Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Potential metabolic and behavioural roles of the putative endocannabinoid receptors GPR18, GPR55 and GPR119 in feeding

Author(s): Ricardo E. Ramírez-Orozco, Ricardo García-Ruiz, Paula Morales, Carlos M. Villalón, J. Rafael Villafán-Bernal and Bruno A. Marichal-Cancino*

Volume 17, Issue 10, 2019

Page: [947 - 960] Pages: 14

DOI: 10.2174/1570159X17666190118143014

Price: $65

Abstract

Endocannabinoids are ancient biomolecules involved in several cellular (e.g., metabolism) and physiological (e.g., eating behaviour) functions. Indeed, eating behaviour alterations in marijuana users have led to investigate the orexigenic/anorexigenic effects of cannabinoids in animal/ human models. This increasing body of research suggests that the endocannabinoid system plays an important role in feeding control. Accordingly, within the endocannabinoid system, cannabinoid receptors, enzymes and genes represent potential therapeutic targets for dealing with multiple metabolic and behavioural dysfunctions (e.g., obesity, anorexia, etc.). Paradoxically, our understanding on the endocannabinoid system as a cellular mediator is yet limited. For example: (i) only two cannabinoid receptors have been classified, but they are not enough to explain the pharmacological profile of several experimental effects induced by cannabinoids; and (ii) several orphan G protein-coupled receptors (GPCRs) interact with cannabinoids and we do not know how to classify them (e.g., GPR18, GPR55 and GPR119; amongst others).

On this basis, the present review attempts to summarize the lines of evidence supporting the potential role of GPR18, GPR55 and GPR119 in metabolism and feeding control that may explain some of the divergent effects and puzzling data related to cannabinoid research. Moreover, their therapeutic potential in feeding behaviour alterations will be considered.

Keywords: Feeding control, endocannabinoid system, GPR18, GPR55, GPR119.

Graphical Abstract

[1]
Blundell, J.E.; Lawton, C.L.; Cotton, J.R.; Macdiarmid, J.I. Control of human appetite: Implications for the intake of dietary fat. Annu. Rev. Nutr., 1996, 16(1), 285-319.
[http://dx.doi.org/10.1146/ annurev.nu.16.070196.001441] [PMID: 8839929]
[2]
Koball, A.M.; Meers, M.R.; Storfer-Isser, A.; Domoff, S.E.; Musher-Eizenman, D.R. Eating when bored: revision of the emotional eating scale with a focus on boredom. Health Psychol., 2012, 31(4), 521-524.
[http://dx.doi.org/10.1037/a0025893] [PMID: 22004466]
[3]
Formisano, R.; Voogt, R.D.; Buzzi, M.G.; Vinicola, V.; Penta, F.; Peppe, A.; Stanzione, P. Time interval of oral feeding recovery as a prognostic factor in severe traumatic brain injury. Brain Inj., 2004, 18(1), 103-109.
[http://dx.doi.org/10.1080/0269905031000149470] [PMID: 14660239]
[4]
Waterson, M.J.; Horvath, T.L. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab., 2015, 22(6), 962-970.
[http://dx.doi.org/10.1016/j.cmet.2015.09. 026] [PMID: 26603190]
[5]
Elmquist, J.K.; Elias, C.F.; Saper, C.B. From lesions to leptin: Hypothalamic control of food intake and body weight. Neuron, 1999, 22(2), 221-232.
[http://dx.doi.org/10.1016/S0896-6273(00) 81084-3] [PMID: 10069329]
[6]
Pinto, S.; Roseberry, A.G.; Liu, H.; Diano, S.; Shanabrough, M.; Cai, X.; Friedman, J.M.; Horvath, T.L. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science, 2004, 304(5667), 110-115.
[http://dx.doi.org/10.1126/science.1089459] [PMID: 15064421]
[7]
Ahima, R.S.; Antwi, D.A. Brain regulation of appetite and satiety. Endocrinol. Metab. Clin. North Am., 2008, 37(4), 811-823.
[http://dx.doi.org/10.1016/j.ecl.2008.08.005] [PMID: 19026933]
[8]
Wirth, M.M.; Giraudo, S.Q. Agouti-related protein in the hypothalamic paraventricular nucleus: effect on feeding. Peptides, 2000, 21(9), 1369-1375.
[http://dx.doi.org/10.1016/S0196-9781(00)00280-1] [PMID: 11072124]
[9]
Gehlert, D.R.; Beavers, L.S.; Johnson, D.; Gackenheimer, S.L.; Schober, D.A.; Gadski, R.A. Expression cloning of a human brain neuropeptide Y Y2 receptor. Mol. Pharmacol., 1996, 49(2), 224-228.
[PMID: 8632753]
[10]
Sainsbury, A.; Cooney, G.J.; Herzog, H. Hypothalamic regulation of energy homeostasis. Best Pract. Res. Clin. Endocrinol. Metab., 2002, 16(4), 623-637.
[http://dx.doi.org/10.1053/beem.2002.0230] [PMID: 12468411]
[11]
Ollmann, M.M.; Wilson, B.D.; Yang, Y.K.; Kerns, J.A.; Chen, Y.; Gantz, I.; Barsh, G.S. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science, 1997, 278(5335), 135-138.
[http://dx.doi.org/10.1126/science.278.5335. 135] [PMID: 9311920]
[12]
Lau, J.; Herzog, H. CART in the regulation of appetite and energy homeostasis. Front. Neurosci., 2014, 8, 313.
[http://dx.doi.org/ 10.3389/fnins.2014.00313] [PMID: 25352770]
[13]
Yanik, T.; Dominguez, G.; Kuhar, M.J.; Del Giudice, E.M.; Loh, Y.P. The Leu34Phe ProCART mutation leads to cocaine- and amphetamine-regulated transcript (CART) deficiency: A possible cause for obesity in humans. Endocrinology, 2006, 147(1), 39-43.
[http://dx.doi.org/10.1210/en.2005-0812] [PMID: 16210370]
[14]
Wang, X.; Lacza, Z.; Sun, Y.E.; Han, W. Leptin resistance and obesity in mice with deletion of methyl-CpG-binding protein 2 (MeCP2) in hypothalamic pro-opiomelanocortin (POMC) neurons. Diabetologia, 2014, 57(1), 236-245.
[http://dx.doi.org/10.1007/ s00125-013-3072-0] [PMID: 24078059]
[15]
Lau, J.; Farzi, A.; Qi, Y.; Heilbronn, R.; Mietzsch, M.; Shi, Y.C.; Herzog, H. CART neurons in the arcuate nucleus and lateral hypothalamic area exert differential controls on energy homeostasis. Mol. Metab., 2018, 7, 102-118.
[http://dx.doi.org/10.1016/j. molmet.2017.10.015] [PMID: 29146410]
[16]
Luquet, S.; Perez, F.A.; Hnasko, T.S.; Palmiter, R.D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science, 2005, 310(5748), 683-685.
[http://dx.doi.org/10. 1126/science.1115524] [PMID: 16254186]
[17]
Silva, A.P.; Kaufmann, J.E.; Vivancos, C.; Fakan, S.; Cavadas, C.; Shaw, P.; Brunner, H.R.; Vischer, U.; Grouzmann, E. Neuropeptide Y expression, localization and cellular transducing effects in HUVEC. Biol. Cell, 2005, 97(6), 457-467.
[http://dx.doi.org/10. 1042/BC20040102] [PMID: 15850450]
[18]
Acuna-Goycolea, C.; Tamamaki, N.; Yanagawa, Y.; Obata, K.; van den Pol, A.N. Mechanisms of neuropeptide Y, peptide YY, and pancreatic polypeptide inhibition of identified green fluorescent protein-expressing GABA neurons in the hypothalamic neuroendocrine arcuate nucleus. J. Neurosci., 2005, 25(32), 7406-7419.
[http://dx.doi.org/10.1523/JNEUROSCI.1008-05.2005] [PMID: 16093392]
[19]
Alexander, S.P.; Christopoulos, A.; Davenport, A.P.; Kelly, E.; Marrion, N.V.; Peters, J.A.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; Sharman, J.L.; Southan, C.; Davies, J.A.; Collaborators, C. The concise guide to pharmacology 2017/18: G protein-coupled receptors. Br J Pharmacol, 2017, 174(Suppl 1(S1)), S17, S129.
[20]
Sainsbury, A.; Schwarzer, C.; Couzens, M.; Jenkins, A.; Oakes, S.R.; Ormandy, C.J.; Herzog, H. Y4 receptor knockout rescues fertility in ob/ob mice. Genes Dev., 2002, 16(9), 1077-1088.
[http://dx.doi.org/10.1101/gad.979102] [PMID: 12000791]
[21]
Kushi, A.; Sasai, H.; Koizumi, H.; Takeda, N.; Yokoyama, M.; Nakamura, M. Obesity and mild hyperinsulinemia found in neuropeptide Y-Y1 receptor-deficient mice. Proc. Natl. Acad. Sci. USA, 1998, 95(26), 15659-15664.
[http://dx.doi.org/10.1073/pnas. 95.26.15659] [PMID: 9861026]
[22]
Naveilhan, P.; Hassani, H.; Canals, J.M.; Ekstrand, A.J.; Larefalk, A.; Chhajlani, V.; Arenas, E.; Gedda, K.; Svensson, L.; Thoren, P.; Ernfors, P. Normal feeding behavior, body weight and leptin response require the neuropeptide Y-Y2 receptor. Nat. Med., 1999, 5(10), 1188-1193.
[http://dx.doi.org/10.1038/13514] [PMID: 10502824]
[23]
Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 1999, 402(6762), 656-660.
[http://dx.doi.org/10.1038/45230] [PMID: 10604470]
[24]
Ekblad, E.; Sundler, F. Distribution of pancreatic polypeptide and peptide YY. Peptides, 2002, 23(2), 251-261.
[http://dx.doi.org/10. 1016/S0196-9781(01)00601-5] [PMID: 11825640]
[25]
Hahn, T.M.; Breininger, J.F.; Baskin, D.G.; Schwartz, M.W. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci., 1998, 1(4), 271-272.
[http://dx.doi.org/10. 1038/1082] [PMID: 10195157]
[26]
Thomas, M.A.; Xue, B. Mechanisms for AgRP neuron-mediated regulation of appetitive behaviors in rodents. Physiol. Behav., 2018, 190, 34-42.
[http://dx.doi.org/10.1016/j.physbeh.2017.10.006] [PMID: 29031550]
[27]
Malacara, J.M. Mecanismos regulatorios de la ingestión de alimentos¿ Al fin un tratamiento a la vista. Rev Endocrin Nutric, 2004, 12(4), 188-198.
[28]
Chen, A.S.; Marsh, D.J.; Trumbauer, M.E.; Frazier, E.G.; Guan, X.M.; Yu, H.; Rosenblum, C.I.; Vongs, A.; Feng, Y.; Cao, L.; Metzger, J.M.; Strack, A.M.; Camacho, R.E.; Mellin, T.N.; Nunes, C.N.; Min, W.; Fisher, J.; Gopal-Truter, S.; MacIntyre, D.E.; Chen, H.Y.; Van der Ploeg, L.H. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet., 2000, 26(1), 97-102.
[http://dx.doi.org/10.1038/ 79254] [PMID: 10973258]
[29]
Schiöth, H.B.; Kask, A.; Mutulis, F.; Muceniece, R.; Mutule, I.; Mutule, I.; Mandrika, I.; Wikberg, J.E. Novel selective melanocortin 4 receptor antagonist induces food intake after peripheral administration. Biochem. Biophys. Res. Commun., 2003, 301(2), 399-405.
[http://dx.doi.org/10.1016/S0006-291X(02)03065-6] [PMID: 12565874]
[30]
Uehara, Y.; Shimizu, H.; Ohtani, K.; Sato, N.; Mori, M. Hypothalamic corticotropin-releasing hormone is a mediator of the anorexigenic effect of leptin. Diabetes, 1998, 47(6), 890-893.
[http://dx.doi.org/10.2337/diabetes.47.6.890] [PMID: 9604864]
[31]
Brubaker, P.L.; Anini, Y. Direct and indirect mechanisms regulating secretion of glucagon-like peptide-1 and glucagon-like peptide-2. Can. J. Physiol. Pharmacol., 2003, 81(11), 1005-1012.
[http://dx.doi.org/10.1139/y03-107] [PMID: 14719035]
[32]
Scott, M.M.; Williams, K.W.; Rossi, J.; Lee, C.E.; Elmquist, J.K. Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J. Clin. Invest., 2011, 121(6), 2413-2421.
[http://dx.doi.org/10.1172/JCI43703] [PMID: 21606595]
[33]
McMinn, J.E.; Sindelar, D.K.; Havel, P.J.; Schwartz, M.W. Leptin deficiency induced by fasting impairs the satiety response to cholecystokinin. Endocrinology, 2000, 141(12), 4442-4448.
[http://dx.doi.org/10.1210/endo.141.12.7815] [PMID: 11108253]
[34]
Stubbs, J.; Ferres, S.; Horgan, G. Energy density of foods: effects on energy intake. Crit. Rev. Food Sci. Nutr., 2000, 40(6), 481-515.
[http://dx.doi.org/10.1080/10408690091189248] [PMID: 11186237]
[35]
Geliebter, A.; Schachter, S.; Lohmann-Walter, C.; Feldman, H.; Hashim, S.A. Reduced stomach capacity in obese subjects after dieting. Am. J. Clin. Nutr., 1996, 63(2), 170-173.
[http://dx.doi.org/ 10.1093/ajcn/63.2.170] [PMID: 8561056]
[36]
Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; Abraham, J.P.; Abu-Rmeileh, N.M.; Achoki, T.; AlBuhairan, F.S.; Alemu, Z.A.; Alfonso, R.; Ali, M.K.; Ali, R.; Guzman, N.A.; Ammar, W.; Anwari, P.; Banerjee, A.; Barquera, S.; Basu, S.; Bennett, D.A.; Bhutta, Z.; Blore, J.; Cabral, N.; Nonato, I.C.; Chang, J.C.; Chowdhury, R.; Courville, K.J.; Criqui, M.H.; Cundiff, D.K.; Dabhadkar, K.C.; Dandona, L.; Davis, A.; Dayama, A.; Dharmaratne, S.D.; Ding, E.L.; Durrani, A.M.; Esteghamati, A.; Farzadfar, F.; Fay, D.F.; Feigin, V.L.; Flaxman, A.; Forouzanfar, M.H.; Goto, A.; Green, M.A.; Gupta, R.; Hafezi-Nejad, N.; Hankey, G.J.; Harewood, H.C.; Havmoeller, R.; Hay, S.; Hernandez, L.; Husseini, A.; Idrisov, B.T.; Ikeda, N.; Islami, F.; Jahangir, E.; Jassal, S.K.; Jee, S.H.; Jeffreys, M.; Jonas, J.B.; Kabagambe, E.K.; Khalifa, S.E.; Kengne, A.P.; Khader, Y.S.; Khang, Y.H.; Kim, D.; Kimokoti, R.W.; Kinge, J.M.; Kokubo, Y.; Kosen, S.; Kwan, G.; Lai, T.; Leinsalu, M.; Li, Y.; Liang, X.; Liu, S.; Logroscino, G.; Lotufo, P.A.; Lu, Y.; Ma, J.; Mainoo, N.K.; Mensah, G.A.; Merriman, T.R.; Mokdad, A.H.; Moschandreas, J.; Naghavi, M.; Naheed, A.; Nand, D.; Narayan, K.M.; Nelson, E.L.; Neuhouser, M.L.; Nisar, M.I.; Ohkubo, T.; Oti, S.O.; Pedroza, A.; Prabhakaran, D.; Roy, N.; Sampson, U.; Seo, H.; Sepanlou, S.G.; Shibuya, K.; Shiri, R.; Shiue, I.; Singh, G.M.; Singh, J.A.; Skirbekk, V.; Stapelberg, N.J.; Sturua, L.; Sykes, B.L.; Tobias, M.; Tran, B.X.; Trasande, L.; Toyoshima, H.; van de Vijver, S.; Vasankari, T.J.; Veerman, J.L.; Velasquez-Melendez, G.; Vlassov, V.V.; Vollset, S.E.; Vos, T.; Wang, C.; Wang, X.; Weiderpass, E.; Werdecker, A.; Wright, J.L.; Yang, Y.C.; Yatsuya, H.; Yoon, J.; Yoon, S.J.; Zhao, Y.; Zhou, M.; Zhu, S.; Lopez, A.D.; Murray, C.J.; Gakidou, E. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2014, 384(9945), 766-781.
[http://dx.doi.org/10.1016/ S0140-6736(14)60460-8] [PMID: 24880830]
[37]
Li, H-L. An archaeological and historical account of cannabis in China. Econ. Bot., 1973, 28(4), 437-448.
[http://dx.doi.org/10. 1007/BF02862859]
[38]
Touw, M. The religious and medicinal uses of Cannabis in China, India and Tibet. J. Psychoactive Drugs, 1981, 13(1), 23-34.
[http://dx.doi.org/10.1080/02791072.1981.10471447] [PMID: 7024492]
[39]
Mechoulam, R.; Gaoni, Y. A total synthesis of dl-delta-1-Tetrahydrocannabinol, the active constituent of hashish. J. Am. Chem. Soc., 1965, 87, 3273-3275.
[http://dx.doi.org/10.1021/ ja01092a065] [PMID: 14324315]
[40]
Pertwee, R.G. The pharmacology of cannabinoid receptors and their ligands: an overview. Int. J. Obes., 2006, 30(Suppl 1(S1), S13-S18.
[http://dx.doi.org/10.1038/sj.ijo.0803272]
[41]
Elphick, M.R.; Egertová, M. The phylogenetic distribution and evolutionary origins of endocannabinoid signalling. Handb. Exp. Pharmacol., 2005, (168), 283-297.
[http://dx.doi.org/10.1007/3-540-26573-2_9] [PMID: 16596778]
[42]
Elphick, M.R. The evolution and comparative neurobiology of endocannabinoid signalling. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1607), 3201-3215.
[http://dx.doi.org/10.1098/rstb. 2011.0394] [PMID: 23108540]
[43]
McPartland, J.M.; Matias, I.; Di Marzo, V.; Glass, M. Evolutionary origins of the endocannabinoid system. Gene, 2006, 370, 64-74.
[http://dx.doi.org/10.1016/j.gene.2005.11.004] [PMID: 16434153]
[44]
Liu, J.; Wang, L.; Harvey-White, J.; Huang, B.X.; Kim, H.Y.; Luquet, S.; Palmiter, R.D.; Krystal, G.; Rai, R.; Mahadevan, A.; Razdan, R.K.; Kunos, G. Multiple pathways involved in the biosynthesis of anandamide. Neuropharmacology, 2008, 54(1), 1-7.
[http://dx.doi.org/10.1016/j.neuropharm.2007.05.020] [PMID: 17631919]
[45]
Mechoulam, R.; Ben-Shabat, S.; Hanus, L.; Ligumsky, M.; Kaminski, N.E.; Schatz, A.R.; Gopher, A.; Almog, S.; Martin, B.R.; Compton, D.R.; Pertwee, R.G.; Griffin, G.; Bayewitch, M.; Barg, J.; Vogel, Z. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol., 1995, 50(1), 83-90.
[http://dx.doi.org/10.1016/0006-2952(95)00109-D] [PMID: 7605349]
[46]
Mechoulam, R.; Ben Shabat, S.; Hanus, L.; Fride, E.; Vogel, Z.; Bayewitch, M.; Sulcova, A.E. Endogenous cannabinoid ligands--chemical and biological studies. J. Lipid Mediat. Cell Signal., 1996, 14(1-3), 45-49.
[http://dx.doi.org/10.1016/0929-7855(96) 01507-6] [PMID: 8906544]
[47]
Fu, J.; Bottegoni, G.; Sasso, O.; Bertorelli, R.; Rocchia, W.; Masetti, M.; Guijarro, A.; Lodola, A.; Armirotti, A.; Garau, G.; Bandiera, T.; Reggiani, A.; Mor, M.; Cavalli, A.; Piomelli, D. A catalytically silent FAAH-1 variant drives anandamide transport in neurons. Nat. Neurosci., 2011, 15(1), 64-69.
[http://dx.doi.org/10. 1038/nn.2986] [PMID: 22101642]
[48]
Marsicano, G.; Chaouloff, F. Moving bliss: a new anandamide transporter. Nat. Neurosci., 2011, 15(1), 5-6.
[http://dx.doi.org/10. 1038/nn.3011] [PMID: 22193249]
[49]
Beltramo, M.; Stella, N.; Calignano, A.; Lin, S.Y.; Makriyannis, A.; Piomelli, D. Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science, 1997, 277(5329), 1094-1097.
[http://dx.doi.org/10.1126/science.277.5329.1094] [PMID: 9262477]
[50]
Mechoulam, R.; Ben, S.S.; Hanus, L.; Fride, E.; Vogel, Z.; Bayewitch, M.; Sulcova, A.E. Endogenous cannabinoid ligands--chemical and biological studies. J. Lipid Mediat. Cell Signal., 1996, 14(1-3), 45-49.
[http://dx.doi.org/10.1016/0929-7855(96) 01507-6] [PMID: 8906544]
[51]
Tóth, A.; Blumberg, P.M.; Boczán, J. Anandamide and the vanilloid receptor (TRPV1). Vitam. Horm., 2009, 81, 389-419.
[http://dx.doi.org/10.1016/S0083-6729(09)81015-7] [PMID: 19647120]
[52]
Marichal-Cancino, B.A.; Fajardo-Valdez, A.; Ruiz-Contreras, A.E.; Mendez-Díaz, M.; Prospero-García, O. Advances in the physiology of GPR55 in the central nervous system. Curr. Neuropharmacol., 2017, 15(5), 771-778.
[http://dx.doi.org/10.2174/1570159X146661 60729155441] [PMID: 27488130]
[53]
McHugh, D.; Page, J.; Dunn, E.; Bradshaw, H.B.Δ. (9) -Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. Br. J. Pharmacol., 2012, 165(8), 2414-2424.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01497.x] [PMID: 21595653]
[54]
Borrelli, F.; Izzo, A.A. Role of acylethanolamides in the gastrointestinal tract with special reference to food intake and energy balance. Best Pract. Res. Clin. Endocrinol. Metab., 2009, 23(1), 33-49.
[http://dx.doi.org/10.1016/j.beem.2008.10.003] [PMID: 19285259]
[55]
O’Sullivan, S.E.; Kendall, D.A. Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease. Immunobiology, 2010, 215(8), 611-616.
[http://dx.doi.org/10.1016/j.imbio.2009.09.007] [PMID: 19833407]
[56]
Laun, A.S.; Song, Z.H. GPR3 and GPR6, novel molecular targets for cannabidiol. Biochem. Biophys. Res. Commun., 2017, 490(1), 17-21.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.165] [PMID: 28571738]
[57]
Fonseca, B.M.; Costa, M.A.; Almada, M.; Correia-da-Silva, G.; Teixeira, N.A. Endogenous cannabinoids revisited: a biochemistry perspective. Prostaglandins Other Lipid Mediat., 2013, 102-103, 13-30.
[http://dx.doi.org/10.1016/j.prostaglandins.2013.02.002] [PMID: 23474290]
[58]
Fride, E. Multiple roles for the endocannabinoid system during the earliest stages of life: pre- and postnatal development. J. Neuroendocrinol., 2008, 20(Suppl. 1), 75-81.
[http://dx.doi.org/10.1111/ j.1365-2826.2008.01670.x] [PMID: 18426504]
[59]
Fride, E.; Ginzburg, Y.; Breuer, A.; Bisogno, T.; Di Marzo, V.; Mechoulam, R. Critical role of the endogenous cannabinoid system in mouse pup suckling and growth. Eur. J. Pharmacol., 2001, 419(2-3), 207-214.
[http://dx.doi.org/10.1016/S0014-2999(01) 00953-0] [PMID: 11426843]
[60]
Berrendero, F.; Sepe, N.; Ramos, J.A.; Di Marzo, V.; Fernández-Ruiz, J.J. Analysis of cannabinoid receptor binding and mRNA expression and endogenous cannabinoid contents in the developing rat brain during late gestation and early postnatal period. Synapse, 1999, 33(3), 181-191.
[http://dx.doi.org/10.1002/(SICI)1098-2396 (19990901)33:3<181:AID-SYN3>3.0.CO;2-R] [PMID: 10420166]
[61]
Fride, E.; Foox, A.; Rosenberg, E.; Faigenboim, M.; Cohen, V.; Barda, L.; Blau, H.; Mechoulam, R. Milk intake and survival in newborn cannabinoid CB1 receptor knockout mice: evidence for a “CB3” receptor. Eur. J. Pharmacol., 2003, 461(1), 27-34.
[http://dx.doi.org/10.1016/S0014-2999(03)01295-0] [PMID: 12568912]
[62]
Fride, E.; Braun, H.; Matan, H.; Steinberg, S.; Reggio, P.H.; Seltzman, H.H. Inhibition of milk ingestion and growth after administration of a neutral cannabinoid CB1 receptor antagonist on the first postnatal day in the mouse. Pediatr. Res., 2007, 62(5), 533-536.
[http://dx.doi.org/10.1203/PDR.0b013e3181559d42] [PMID: 17805201]
[63]
Deveaux, V.; Cadoudal, T.; Ichigotani, Y.; Teixeira-Clerc, F.; Louvet, A.; Manin, S.; Nhieu, J.T.; Belot, M.P.; Zimmer, A.; Even, P.; Cani, P.D.; Knauf, C.; Burcelin, R.; Bertola, A.; Le Marchand-Brustel, Y.; Gual, P.; Mallat, A.; Lotersztajn, S. Cannabinoid CB2 receptor potentiates obesity-associated inflammation, insulin resistance and hepatic steatosis. PLoS One, 2009, 4(6)e5844
[http://dx.doi.org/10.1371/journal.pone.0005844] [PMID: 19513120]
[64]
Verty, A.N.; Stefanidis, A.; McAinch, A.J.; Hryciw, D.H.; Oldfield, B. Anti-obesity effect of the CB2 receptor agonist JWH-015 in diet-induced obese mice. PLoS One, 2015, 10(11)e0140592
[http://dx.doi.org/10.1371/journal.pone.0140592] [PMID: 26588700]
[65]
Lauckner, J.E.; Jensen, J.B.; Chen, H-Y.; Lu, H-C.; Hille, B.; Mackie, K. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2699-2704.
[66]
Abel, E.L. Cannabis: effects on hunger and thirst. Behav. Biol., 1975, 15(3), 255-281.
[http://dx.doi.org/10.1016/S0091-6773(75) 91684-3] [PMID: 1106391]
[67]
Bouquet, J. Cannabis (concluded). Bull. Narc., 1951, 3(1), 22-45.
[68]
Chopra, R.N.; Brevet, C.; Chopra, G.S. Present position of hemp drug addiction in India. Addiction, 1940, 38(2), 71-74.
[http://dx.doi.org/10.1111/j.1360-0443.1940.tb05405.x]
[69]
Foltin, R.W.; Fischman, M.W.; Byrne, M.F. Effects of smoked marijuana on food intake and body weight of humans living in a residential laboratory. Appetite, 1988, 11(1), 1-14.
[http://dx.doi.org/10.1016/S0195-6663(88)80017-5] [PMID: 3228283]
[70]
Bhargava, H.N. Potential therapeutic applications of naturally occurring and synthetic cannabinoids. Gen. Pharmacol., 1978, 9(4), 195-213.
[http://dx.doi.org/10.1016/0306-3623(78)90037-X] [PMID: 680553]
[71]
Koch, M.; Varela, L.; Kim, J.G.; Kim, J.D.; Hernández-Nuño, F.; Simonds, S.E.; Castorena, C.M.; Vianna, C.R.; Elmquist, J.K.; Morozov, Y.M.; Rakic, P.; Bechmann, I.; Cowley, M.A.; Szigeti-Buck, K.; Dietrich, M.O.; Gao, X.B.; Diano, S.; Horvath, T.L. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature, 2015, 519(7541), 45-50.
[http://dx.doi.org/10.1038/ nature14260] [PMID: 25707796]
[72]
Lage, R.; Parisi, C.; Seoane-Collazo, P.; Fernø, J.; Mazza, R.; Bosch, F.; Seoane, L.M.; Nogueiras, R.; Diéguez, C.; Quarta, C.; López, M. Lack of hypophagia in CB1 null mice is associated to decreased hypothalamic POMC and CART expression. Int. J. Neuropsychopharmacol., 2015, 18(9), 1-6.
[http://dx.doi.org/10.1093/
ijnp/pyv011] [PMID: 25655433]
[73]
Gamage, T.F.; Ignatowska-Jankowska, B.M.; Wiley, J.L.; Abdelrahman, M.; Trembleau, L.; Greig, I.R.; Thakur, G.A.; Tichkule, R.; Poklis, J.; Ross, R.A.; Pertwee, R.G.; Lichtman, A.H. In-vivo pharmacological evaluation of the CB1-receptor allosteric modulator Org-27569. Behav. Pharmacol., 2014, 25(2), 182-185.
[http://dx.doi.org/10.1097/FBP.0000000000000027] [PMID: 24603340]
[74]
Madsen, A.N.; Jelsing, J.; van de Wall, E.H.; Vrang, N.; Larsen, P.J.; Schwartz, G.J. Rimonabant induced anorexia in rodents is not mediated by vagal or sympathetic gut afferents. Neurosci. Lett., 2009, 449(1), 20-23.
[http://dx.doi.org/10.1016/j.neulet.2008.10. 001] [PMID: 18926875]
[75]
Pi-Sunyer, F.X.; Aronne, L.J.; Heshmati, H.M.; Devin, J.; Rosenstock, J. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA, 2006, 295(7), 761-775.
[http://dx.doi.org/10.1001/jama.295.7.761] [PMID: 16478899]
[76]
Van Gaal, L.F.; Rissanen, A.M.; Scheen, A.J.; Ziegler, O.; Rössner, S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet, 2005, 365(9468), 1389-1397.
[http://dx.doi.org/10.1016/S0140-6736(05) 66374-X] [PMID: 15836887]
[77]
Micale, V.T.K.; Kučerová, J.; Drago, F. Role of the endocannabinoid system in depression: From preclinical to clinical evidence. In: Cannabinoid Modulation of Emotion, Memory, and Motivation; Campolongo, P., Fattore, Liana., Ed.; New York: Springer, New York;. , 2015; pp. 97-129.
[78]
Micale, V.; Di Marzo, V.; Sulcova, A.; Wotjak, C.T.; Drago, F. Endocannabinoid system and mood disorders: priming a target for new therapies. Pharmacol. Ther., 2013, 138(1), 18-37.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.002] [PMID: 23261685]
[79]
Richey, J.M.; Woolcott, O. Re-visiting the endocannabinoid system and Its therapeutic potential in obesity and associated diseases. Curr. Diab. Rep., 2017, 17(10), 99.
[http://dx.doi.org/10.1007/ s11892-017-0924-x] [PMID: 28913816]
[80]
Gadde, K.M.; Allison, D.B. Cannabinoid-1 receptor antagonist, rimonabant, for management of obesity and related risks. Circulation, 2006, 114(9), 974-984.
[http://dx.doi.org/10.1161/ CIRCULATIONAHA.105.596130] [PMID: 16940206]
[81]
Hill, T.D.M.; Cascio, M.-G.; Romano, B.; Duncan, M.; Pertwee, R.G.; Williams, C.M.; Whalley, B.J.; Hill, A.J. Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor- independent mechanism. 2013, 170(3), 679-692.
[82]
Pertwee, R.G.; Howlett, A.C.; Abood, M.E.; Alexander, S.P.; Di Marzo, V.; Elphick, M.R.; Greasley, P.J.; Hansen, H.S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R.A. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol. Rev., 2010, 62(4), 588-631.
[http://dx.doi.org/10.1124/pr.110.003004] [PMID: 21079038]
[83]
Wang, X.; Sumida, H.; Cyster, J.G. GPR18 is required for a normal CD8αα intestinal intraepithelial lymphocyte compartment. J. Exp. Med., 2014, 211(12), 2351-2359.
[http://dx.doi.org/10.1084/jem. 20140646] [PMID: 25348153]
[84]
Becker, A.M.; Callahan, D.J.; Richner, J.M.; Choi, J.
DiPersio, J.F.; Diamond, M.S.; Bhattacharya, D. GPR18 controls reconstitution of mouse small intestine intraepithelial lymphocytes following bone marrow transplantation. PLoS One, 2015, 10(7)e0133854
[http://dx.doi.org/10.1371/journal.pone.0133854] [PMID: 26197390]
[85]
Meadows, A.; Lee, J.H.; Wu, C.S.; Wei, Q.; Pradhan, G.; Yafi, M.; Lu, H.C.; Sun, Y. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity. Int. J. Obes., 2016, 40(3), 417-424.
[http://dx.doi.org/10.1038/ijo.2015.209] [PMID: 26447738]
[86]
Romero-Zerbo, S.Y.; Rafacho, A.; Díaz-Arteaga, A.; Suárez, J.; Quesada, I.; Imbernon, M.; Ross, R.A.; Dieguez, C.; Rodríguez de Fonseca, F.; Nogueiras, R.; Nadal, A.; Bermúdez-Silva, F.J. A role for the putative cannabinoid receptor GPR55 in the islets of Langerhans. J. Endocrinol., 2011, 211(2), 177-185.
[http://dx.doi.org/10.1530/JOE-11-0166] [PMID: 21885477]
[87]
Panaro, B.L.; Flock, G.B.; Campbell, J.E.; Beaudry, J.L.; Cao, X.; Drucker, D.J. β-Cell Inactivation of Gpr119 Unmasks Incretin Dependence of GPR119-Mediated Glucoregulation. Diabetes, 2017, 66(6), 1626-1635.
[http://dx.doi.org/10.2337/db17-0017] [PMID: 28254842]
[88]
Lan, H.; Vassileva, G.; Corona, A.; Liu, L.; Baker, H.; Golovko, A.; Abbondanzo, S.J.; Hu, W.; Yang, S.; Ning, Y.; Del Vecchio, R.A.; Poulet, F.; Laverty, M.; Gustafson, E.L.; Hedrick, J.A.; Kowalski, T.J. GPR119 is required for physiological regulation of glucagon-like peptide-1 secretion but not for metabolic homeostasis. J. Endocrinol., 2009, 201(2), 219-230.
[http://dx.doi.org/10.1677/ JOE-08-0453] [PMID: 19282326]
[89]
Cota, D.; Marsicano, G.; Tschöp, M.; Grübler, Y.; Flachskamm, C.; Schubert, M.; Auer, D.; Yassouridis, A.; Thöne-Reineke, C.; Ortmann, S.; Tomassoni, F.; Cervino, C.; Nisoli, E.; Linthorst, A.C.; Pasquali, R.; Lutz, B.; Stalla, G.K.; Pagotto, U. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest., 2003, 112(3), 423-431.
[http://dx.doi.org/10.1172/JCI17725] [PMID: 12897210]
[90]
Keefer, S.E.; Petrovich, G.D. Distinct recruitment of basolateral amygdala-medial prefrontal cortex pathways across Pavlovian appetitive conditioning. Neurobiol. Learn. Mem., 2017, 141, 27-32.
[http://dx.doi.org/10.1016/j.nlm.2017.03.006] [PMID: 28288832]
[91]
Viveros, M.P.; de Fonseca, F.R.; Bermudez-Silva, F.J.; McPartland, J.M. Critical role of the endocannabinoid system in the regulation of food intake and energy metabolism, with phylogenetic, developmental, and pathophysiological implications. Endocr. Metab. Immune Disord. Drug Targets, 2008, 8(3), 220-230.
[http://dx.doi.org/10.2174/187153008785700082] [PMID: 18782018]
[92]
Bellocchio, L.; Lafenêtre, P.; Cannich, A.; Cota, D.; Puente, N.; Grandes, P.; Chaouloff, F.; Piazza, P.V.; Marsicano, G. Bimodal control of stimulated food intake by the endocannabinoid system. Nat. Neurosci., 2010, 13(3), 281-283.
[http://dx.doi.org/10.1038/ nn.2494] [PMID: 20139974]
[93]
Wiley, J.L.; Burston, J.J.; Leggett, D.C.; Alekseeva, O.O.; Razdan, R.K.; Mahadevan, A.; Martin, B.R. CB1 cannabinoid receptor-mediated modulation of food intake in mice. Br. J. Pharmacol., 2005, 145(3), 293-300.
[http://dx.doi.org/10.1038/sj.bjp.0706157] [PMID: 15778743]
[94]
McCallum, R.W.; Soykan, I.; Sridhar, K.R.; Ricci, D.A.; Lange, R.C.; Plankey, M.W. Delta-9-tetrahydrocannabinol delays the gastric emptying of solid food in humans: a double-blind, randomized study. Aliment. Pharmacol. Ther., 1999, 13(1), 77-80.
[http://dx.doi.org/10.1046/j.1365-2036.1999.00441.x] [PMID: 9892882]
[95]
Bateman, D.N. Delta-9-tetrahydrocannabinol and gastric emptying. Br. J. Clin. Pharmacol., 1983, 15(6), 749-751.
[http://dx.doi.org/
10.1111/j.1365-2125.1983.tb01561.x] [PMID: 6307330]
[96]
Fride, E.; Bregman, T.; Kirkham, T.C. Endocannabinoids and food intake: newborn suckling and appetite regulation in adulthood. Exp. Biol. Med. (Maywood), 2005, 230(4), 225-234.
[http://dx.doi.org/
10.1177/153537020523000401] [PMID: 15792943]
[97]
Morales, P.; Reggio, P.H.; Jagerovic, N. An overview on medicinal chemistry of synthetic and natural derivatives of cannabidiol. Front. Pharmacol., 2017, 8, 422.
[http://dx.doi.org/10.3389/fphar. 2017.00422] [PMID: 28701957]
[98]
Schicho, R.; Storr, M. A potential role for GPR55 in gastrointestinal functions. Curr. Opin. Pharmacol., 2012, 12(6), 653-658.
[http://dx.doi.org/10.1016/j.coph.2012.09.009] [PMID: 23063456]
[99]
Laprairie, R.B.; Bagher, A.M.; Kelly, M.E.; Denovan-Wright, E.M. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br. J. Pharmacol., 2015, 172(20), 4790-4805.
[http://dx.doi.org/10.1111/bph.13250] [PMID: 26218440]
[100]
Morales, P.; Jagerovic, N. Advances towards the discovery of GPR55 ligands. Curr. Med. Chem., 2016, 23(20), 2087-2100.
[http://dx.doi.org/10.2174/0929867323666160425113836] [PMID: 27109575]
[101]
Laprairie, R.B.; Bagher, A.M.; Kelly, M.E.; Dupré, D.J.; Denovan-Wright, E.M. Type 1 cannabinoid receptor ligands display functional selectivity in a cell culture model of striatal medium spiny projection neurons. J. Biol. Chem., 2014, 289(36), 24845-24862.
[http://dx.doi.org/10.1074/jbc.M114.557025] [PMID: 25037227]
[102]
Tham, M.; Yilmaz, O.; Alaverdashvili, M.; Kelly, M.E.M.; Denovan-Wright, E.M.; Laprairie, R.B. Allosteric and orthosteric pharmacology of cannabidiol and cannabidiol-dimethylheptyl at the type 1 and type 2 cannabinoid receptors. Br. J. Pharmacol., In press
[PMID: 29981240]
[103]
Martínez-Pinilla, E.; Varani, K.; Reyes-Resina, I.; Angelats, E.; Vincenzi, F.; Ferreiro-Vera, C.; Oyarzabal, J.; Canela, E.I.; Lanciego, J.L.; Nadal, X.; Navarro, G.; Borea, P.A.; Franco, R. Binding and signaling studies disclose a potential allosteric site for cannabidiol in cannabinoid CB2 receptors. Front. Pharmacol., 2017, 8, 744.
[http://dx.doi.org/10.3389/fphar.2017.00744] [PMID: 29109685]
[104]
Rajaraman, G.; Simcocks, A.; Hryciw, D.H.; Hutchinson, D.S.; McAinch, A.J. G protein coupled receptor 18: A potential role for endocannabinoid signaling in metabolic dysfunction. Mol. Nutr. Food Res., 2016, 60(1), 92-102.
[http://dx.doi.org/10.1002/mnfr. 201500449] [PMID: 26337420]
[105]
Ross, R.A. The enigmatic pharmacology of GPR55. Trends Pharmacol. Sci., 2009, 30(3), 156-163.
[http://dx.doi.org/10.1016/ j.tips.2008.12.004] [PMID: 19233486]
[106]
Brown, A.J. Novel cannabinoid receptors. Br. J. Pharmacol., 2007, 152(5), 567-575.
[http://dx.doi.org/10.1038/sj.bjp.0707481] [PMID: 17906678]
[107]
Godlewski, G.; Offertáler, L.; Wagner, J.A.; Kunos, G. Receptors for acylethanolamides-GPR55 and GPR119. Prostaglandins Other Lipid Mediat., 2009, 89(3-4), 105-111.
[http://dx.doi.org/10.1016/ j.prostaglandins.2009.07.001] [PMID: 19615459]
[108]
Kola, B.; Farkas, I.; Christ-Crain, M.; Wittmann, G.; Lolli, F.; Amin, F.; Harvey-White, J.; Liposits, Z.; Kunos, G.; Grossman, A.B.; Fekete, C.; Korbonits, M. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS One, 2008, 3(3)e1797
[http://dx.doi.org/10.1371/ journal.pone.0001797] [PMID: 18335063]
[109]
Di Marzo, V.; Goparaju, S.K.; Wang, L.; Liu, J.; Bátkai, S.; Járai, Z.; Fezza, F.; Miura, G.I.; Palmiter, R.D.; Sugiura, T.; Kunos, G. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature, 2001, 410(6830), 822-825.
[http://dx.doi.org/
10.1038/35071088] [PMID: 11298451]
[110]
Jo, Y.H.; Chen, Y.J.; Chua, S.C., Jr; Talmage, D.A.; Role, L.W. Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit. Neuron, 2005, 48(6), 1055-1066.
[http://dx.doi.org/10.1016/j.neuron.2005.10.021] [PMID: 16364907]
[111]
Sánchez-Fuentes, A.; Marichal-Cancino, B.A.; Méndez-Díaz, M.; Becerril-Meléndez, A.L.; Ruiz-Contreras, A.E.; Prospéro-Garcia, O. mGluR1/5 activation in the lateral hypothalamus increases food intake via the endocannabinoid system. Neurosci. Lett., 2016, 631, 104-108.
[http://dx.doi.org/10.1016/j.neulet.2016.08.020] [PMID: 27542344]
[112]
Gómez, R.; Navarro, M.; Ferrer, B.; Trigo, J.M.; Bilbao, A.; Del Arco, I.; Cippitelli, A.; Nava, F.; Piomelli, D.; Rodríguez de Fonseca, F. A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J. Neurosci., 2002, 22(21), 9612-9617.
[http://dx.doi.org/10.1523/JNEUROSCI.22-21-09612.2002] [PMID: 12417686]
[113]
Petersen, G.; Sørensen, C.; Schmid, P.C.; Artmann, A.; Tang-Christensen, M.; Hansen, S.H.; Larsen, P.J.; Schmid, H.H.; Hansen, H.S. Intestinal levels of anandamide and oleoylethanolamide in food-deprived rats are regulated through their precursors. Biochim. Biophys. Acta, 2006, 1761(2), 143-150.
[http://dx.doi.org/10.1016/ j.bbalip.2005.12.011] [PMID: 16478679]
[114]
Burdyga, G.; Lal, S.; Varro, A.; Dimaline, R.; Thompson, D.G.; Dockray, G.J. Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by cholecystokinin. J. Neurosci., 2004, 24(11), 2708-2715.
[http://dx.doi.org/10.1523/JNEUROSCI.5404-03.2004] [PMID: 15028763]
[115]
Bouaboula, M.; Perrachon, S.; Milligan, L.; Canat, X.; Rinaldi-Carmona, M.; Portier, M.; Barth, F.; Calandra, B.; Pecceu, F.; Lupker, J.; Maffrand, J.P.; Le Fur, G.; Casellas, P. A selective inverse agonist for central cannabinoid receptor inhibits mitogen-activated protein kinase activation stimulated by insulin or insulin-like growth factor 1. Evidence for a new model of receptor/ligand interactions. J. Biol. Chem., 1997, 272(35), 22330-22339.
[http://dx.doi.org/10.1074/jbc.272.35.22330] [PMID: 9268384]
[116]
Jamshidi, N.; Taylor, D.A. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br. J. Pharmacol., 2001, 134(6), 1151-1154.
[http://dx.doi.org/10.1038/ sj.bjp.0704379] [PMID: 11704633]
[117]
Cardinal, P.; Bellocchio, L.; Clark, S.; Cannich, A.; Klugmann, M.; Lutz, B.; Marsicano, G.; Cota, D. Hypothalamic CB1 cannabinoid receptors regulate energy balance in mice. Endocrinology, 2012, 153(9), 4136-4143.
[http://dx.doi.org/10.1210/en.2012-1405] [PMID: 22778221]
[118]
Tam, J.; Cinar, R.; Liu, J.; Godlewski, G.; Wesley, D.; Jourdan, T.; Szanda, G.; Mukhopadhyay, B.; Chedester, L.; Liow, J.S.; Innis, R.B.; Cheng, K.; Rice, K.C.; Deschamps, J.R.; Chorvat, R.J.; McElroy, J.F.; Kunos, G. Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell Metab., 2012, 16(2), 167-179.
[http://dx.doi.org/10.1016/j.cmet.2012. 07.002] [PMID: 22841573]
[119]
Tam, J.; Vemuri, V.K.; Liu, J.; Bátkai, S.; Mukhopadhyay, B.; Godlewski, G.; Osei-Hyiaman, D.; Ohnuma, S.; Ambudkar, S.V.; Pickel, J.; Makriyannis, A.; Kunos, G. Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J. Clin. Invest., 2010, 120(8), 2953-2966.
[http://dx.doi.org/10.1172/JCI42551] [PMID: 20664173]
[120]
Nogueiras, R.; Veyrat-Durebex, C.; Suchanek, P.M.; Klein, M.; Tschöp, J.; Caldwell, C.; Woods, S.C.; Wittmann, G.; Watanabe, M.; Liposits, Z.; Fekete, C.; Reizes, O.; Rohner-Jeanrenaud, F.; Tschöp, M.H. Peripheral, but not central, CB1 antagonism provides food intake-independent metabolic benefits in diet-induced obese rats. Diabetes, 2008, 57(11), 2977-2991.
[http://dx.doi.org/10. 2337/db08-0161] [PMID: 18716045]
[121]
Després, J.P.; Golay, A.; Sjöström, L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N. Engl. J. Med., 2005, 353(20), 2121-2134.
[http://dx.doi.org/10. 1056/NEJMoa044537] [PMID: 16291982]
[122]
Van Gaal, L.; Pi-Sunyer, X.; Després, J.P.; McCarthy, C.; Scheen, A. Efficacy and safety of rimonabant for improvement of multiple cardiometabolic risk factors in overweight/obese patients: pooled 1-year data from the Rimonabant in Obesity (RIO) program. Diabetes Care, 2008, 31(Suppl. 2), S229-S240.
[http://dx.doi.org/10. 2337/dc08-s258] [PMID: 18227491]
[123]
Naughton, S.S.; Mathai, M.L.; Hryciw, D.H.; McAinch, A.J. Fatty Acid modulation of the endocannabinoid system and the effect on food intake and metabolism. Int. J. Endocrinol., 2013, 2013361895
[http://dx.doi.org/10.1155/2013/361895] [PMID: 23762050]
[124]
Alvheim, A.R.; Malde, M.K.; Osei-Hyiaman, D.; Lin, Y.H.; Pawlosky, R.J.; Madsen, L.; Kristiansen, K.; Frøyland, L.; Hibbeln, J.R. Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity. Obesity (Silver Spring), 2012, 20(10), 1984-1994.
[http://dx.doi.org/10.1038/oby.2012.38] [PMID: 22334255]
[125]
Thabuis, C.; Destaillats, F.; Landrier, J.F.; Tissot-Favre, D.; Martin, J.C. Analysis of gene expression pattern reveals potential targets of dietary oleoylethanolamide in reducing body fat gain in C3H mice. J. Nutr. Biochem., 2010, 21(10), 922-928.
[http://dx.doi.org/
10.1016/j.jnutbio.2009.07.006] [PMID: 19954948]
[126]
Bénard, G.; Massa, F.; Puente, N.; Lourenço, J.; Bellocchio, L.; Soria-Gómez, E.; Matias, I.; Delamarre, A.; Metna-Laurent, M.; Cannich, A.; Hebert-Chatelain, E.; Mulle, C.; Ortega-Gutiérrez, S.; Martín-Fontecha, M.; Klugmann, M.; Guggenhuber, S.; Lutz, B.; Gertsch, J.; Chaouloff, F.; López-Rodríguez, M.L.; Grandes, P.; Rossignol, R.; Marsicano, G. Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat. Neurosci., 2012, 15(4), 558-564.
[http://dx.doi.org/10.1038/nn.3053] [PMID: 22388959]
[127]
Djeungoue-Petga, M.-A.; Hebert-Chatelain, E. Linking mitochondria and synaptic transmission: The CB1 receptor. 2017, 39(12), 1700126.
[128]
Mendizabal-Zubiaga, J.; Melser, S.; Bénard, G.; Ramos, A.; Reguero, L.; Arrabal, S.; Elezgarai, I.; Gerrikagoitia, I.; Suarez, J.; Rodríguez De Fonseca, F.; Puente, N.; Marsicano, G.; Grandes, P. Cannabinoid CB1 receptors are localized in striated muscle mitochondria and regulate mitochondrial respiration. Front. Physiol., 2016, 7, 476.
[http://dx.doi.org/10.3389/fphys.2016. 00476] [PMID: 27826249]
[129]
Ruiz de Azua, I.; Mancini, G.; Srivastava, R.K.; Rey, A.A.; Cardinal, P.; Tedesco, L.; Zingaretti, C.M.; Sassmann, A.; Quarta, C.; Schwitter, C.; Conrad, A.; Wettschureck, N.; Vemuri, V.K.; Makriyannis, A.; Hartwig, J.; Mendez-Lago, M.; Bindila, L.; Monory, K.; Giordano, A.; Cinti, S.; Marsicano, G.; Offermanns, S.; Nisoli, E.; Pagotto, U.; Cota, D.; Lutz, B. Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages. J. Clin. Invest., 2017, 127(11), 4148-4162.
[http://dx.doi.org/10.1172/JCI83626] [PMID: 29035280]
[130]
Moreira, F.A.; Grieb, M.; Lutz, B. Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: Focus on anxiety and depression. Best Pract. Res. Clin. Endocrinol. Metab., 2009, 23(1), 133-144.
[http://dx.doi.org/10.1016/j.beem.2008. 09.003] [PMID: 19285266]
[131]
Moreira, F.A.; Crippa, J.A. The psychiatric side-effects of rimonabant. Br. J. Psychiatry, 2009, 31(2), 145-153.
[http://dx.doi.org/10. 1590/S1516-44462009000200012] [PMID: 19578688]
[132]
Pan, C.; Yoo, H.J.; Ho, L.T. Perspectives of CB1 antagonist in treatment of obesity: Experience of RIO-Asia. J. Obes., 2011, 2011957268
[http://dx.doi.org/10.1155/2011/957268] [PMID: 21253513]
[133]
Gantz, I.; Muraoka, A.; Yang, Y.K.; Samuelson, L.C.; Zimmerman, E.M.; Cook, H.; Yamada, T. Cloning and chromosomal localization of a gene (GPR18) encoding a novel seven transmembrane receptor highly expressed in spleen and testis. Genomics, 1997, 42(3), 462-466.
[http://dx.doi.org/10.1006/geno.1997.4752] [PMID: 9205118]
[134]
Penumarti, A.; Abdel-Rahman, A.A. The novel endocannabinoid receptor GPR18 is expressed in the rostral ventrolateral medulla and exerts tonic restraining influence on blood pressure. J. Pharmacol. Exp. Ther., 2014, 349(1), 29-38.
[http://dx.doi.org/10.1124/ jpet.113.209213] [PMID: 24431468]
[135]
Alexander, S.P. So what do we call GPR18 now? Br. J. Pharmacol., 2012, 165(8), 2411-2413.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01731.x] [PMID: 22014123]
[136]
Finlay, D.B.; Joseph, W.R.; Grimsey, N.L.; Glass, M. GPR18 undergoes a high degree of constitutive trafficking but is unresponsive to N-Arachidonoyl Glycine. PeerJ, 2016, 4e1835
[http://dx.doi.org/10.7717/peerj.1835] [PMID: 27018161]
[137]
Console-Bram, L.; Brailoiu, E.; Brailoiu, G.C.; Sharir, H.; Abood, M.E. Activation of GPR18 by cannabinoid compounds: a tale of biased agonism. Br. J. Pharmacol., 2014, 171(16), 3908-3917.
[http://dx.doi.org/10.1111/bph.12746] [PMID: 24762058]
[138]
Pascoal, L.B.; Bombassaro, B.; Ramalho, A.F.; Coope, A.; Moura, R.F.; Correa-da-Silva, F.; Ignacio-Souza, L.; Razolli, D.; de Oliveira, D.; Catharino, R.; Velloso, L.A. Resolvin RvD2 reduces hypothalamic inflammation and rescues mice from diet-induced obesity. J. Neuroinflammation, 2017, 14(1), 5.
[http://dx.doi.org/
10.1186/s12974-016-0777-2] [PMID: 28086928]
[139]
Succar, R.; Mitchell, V.A.; Vaughan, C.W. Actions of N-arachidonyl-glycine in a rat inflammatory pain model. Mol. Pain, 2007, 3(24), 24.
[PMID: 17727733]
[140]
Takenouchi, R.; Inoue, K.; Kambe, Y.; Miyata, A. N-arachidonoyl glycine induces macrophage apoptosis via GPR18. Biochem. Biophys. Res. Commun., 2012, 418(2), 366-371.
[http://dx.doi.org/10. 1016/j.bbrc.2012.01.027] [PMID: 22266325]
[141]
Díaz-Arteaga, A.; Vázquez, M.J.; Vazquez-Martínez, R.; Pulido, M.R.; Suarez, J.; Velásquez, D.A.; López, M.; Ross, R.A.; de Fonseca, F.R.; Bermudez-Silva, F.J.; Malagón, M.M.; Diéguez, C.; Nogueiras, R. The atypical cannabinoid O-1602 stimulates food intake and adiposity in rats. Diabetes Obes. Metab., 2012, 14(3), 234-243.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01515.x] [PMID: 21981246]
[142]
Slattery, M.L.; Lundgreen, A.; Wolff, R.K. Dietary influence on MAPK-signaling pathways and risk of colon and rectal cancer. Nutr. Cancer, 2013, 65(5), 729-738.
[http://dx.doi.org/10.1080/ 01635581.2013.795599] [PMID: 23859041]
[143]
Karpe, F.; Dickmann, J.R.; Frayn, K.N. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes, 2011, 60(10), 2441-2449.
[http://dx.doi.org/10.2337/db11-0425] [PMID: 21948998]
[144]
Marichal-Cancino, B.A.; Fajardo-Valdez, A.; Ruiz-Contreras, A.E.; Méndez-Díaz, M.; Prospéro-García, O. Possible role of hippocampal GPR55 in spatial learning and memory in rats. Acta Neurobiol. Exp. (Warsz.), 2018, 78(1), 41-50.
[http://dx.doi.org/10.21307/ane-2018-001] [PMID: 29694340]
[145]
Marichal-Cancino, B.A.; Manrique-Maldonado, G.; Altamirano-Espinoza, A.H.; Ruiz-Salinas, I.; González-Hernández, A.; Maassenvandenbrink, A.; Villalón, C.M. Analysis of anandamide- and lysophosphatidylinositol-induced inhibition of the vasopressor responses produced by sympathetic stimulation or noradrenaline in pithed rats. Eur. J. Pharmacol., 2013, 721(1-3), 168-177.
[http://dx.doi.org/10.1016/j.ejphar.2013.09.039] [PMID: 24076186]
[146]
Marichal-Cancino, B.A.; Sánchez-Fuentes, A.; Méndez-Díaz, M.; Ruiz-Contreras, A.E.; Prospéro-García, O. Blockade of GPR55 in the dorsolateral striatum impairs performance of rats in a T-maze paradigm. Behav. Pharmacol., 2016, 27(4), 393-396.
[http://dx.doi.org/10.1097/FBP.0000000000000185] [PMID: 26292188]
[147]
Bjursell, M.; Ryberg, E.; Wu, T.; Greasley, P.J.; Bohlooly-Y, M.; Hjorth, S. Deletion of Gpr55 results in subtle effects on energy metabolism, motor activity and thermal pain sensation. PLoS One, 2016, 11(12)e0167965
[http://dx.doi.org/10.1371/journal.pone. 0167965] [PMID: 27941994]
[148]
Liu, B.; Song, S.; Ruz-Maldonado, I.; Pingitore, A.; Huang, G.C.; Baker, D.; Jones, P.M.; Persaud, S.J. GPR55-dependent stimulation of insulin secretion from isolated mouse and human islets of Langerhans. Diabetes Obes. Metab., 2016, 18(12), 1263-1273.
[http://dx.doi.org/10.1111/dom.12780] [PMID: 27561953]
[149]
McKillop, A.M.; Moran, B.M.; Abdel-Wahab, Y.H.; Flatt, P.R. Evaluation of the insulin releasing and antihyperglycaemic activities of GPR55 lipid agonists using clonal beta-cells, isolated pancreatic islets and mice. Br. J. Pharmacol., 2013, 170(5), 978-990.
[http://dx.doi.org/10.1111/bph.12356] [PMID: 23992544]
[150]
Ruz-Maldonado, I.; Pingitore, A.; Liu, B.; Atanes, P.; Huang, G.C.; Baker, D.; Alonso, F.J.; Bermúdez-Silva, F.J.; Persaud, S.J. LH-21 and abnormal cannabidiol improve β-cell function in isolated human and mouse islets through GPR55-dependent and -independent signalling. Diabetes Obes. Metab., 2018, 20(4), 930-942.
[http://dx.doi.org/10.1111/dom.13180] [PMID: 29205751]
[151]
Imbernon, M.; Whyte, L.; Diaz-Arteaga, A.; Russell, W.R.; Moreno, N.R.; Vazquez, M.J.; Gonzalez, C.R.; Díaz-Ruiz, A.; Lopez, M.; Malagón, M.M.; Ross, R.A.; Dieguez, C.; Nogueiras, R. Regulation of GPR55 in rat white adipose tissue and serum LPI by nutritional status, gestation, gender and pituitary factors. Mol. Cell. Endocrinol., 2014, 383(1-2), 159-169.
[http://dx.doi.org/10.1016/ j.mce.2013.12.011] [PMID: 24378736]
[152]
Moreno-Navarrete, J.M.; Catalán, V.; Whyte, L.; Díaz-Arteaga, A.; Vázquez-Martínez, R.; Rotellar, F.; Guzmán, R.; Gómez-Ambrosi, J.; Pulido, M.R.; Russell, W.R.; Imbernón, M.; Ross, R.A.; Malagón, M.M.; Dieguez, C.; Fernández-Real, J.M.; Frühbeck, G.; Nogueiras, R. The L-α-lysophosphatidylinositol/GPR55 system and its potential role in human obesity. Diabetes, 2012, 61(2), 281-291.
[http://dx.doi.org/10.2337/db11-0649] [PMID: 22179809]
[153]
Soga, T.; Ohishi, T.; Matsui, T.; Saito, T.; Matsumoto, M.; Takasaki, J.; Matsumoto, S.; Kamohara, M.; Hiyama, H.; Yoshida, S.; Momose, K.; Ueda, Y.; Matsushime, H.; Kobori, M.; Furuichi, K. Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem. Biophys. Res. Commun., 2005, 326(4), 744-751.
[http://dx.doi.org/10. 1016/j.bbrc.2004.11.120] [PMID: 15607732]
[154]
Romero-Zerbo, S.Y.; Ruz-Maldonado, I.; Espinosa-Jiménez, V.; Rafacho, A.; Gómez-Conde, A.I.; Sánchez-Salido, L.; Cobo-Vuilleumier, N.; Gauthier, B.R.; Tinahones, F.J.; Persaud, S.J.; Bermúdez-Silva, F.J. The cannabinoid ligand LH-21 reduces anxiety and improves glucose handling in diet-induced obese pre-diabetic mice. Sci. Rep., 2017, 7(1), 3946.
[http://dx.doi.org/
10.1038/s41598-017-03292-w] [PMID: 28638091]
[155]
Hansen, H.S.; Rosenkilde, M.M.; Holst, J.J.; Schwartz, T.W. GPR119 as a fat sensor. Trends Pharmacol. Sci., 2012, 33(7), 374-381.
[http://dx.doi.org/10.1016/j.tips.2012.03.014] [PMID: 22560300]
[156]
Chu, Z.L.; Jones, R.M.; He, H.; Carroll, C.; Gutierrez, V.; Lucman, A.; Moloney, M.; Gao, H.; Mondala, H.; Bagnol, D.; Unett, D.; Liang, Y.; Demarest, K.; Semple, G.; Behan, D.P.; Leonard, J. A role for beta-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release. Endocrinology, 2007, 148(6), 2601-2609.
[http://dx.doi.org/10.1210/ en.2006-1608] [PMID: 17289847]
[157]
Sakamoto, Y.; Inoue, H.; Kawakami, S.; Miyawaki, K.; Miyamoto, T.; Mizuta, K.; Itakura, M. Expression and distribution of Gpr119 in the pancreatic islets of mice and rats: Predominant localization in pancreatic polypeptide-secreting PP-cells. Biochem. Biophys. Res. Commun., 2006, 351(2), 474-480.
[http://dx.doi.org/10.1016/j. bbrc.2006.10.076] [PMID: 17070774]
[158]
Ha, T.Y.; Kim, Y.S.; Kim, C.H.; Choi, H.S.; Yang, J.; Park, S.H.; Kim, D.H.; Rhee, J.K. Novel GPR119 agonist HD0471042 attenuated type 2 diabetes mellitus. Arch. Pharm. Res., 2014, 37(5), 671-678.
[http://dx.doi.org/10.1007/s12272-013-0209-0] [PMID: 23897163]
[159]
Yoshida, S.; Ohishi, T.; Matsui, T.; Tanaka, H.; Oshima, H.; Yonetoku, Y.; Shibasaki, M. The role of small molecule GPR119 agonist, AS1535907, in glucose-stimulated insulin secretion and pancreatic β-cell function. Diabetes Obes. Metab., 2011, 13(1), 34-41.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01315.x] [PMID: 21114601]
[160]
McKillop, A.M.; Moran, B.M.; Abdel-Wahab, Y.H.; Gormley, N.M.; Flatt, P.R. Metabolic effects of orally administered small-molecule agonists of GPR55 and GPR119 in multiple low-dose streptozotocin-induced diabetic and incretin-receptor-knockout mice. Diabetologia, 2016, 59(12), 2674-2685.
[http://dx.doi.org/
10.1007/s00125-016-4108-z] [PMID: 27677765]
[161]
Overton, H.A.; Babbs, A.J.; Doel, S.M.; Fyfe, M.C.; Gardner, L.S.; Griffin, G.; Jackson, H.C.; Procter, M.J.; Rasamison, C.M.; Tang-Christensen, M.; Widdowson, P.S.; Williams, G.M.; Reynet, C. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab., 2006, 3(3), 167-175.
[http://dx.doi.org/10.1016/j.cmet.2006.02.004] [PMID: 16517404]
[162]
Bradshaw, H.B.; Rimmerman, N.; Hu, S.S.; Benton, V.M.; Stuart, J.M.; Masuda, K. The endocannabinoid anandamide is a precursor for the signaling lipid N-arachidonoyl glycine by two distinct pathways. BMC Biochem., 2009, 10, 14.
[163]
Takenouchi, R.; Inoue, K.; Kambe, Y.; Miyata, A. Identification of N-arachidonylglycine, U18666A, and 4-androstene-3,17-dione as novel insulin Secretagogues. Biochem. Biophys. Res. Commun., 2005, 333(3), 778-786.
[164]
Ikeda, Y.; Iguchi, H.; Nakata, M.; Ioka, R.X.; Tanaka, T.; Iwasaki, S. Identification of N-arachidonylglycine, U18666A, and 4-androstene-3,17-dione as novel insulin Secretagogues. Biochem. Biophys. Res. Commun., 2005, 333(3), 778-786.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy