrained eating. J. Obes., 2016, 20169475476
[44]
Liedtke, W.B.; McKinley, M.J.; Walker, L.L.; Zhang, H.; Pfenning, A.R.; Drago, J.; Hochendoner, S.J.; Hilton, D.L.; Lawrence, A.J.; Denton, D.A. Relation of addiction genes to hypothalamic gene changes subserving genesis and gratification of a classic instinct, sodium appetite. Proc. Natl. Acad. Sci. USA, 2011, 108, 12509-12514.
[45]
D’Agostino, G.; Lyons, D.J.; Cristiano, C.; Burke, L.K.; Madara, J.C.; Campbell, J.N.; Garcia, A.P.; Land, B.B.; Lowell, B.B.; Dileone, R.J.; Heisler, L.K. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. eLife, 2016, 5e12225
[46]
Fan, P.; Liu, P.; Song, P.; Chen, X.; Ma, X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep., 2017, 7, 43412.
[47]
Bi, S.; Kim, Y.J.; Zheng, F. Dorsomedial hypothalamic NPY and energy balance control. Neuropeptides, 2012, 46, 309-314.
[48]
Bliss, E.S.; Whiteside, E. The gut-brain axis, the human gut microbiota and their integration in the development of obesity. Front. Physiol., 2018, 9, 900.
[49]
Loh, K.; Zhang, L.; Brandon, A.; Wang, Q.; Begg, D.; Qi, Y.; Fu, M.; Kulkarni, R.; Teo, J.; Baldock, P.; Brüning, J.C.; Cooney, G.; Neely, G.; Herzog, H. Insulin controls food intake and energy balance via NPY neurons. Mol. Metab., 2017, 6, 574-584.
[50]
Macarthur, H.; Wilken, G.H.; Westfall, T.C.; Kolo, L.L. Neuronal and non-neuronal modulation of sympathetic neurovascular transmission. Acta Physiol. (Oxf.), 2011, 203, 37-45.
[51]
Toneff, T.; Funkelstein, L.; Mosier, C.; Abagyan, A.; Ziegler, M.; Hook, V. Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters. Peptides, 2013, 46, 126-135.
[52]
Ballinger, A.B.; Williams, G.; Corder, R.; El-Haj, T.; Farthing, M.J. Role of hypothalamic neuropeptide Y and orexigenic peptides in anorexia associated with experimental colitis in the rat. Clin. Sci. (Lond.), 2001, 100, 221-229.
[54]
Meng, F.; Han, Y.; Srisai, D.; Belakhov, V.; Farias, M.; Xu, Y.; Palmiter, R.D.; Baasov, T.; Wu, Q. New inducible genetic method reveals critical roles of GABA in the control of feeding and metabolism. Proc. Natl. Acad. Sci. USA, 2016, 113, 3645-3650.
[55]
Hohmann, J.G.; Teklemichael, D.N.; Weinshenker, D.; Wynick, D.; Clifton, D.K.; Steiner, R.A. Obesity and endocrine dysfunction in mice with deletions of both neuropeptide Y and galanin. Mol. Cell. Biol., 2004, 24, 2978-2985.
[56]
Jin, J.; Xu, G.X.; Yuan, Z.L. Influence of the hypothalamic arcuate nucleus on intraocular pressure and the role of opioid peptides. PLoS One, 2014, 9e82315
[57]
Mandelblat-Cerf, Y.; Ramesh, R.N.; Burgess, C.R.; Patella, P.; Yang, Z.; Lowell, B.B.; Andermann, M.L. Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales. eLife, 2015, 4e07122
[58]
Lee, B.; Kim, J.; An, T.; Kim, S.; Patel, E.M.; Raber, J.; Lee, S.K.; Lee, S.; Lee, J.W. Dlx1/2 and Otp coordinate the production of hypothalamic GHRH- and AgRP-neurons. Nat. Commun., 2018, 9, 2026.
[59]
Reichmann, F.; Holzer, P.; Neuropeptide, Y. A stressful review. Neuropeptides, 2016, 55, 99-109.
[60]
Yulyaningsih, E.; Zhang, L.; Herzog, H.; Sainsbury, A. NPY receptors as potential targets for anti-obesity drug development. Br. J. Pharmacol., 2011, 163, 1170-1202.
[61]
Zhang, W.; Cline, M.A.; Gilbert, E.R. Hypothalamus-adipose tissue crosstalk: neuropeptide Y and the regulation of energy metabolism. Nutr. Metab. (Lond.), 2014, 11, 27.
[62]
Qi, Y.; Fu, M.; Herzog, H. Y2 receptor signalling in NPY neurons controls bone formation and fasting induced feeding but not spontaneous feeding. Neuropeptides, 2016, 55, 91-97.
[63]
Shi, Y.C.; Lin, S.; Wong, I.P.; Baldock, P.A.; Aljanova, A.; Enriquez, R.F.; Castillo, L.; Mitchell, N.F.; Ye, J.M.; Zhang, L.; Macia, L.; Yulyaningsih, E.; Nguyen, A.D.; Riepler, S.J.; Herzog, H.; Sainsbury, A. NPY neuron-specific Y2 receptors regulate adipose tissue and trabecular bone but not cortical bone homeostasis in mice. PLoS One, 2010, 5e11361
[64]
Kuo, L.E.; Kitlinska, J.B.; Tilan, J.U.; Li, L.; Baker, S.B.; Johnson, M.D.; Lee, E.W.; Burnett, M.S.; Fricke, S.T.; Kvetnansky, R.; Herzog, H.; Zukowska, Z. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat. Med., 2007, 13, 803-811.
[65]
Herzog, H.; Darby, K.; Ball, H.; Hort, Y.; Beck-Sickinger, A.; Shine, J. Overlapping gene structure of the human neuropeptide Y receptor subtypes Y1 and Y5 suggests coordinate transcriptional regulation. Genomics, 1997, 41, 315-319.
[66]
Nichol, K.A.; Morey, A.; Couzens, M.H.; Shine, J.; Herzog, H.; Cunningham, A.M. Conservation of expression of neuropeptide Y5 receptor between human and rat hypothalamus and limbic regions suggests an integral role in central neuroendocrine control. J. Neurosci., 1999, 19, 10295-10304.
[67]
Shi, Y.C.; Lin, S.; Castillo, L.; Aljanova, A.; Enriquez, R.F.; Nguyen, A.D.; Baldock, P.A.; Zhang, L.; Bijker, M.S.; Macia, L.; Yulyaningsih, E.; Zhang, H.; Lau, J.; Sainsbury, A.; Herzog, H. Peripheral-specific y2 receptor knockdown protects mice from high-fat diet-induced obesity. Obesity (Silver Spring), 2011, 19, 2137-2148.
[68]
Liu, S.; Marcelin, G.; Blouet, C.; Jeong, J.H.; Jo, Y.H.; Schwartz, G.J.; Chua, S., Jr A gut-brain axis regulating glucose metabolism mediated by bile acids and competitive fibroblast growth factor actions at the hypothalamus. Mol. Metab., 2018, 8, 37-50.
[69]
Laing, B.T.; Li, P.; Schmidt, C.A.; Bunner, W.; Yuan, Y.; Landry, T.; Prete, A.; McClung, J.M.; Huang, H. AgRP/NPY neuron excitability is modulated by metabotropic glutamate receptor 1 during fasting. Front. Cell. Neurosci., 2018, 12, 276.
[70]
Yang, K.; Guan, H.; Arany, E.; Hill, D.J.; Cao, X. Neuropeptide Y is produced in visceral adipose tissue and promotes proliferation of adipocyte precursor cells via the Y1 receptor. FASEB J., 2008, 22, 2452-2464.
[71]
Loh, K.; Herzog, H.; Shi, Y.C. Regulation of energy homeostasis by the NPY system. Trends Endocrinol. Metab., 2015, 26, 125-135.
[72]
Steinert, R.E.; Feinle-Bisset, C.; Asarian, L.; Horowitz, M.; Beglinger, C.; Geary, N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol. Rev., 2017, 97, 411-463.
[73]
Chandarana, K.; Drew, M.E.; Emmanuel, J.; Karra, E.; Gelegen, C.; Chan, P.; Cron, N.J.; Batterham, R.L. Subject standardization, acclimatization, and sample processing affect gut hormone levels and appetite in humans. Gastroenterology, 2009, 136, 2115-2126.
[74]
Hill, B.R.; De Souza, M.J.; Williams, N.I. Characterization of the diurnal rhythm of peptide YY and its association with energy balance parameters in normal-weight premenopausal women. Am. J. Physiol. Endocrinol. Metab., 2011, 301, E409-E415.
[75]
Holzer, P.; Reichmann, F.; Farzi, A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides, 2012, 46, 261-274.
[76]
Batterham, R.L.; Heffron, H.; Kapoor, S.; Chivers, J.E.; Chandarana, K.; Herzog, H.; Le Roux, C.W.; Thomas, E.L.; Bell, J.D.; Withers, D.J. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab., 2006, 4, 223-233.
[77]
Sedlackova, D.; Kopeckova, J.; Papezova, H.; Hainer, V.; Kvasnickova, H.; Hill, M.; Nedvidkova, J. Comparison of a high-carbohydrate and high-protein breakfast effect on plasma ghrelin, obestatin, NPY and PYY levels in women with anorexia and bulimia nervosa. Nutr. Metab. (Lond.), 2012, 9, 52.
[78]
Ballantyne, G.H. Peptide YY(1-36) and peptide YY(3-36): Part I. Distribution, release and actions. Obes. Surg., 2006, 16, 651-658.
[79]
Nadkarni, P.P.; Costanzo, R.M.; Sakagami, M. Pulmonary delivery of peptide YY for food intake suppression and reduced body weight gain in rats. Diabetes Obes. Metab., 2011, 13, 408-417.
[80]
Sloth, B.; Davidsen, L.; Holst, J.J.; Flint, A.; Astrup, A. Effect of subcutaneous injections of PYY1-36 and PYY3-36 on appetite, ad libitum energy intake, and plasma free fatty acid concentration in obese males. Am. J. Physiol. Endocrinol. Metab., 2007, 293, E604-E609.
[81]
Batterham, R.L.; Cowley, M.A.; Small, C.J.; Herzog, H.; Cohen, M.A.; Dakin, C.L.; Wren, A.M.; Brynes, A.E.; Low, M.J.; Ghatei, M.A.; Cone, R.D.; Bloom, S.R. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature, 2002, 418, 650-654.
[82]
Batterham, R.L. ffytche, D.H.; Rosenthal, J.M.; Zelaya, F.O.; Barker, G.J.; Withers, D.J.; Williams, S.C. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature, 2007, 450, 106-109.
[83]
Alhadeff, A.L.; Golub, D.; Hayes, M.R.; Grill, H.J. Peptide YY signaling in the lateral parabrachial nucleus increases food intake through the Y1 receptor. Am. J. Physiol. Endocrinol. Metab., 2015, 309, E759-E766.
[84]
Teubner, B.J.; Bartness, T.J. PYY(3-36) into the arcuate nucleus inhibits food deprivation-induced increases in food hoarding and intake. Peptides, 2013, 47, 20-28.
[85]
Suzuki, Y.; Nakahara, K.; Maruyama, K.; Okame, R.; Ensho, T.; Inoue, Y.; Murakami, N. Changes in mRNA expression of arcuate nucleus appetite-regulating peptides during lactation in rats. J. Mol. Endocrinol., 2014, 52, 97-109.
[86]
Minor, R.K.; Chang, J.W.; de Cabo, R. Hungry for life: How the arcuate nucleus and neuropeptide Y may play a critical role in mediating the benefits of calorie restriction. Mol. Cell. Endocrinol., 2009, 299, 79-88.
[87]
Abbott, C.R.; Small, C.J.; Kennedy, A.R.; Neary, N.M.; Sajedi, A.; Ghatei, M.A.; Bloom, S.R. Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3-36) on food intake. Brain Res., 2005, 1043, 139-144.
[88]
Zhang, L.; Nguyen, A.D.; Lee, I.C.; Yulyaningsih, E.; Riepler, S.J.; Stehrer, B.; Enriquez, R.F.; Lin, S.; Shi, Y.C.; Baldock, P.A.; Sainsbury, A.; Herzog, H. NPY modulates PYY function in the regulation of energy balance and glucose homeostasis. Diabetes Obes. Metab., 2012, 14, 727-736.
[89]
He, T.; He, L.; Gao, E.; Hu, J.; Zang, J.; Wang, C.; Zhao, J.; Ma, X. Fat deposition deficiency is critical for the high mortality of pre-weanling newborn piglets. J. Anim. Sci. Biotechnol., 2018, 9, 66.
[90]
Huang, X.F.; Yu, Y.; Beck, E.J.; South, T.; Li, Y.; Batterham, M.J.; Tapsell, L.C.; Chen, J. Diet high in oat β-glucan activates the gut-hypothalamic (PYY3-36-NPY) axis and increases satiety in diet-induced obesity in mice. Mol. Nutr. Food Res., 2011, 55, 1118-1121.
[91]
Konturek, S.J.; Konturek, J.W.; Pawlik, T.; Brzozowski, T. Brain‐gut axis and its role in the control of food intake. J. Physiol. Pharmacol., 2004, 55, 137-154.
[92]
Schéle, E.; Grahnemo, L.; Anesten, F.; Halleń, A.; Backhed, F.; Jansson, J.O. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology, 2013, 154, 3643-3651.
[93]
Rao, S.; Schieber, A.M.P.; O’Connor, C.P.; Leblanc, M.; Michel, D.; Ayres, J.S. Pathogen-mediated inhibition of anorexia promotes host survival and transmission. Cell, 2017, 168, 503-516.
[94]
Husebye, E.; Hellström, P.M.; Sundler, F.; Chen, J.; Midtvedt, T. Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 280, G368-G380.
[95]
El Karim, I.A.; Linden, G.J.; Orr, D.F.; Lundy, F.T. Antimicrobial activity of neuropeptides against a range of micro-organisms from skin, oral, respiratory and gastrointestinal tract sites. J. Neuroimmunol., 2008, 200, 11-16.
[96]
Liu, R.; Zhang, C.; Shi, Y.; Zhang, F.; Li, L.; Wang, X.; Ling, Y.; Fu, H.; Dong, W.; Shen, J.; Reeves, A.; Greenberg, A.S.; Zhao, L.; Peng, Y.; Ding, X. Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Front. Microbiol., 2017, 8, 324.
[97]
Chambers, E.S.; Viardot, A.; Psichas, A.; Morrison, D.J.; Murphy, K.G.; Zac-Varghese, S.E.; MacDougall, K.; Preston, T.; Tedford, C.; Finlayson, G.S.; Blundell, J.E.; Bell, J.D.; Thomas, E.L.; Mt-Isa, S.; Ashby, D.; Gibson, G.R.; Kolida, S.; Dhillo, W.S.; Bloom, S.R.; Morley, W.; Clegg, S.; Frost, G. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut, 2015, 64, 1744-1754.
[98]
Samuel, B.S.; Shaito, A.; Motoike, T.; Rey, F.E.; Backhed, F.; Manchester, J.K.; Hammer, R.E.; Williams, S.C.; Crowley, J.; Yanagisawa, M.; Gordon, J.I. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl. Acad. Sci. USA, 2008, 105, 16767-16772.
[99]
Larraufie, P.; Doré, J.; Lapaque, N.; Blottière, H.M. TLR ligands and butyrate increase Pyy expression through two distinct but inter-regulated pathways. Cell. Microbiol., 2017, 19e12648
[100]
Huang, C.; Song, P.; Fan, P.; Hou, C.; Thacker, P.A.; Ma, X. Dietary sodium butyrate decreased postweaning diarrhea by modulating intestinal permeability and changing the bacterial community in weaned piglets. J. Nutr., 2015, 145, 2774-2780.
[101]
Goodlad, R.A.; Ratcliffe, B.; Fordham, J.P.; Ghatei, M.A.; Domin, J.; Bloom, S.R.; Wright, N.A. Plasma enteroglucagon, gastrin and peptide YY in conventional and germ-free rats refed with a fibre-free or fibre-supplemented diet. Q. J. Exp. Physiol., 1989, 74, 437-442.
[102]
Hong, K.B.; Kim, J.H.; Kwon, H.K.; Han, S.H.; Park, Y.; Suh, H.J. Evaluation of prebiotic effects of high-purity galactooligosaccharides in vitro and in vivo. Food Technol. Biotechnol., 2016, 54, 156-163.
[103]
van der Beek, C.M.; Canfora, E.E.; Kip, A.M.; Gorissen, S.H.M.; Olde Damink, S.W.M.; van Eijk, H.M.; Holst, J.J.; Blaak, E.E.; Dejong, C.H.C.; Lenaerts, K. The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism, 2018, 87, 25-35.
[104]
Rahat-Rozenbloom, S.; Fernandes, J.; Cheng, J.; Wolever, T.M.S. Acute increases in serum colonic short-chain fatty acids elicited by inulin do not increase GLP-1 or PYY responses but may reduce ghrelin in lean and overweight humans. Eur. J. Clin. Nutr., 2017, 71, 953-958.
[105]
Nilsson, A.; Johansson-Boll, E.; Sandberg, J.; Björck, I. Gut microbiota mediated benefits of barley kernel products on metabolism, gut hormones, and inflammatory markers as affected by co-ingestion of commercially available probiotics: A randomized controlled study in healthy subjects. Clin. Nutr. ESPEN, 2016, 15, 49-56.
[106]
Yang, Z.; Han, S.; Keller, M.; Kaiser, A.; Bender, B.J.; Bosse, M.; Burkert, K.; Kögler, L.M.; Wifling, D.; Bernhardt, G.; Plank, N.; Littmann, T.; Schmidt, P.; Yi, C.; Li, B.; Ye, S.; Zhang, R.; Xu, B.; Larhammar, D.; Stevens, R.C.; Huster, D.; Meiler, J.; Zhao, Q. Beck-Sickinger, A.G.; Buschauer, A.; Wu, B. Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor. Nature, 2018, 556, 520-524.