[1]
Bastida, J.; Berkov, S.; Torras, L.; Pigni, N.B.; Andrade, J.P.; Martínez, V.; Codina, C.; Viladomat, F. Chemical and biological aspects of Amaryllidaceae alkaloids; In: Recent Advances in Pharmaceutical
Sciences, Índia, Diego Muñoz-Torrero,. , 2011, pp. 65-100.
[2]
Louw, C.A.M.; Regnier, T.J.C.; Korsten, L. Medicinal bulbous plants of South Africa and their traditional relevance in the control of infectious diseases. J. Ethnopharmacol., 2002, 82, 147-154.
[3]
Dutilh, J.H.; Fernandez, E.P.; Penedo, T.S.A.; Moraes, M.M.V.; Messina, T. Livro Vermelho Flora do Brasil., Rio de Janeiro, Institutode Pesquisas Jardim Botânico do Rio de Janeiro,. 2013, 749-818.
[4]
De Andrade, J.P.; Pigni, N.B.; Torras-Claveria, L.; Guou, Y.; Berkov, S.; Reyes-Chilpac, R.; Amrani, A.E.; Zuanazzi, J.A.; Codina, C.; Viladomat, F.; Bastida, J. Alkaloids from the Hippeastrum genus: chemistry and biological activity. Rev. Latinoam. Quím., 2012, 40, 83-98.
[5]
Souza, V.C.; Lorenzi, H. Botânica Sistemática: guia ilustrado para identificação das famílias de fanerógamas nativas e exóticas no Brasil; Nova Odessa, Instituto Plantarum, 2012.
[6]
Ghavre, M.; Froese, J.; Pour, M.; Hudlicky, T. Synthesis of Amaryllidaceae Constituents and Unnatural Derivatives. Angew. Chem. Int. Ed., 2016, 55, 5642-5691.
[7]
Kilgore, M.B.; Kutchan, T.M. The amaryllidaceae alkaloids: Biosynthesis and methods for enzyme discovery. Phytochem. Rev., 2016, 15, 317-337.
[8]
Jin, Z. Amaryllidaceae and sceletium alkaloids. Nat. Prod. Rep., 2013, 30, 849-868.
[9]
Hulcová, D.; Breiterová, K.; Zemanová, L.; Siatka, T.; Šafratová, M.; Vaněčková, N.; Hošťálková, A.; Wsól, V.; Cahlíková, L. AKR1C3 inhibitory potency of naturally-occurring amaryllidaceae alkaloids of different structural types. Nat. Prod. Commun., 2017, 12, 245-246.
[10]
Unver, N. New skeletons and new concepts in amaryllidaceae alkaloids. Phytochem. Rev., 2007, 6, 125-135.
[11]
Bastida, J.; Lavilla, R.; Viladomat, F. Chemical and biological aspects of Narcissus alkaloids. Alkaloids Chem. Biol., 2006, 63, 87-179.
[12]
Nair, J.J.; Van Staden, J.; Bastida, J. Apoptosis-inducing effects of amaryllidaceae alkaloids. Curr. Med. Chem., 2016, 23, 161-185.
[13]
Mutsuga, M.; Kojima, K.; Yamashita, M.; Ohno, T.; Ogihara, Y.; Inoue, M. Inhibition of cell cycle progression trough specific phase by pancrastatin derivatives. Biol. Pharm. Bull., 2002, 25, 223-228.
[14]
Kornienko, A.; Evidente, A. Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem. Rev., 2008, 108, 1982-2014.
[15]
Mohan, K.; Deepa, R.J. Alkaloids as anticancer agents. Ann. Phytomed., 2012, 1, 46-53.
[16]
Liu, X.S.; Jiang, J.; Jiao, X.Y.; Wu, Y.E.; Lin, J.H.; Cai, Y.M. Lycorine induces apoptosis and down regulation of MCL-1 in human leukemia cells. Cancer Lett., 2009, 274, 16-24.
[17]
Wendt, J.; Radetzki, S.; Von Haefen, C.; Hemmati, P.G.; Guner, D.; Schulze-Osthoff, K.; Dorken, B.; Daniel, P.T. Induction of p21CIP/WAF-1 and G2 arrest by ionizing irradiation impedes caspase-3-mediated apoptosis in human carcinoma cells. Oncogene, 2006, 25, 972-980.
[18]
Peres, C.M.; Curi, R. Como cultivar células; Rio de Janeiro: Guanabara Koogan, 2005.
[19]
Meerow, A.W.; Snijman, D.A. Amaryllidaceae; In: Kubitzki, K.
(ed.). The families and genera of vascular plants. Monocotyledons
– Lilianae (except Orchidaceae).Springer-Verlag, Hamburg,. , 1998.
[20]
Dutilh, J.H.A. Revisão manuscrita da família Alliaceae, Amaryllidaceae; APNE-CNIP: Recife, Pernambuco, 2003.
[21]
Dutilh, J.H.A. Amaryllidaceae; In: Wanderley, M.G.L.; Shepherd,
G.J.; Melhem, T.S.; Martins, S.E.; Kirizawa, M.; Giulietti, A.M.
(Eds.). Flora fanerogâmica do estado de são paulo, são Paulo. Instituto
de Botânica,. , 2005, pp. 244-256.
[22]
Oliveira, R.S.; Antoinette, J.H.A.; Sano, P.T. Habranthus (Amaryllidaceae) da cadeia do espinhaço, minas gerais e bahia, Brasil. Rodriguésia, 2010, 61, 491-503.
[23]
Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, Version 5; Semichem Inc.: Shawnee Mission, KS, 2008.
[24]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37, 785-789.
[25]
Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A Gen. Phys., 1988, 38, 3098-3100.
[26]
Becke, A.D. Densityfunctional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648-5652.
[27]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09; Gaussian, Inc.: Wallingford, CT, 2009.
[28]
Rotonda, J.; Nicholson, D.W.; Fazil, K.M.; Gallant, M.; Gareau, Y.; Labelle, M.; Peterson, E.P.; Rasper, D.M.; Ruel, R.; Vaillancourt, J.P.; Thornberry, N.A.; Becker, J.W. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat. Struct. Mol. Biol., 1996, 3, 619-625.
[29]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[30]
Dassault Systèmes, BIOVIA BIOVIA Discovery Studio Visualizer; Release 2017, San Diego: Dassault Systèmes,. , 2016.
[31]
Mosmann, T.J. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65, 55-63.
[32]
Yin, X.; Zhou, J.; Jie, C.; Xing, D.; Zhang, Y. Anticancer activity and mechanism of Scutellaria barbata extract on human lung cancer cell line A549. Life Sci., 2004, 75, 2233-2244.
[33]
Ravid, T.; Tsaba, A.; Gee, P.; Rasooly, R.; Medina, E.A.; Goldkorn, T. Ceramide accumulation precedes caspase-3 activation during apoptosis of A549 human lung adenocarcinoma cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2003, 284, 1082-1092.
[34]
Kurinna, M.S.; Tsao, C.C.; Nica, A.F.; Jiffar, T.; Ruvolo, P.P. Ceramide promotes apoptosis in lung cancer-derived A549 cells by a mechanism involving c-Jun NH2-terminal kinase. Cancer Res., 2004, 64, 7852-7856.
[35]
Fenech, M.; Chang, W.P.; Kirsch-Volders, M.; Holland, N.; Bonassi, S.; Zeiger, E. HUMN project: Detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat. Res., 2003, 534, 65-75.
[36]
Fenech, M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc., 2007, 2, 1084-1104.
[37]
Hara, R.V.; Marin-Morales, M.A. In vitro and in vivo investigation of the genotoxic potential of waters from rivers under the influence of a petroleum refinery (São Paulo State-Brazil). Chemosphere, 2017, 174, 321-330.
[38]
Della Torre, A.; Albuquerque, L.B.L.; Farrapo, N.M.; Oshima-Franco, Y.; Santos, M.G.; Tavares, R.V.S.; Rodas, A.C.D.; Dal Belo, C.A.; Cardoso, C.R.P.; Varanda, E.A.; Groppo, F.C.; Lopes, P.S. Mutagenicity induced by the hydroalcoholic extract of the medicinal plant Plathymenia reticulata Benth. J. Venom. Anim. Toxins Incl. Trop. Dis., 2011, 17, 190-198.
[39]
Pirnia, F.; Schneider, E.; Betticher, D.C.; Borner, M.M. Mitomycin C induces apoptosis and caspase-8 and -9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ., 2002, 9, 905-914.
[40]
OECD(Guideline for the Testing of Chemicals). Test Nº. 487: In vitro Mammalian Cell Micronucleus Test, OECD Guidelines for the Testing of Chemicals, Section 4,; OECD Publishing, 2010.
[41]
Fowler, P.; Whitwell, J.; Jeffrey, L.; Young, J.; Smith, K.; Kirkland, D. Etoposide; colchicine; mitomycin C and cyclophosphamide tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese Hamster Lung (CHL) cells at Covance laboratories; Harrogate UK in support of OECD draft Test Guideline 487. Mutat. Res., 2010, 702, 175-180.
[42]
Crain, W.O.; Wildman, W.C.; Roberts, J.D. Nuclear magnetic resonance spectroscopy. Carbon-13 spectra of nicotine, quinine, and some amaryllidaceae alkaloids. J. Am. Chem. Soc., 1971, 93, 990-994.
[43]
Evidente, A. Identification of 11-Hydroxyvittatine in Sternbergia lutea. J. Nat. Prod., 1986, 49, 168-169.
[44]
Ghosal, S.; Kumar, Y.; Singh, S. Glucosyloxy alkaloids from Pancratium biflorum. Phytochemistry, 1984, 23, 1167-1171.
[45]
Giordani, R.B.; De Andrade, J.P.; Verli, H.; Dutilh, J.H.; Henriques, A.T.; Berkov, S.; Bastida, J.; Zuanazzia, J.A.S. Alkaloids from Hippeastrum morelianum Lem. (Amaryllidaceae). Magn. Reson. Chem., 2011, 49, 668-672.
[46]
Likhitwitayawuid, K.; Angerhofer, C.K.; Chai, H.; Pezzuto, J.M.; Cordell, G.A.; Ruangrungsi, N. Cytotoxic and antimalarial alkaloids from the bulbs of Crinum amabile. J. Nat. Prod., 1993, 56, 1331-1338.
[47]
Mary, A.; Renko, D.Z.; Guillou, C.; Thal, C. Potent acetylcholinesterase inhibitors: design, synthesis, and structure–Activity relationships of bis-interacting ligands in the galanthamine series. Bioorg. Med. Chem., 1998, 6, 1835-1850.
[48]
Suau, R.; Gómez, A.I.; Rico, R. Ismine and related alkaloids from Lapiedra martinezii. Phytochemistry, 1990, 29, 1710-1712.
[49]
Viladomat, F.; Bastida, J.; Codina, C.; Nair, J.J.; Campbell, W.E. In: Recent Research Developments in Phytochemistry. ; Pandali,S.G. (Ed.). Trivandrum: Research Signpost Publishers, 1, pp.131-
171,. , 1997.
[50]
Zhang, F.M.; Tu, Y.Q.; Liu, J.D.; Fan, X.H.; Shi, L.; Hu, X.D.; Wang, S.H.; Zhang, Y.Q. A general approach to crinine-type Amaryllidaceae alkaloids: Total syntheses of (±)-haemanthidine, (±)-pretazettine, (±)-tazettine, and (±)-crinamine. Tetrahedron, 2006, 62, 9446-9455.
[51]
Cheng, H.; Hong, B.; Zhou, L.; Allen, J.E.; Tai, G.; Humphreys, R.; Dicker, D.T.; Liu, Y.Y.; El-Deiry, W.S. Mitomycin C potentiates TRAIL-induced apoptosis through p53-independent upregulation of death receptors: Evidence for the role of c-Jun N-terminal kinase activation. Cell Cycle, 2012, 11, 3312-3323.
[52]
Hartwell, J.L. Plants used against câncer: A survey. Lloydia, 1967, 30, 379-436.
[53]
Nair, J.J.; Bastida, J.; Viladomat, F.; Van Staden, J. Cytotoxic agents of the crinane series of amaryllidaceae alkaloids. Nat. Prod. Commun., 2012, 7, 1677-1688.
[54]
Weninger, B.; Italiano, L.; Beck, J.P.; Bastida, J.; Bergoñon, S.; Codina, C.; Lobstein, A.; Anton, R. Cytotoxic activity of amaryllidaceae alkaloids. Planta Med., 1995, 61, 77-79.
[55]
Antoun, M.D.; Mendoza, N.T.; Rios, Y.R. Cytotoxicity of Hymenocallis expansa alkaloids. J. Nat. Prod., 1993, 56, 1423-1425.
[56]
Fennell, C.W.; Van Staden, J. Crinum species in traditional and modern medicine. J. Ethnopharmacol., 2001, 78, 15-26.
[57]
Nair, J.J.; Van Staden, J. Pharmacological and toxicological insights to the South African amaryllidaceae. Food Chem. Toxicol., 2013, 62, 262-275.
[58]
Ribeiro, M.C.M.; Junior, H.L. Uso tradicional terapêutico de espécies pertencentes ao gênero vegetal Eucharis Planchon & Linden (Amaryllidaceae). Rev. Fitos, 2016, 10, 13-22.
[59]
Cabezas, F.; Argoti, J.; Martinez, S.; Codina, C.; Bastida, J.; Viladomat, F. Alcaloides y actividad biológica en Eucharis amazonica, E. grandiflora, Caliphruria subedentata y Crinum kunthianum, especies colombianas de Amaryllidaceae. Scientia Technica, 2007, 33, 237-241.
[60]
Cabezas, F.; Codina, C.; Bastidas, J.; Viladomat, F. Algunas especies colombianas de Amaryllidaceae como fuentes potenciales de inhibidores de enzimas. Universidad del Cauca; Departamento de Química, 2009, pp. 1-3.
[61]
Abou-Donia, A.H.; Amer, M.E.; Darwish, F.A.; Kassem, F.F.; Mammoda, H.M.; Abdel-Kader, M.S.; Zhou, B-N.; Kingston, D.G.I. Two new alkaloids of the crinane series from Pancratium sickenbergeri. Planta Med., 2002, 68, 379-381.
[62]
Evidente, A.; Kireev, A.S.; Jenkins, A.R.; Romero, A.E.; Steelant, W.F.A.; Slambrouck, S.V.; Kornienko, A. Biological evaluation of structurally diverse amaryllidaceae alkaloids and their synthetic derivatives: discovery of novel leads for anticancer drug design. Planta Med., 2009, 75, 501-507.
[63]
Brine, N.D.; Campbell, W.E.; Bastida, J.; Herrera, M.R.; Viladomat, F.; Codina, C.; Smith, P.J. A dinitrogenous alkaloid from Cyrthanthus obliquus. Phytochemistry, 2002, 61, 443-447.
[64]
Luo, Z.; Wang, F.; Zhang, J.; Li, X.; Zhang, M.; Hao, X.; Xue, Y.; Li, Y.; Horgen, F.D.; Yao, G.; Zhang, Y. Cytotoxic alkaloids from the whole plants of Zephyranthes candida. J. Nat. Prod., 2012, 75, 2113-2120.
[65]
Zupkó, I.; Rethy, B.; Hohmann, J.; Molnár, J.; Ocsovszki, I.; Falkay, G. Antitumor activity of alkaloids derived from amaryllidaceae species. In Vivo, 2009, 23, 41-48.
[66]
Zhan, G.; Zhou, J.; Liu, R.; Liu, T.; Guo, G.; Wang, J.; Xiang, M.; Xue, Y.; Luo, Z.; Zhang, Y.; Yao, G. Galanthamine, plicamine, and secoplicamine alkaloids from Zephyranthes candida and their anti-acetylcholinesterase and anti-inflammatory activities. J. Nat. Prod., 2016, 79, 760-766.
[67]
Berkov, S.; Codina, C.; Bastida, J. The genus Galanthus: a source
of bioactive compounds. In: Rao, V. (Ed.).Phytochemicals-A ; global perspective of their role in nutrition and health. InTech. 235-254., 2012, pp.
[68]
McNulty, J.; Nair, J.J.; Bastida, J.; Pandey, S.; Griffin, C. Structure-activity studies on the lycorine pharmacophore: A potent inducer of apoptosis in human leukemia cells. Phytochemistry, 2009, 70, 913-919.
[69]
Nair, J.J.; Van Staden, J. Cytotoxicity studies of lycorine alkaloids of the Amaryllidaceae. Nat. Prod. Commun., 2014, 9, 1193-1210.
[70]
Furusawa, E.; Lum, M.K.M.; Furusawa, S. Therapeutic activity of pretazettine on Ehrlich ascites carcinoma: Adjuvant effect on standard drugs in ABC regimen. Chemotherapy, 1981, 27, 277-286.
[71]
Furusawa, E.; Furusawa, S. Therapeutic potentials of pretazettine, standard anticancer drugs, and combinations on subcutaneously implanted Lewis lung carcinoma. Chemotherapy, 1986, 32, 521-529.
[72]
Furusawa, E.; Furusawa, S. Effect of pretazettine and viva-natural, a dietary seaweed extract, on spontaneous AKR leukemia in comparison with standard drugs. Oncology, 1988, 45, 180-186.
[73]
Furusawa, E.; Furusawa, S.; Sokugawa, L. Therapeutic activity of pretazettine, standard drugs, and the combinations on intraperitoneally implanted Lewis lung carcinoma in mice. Chemotherapy, 1983, 29, 294-302.
[74]
Habli, Z.; Toumieh, G.; Fatfat, M.; Rahal, O.N.; Gali-Muhtasib, H. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms. Molecules, 2017, 22, 1-22.
[75]
Kumar, M.R.; Aithal, K.; Rao, B.N.; Udupa, N.; Rao, B.S. Cytotoxic, genotoxic and oxidative stress induced by 1,4-naphthoquinone in B16F1 melanoma tumor cells. Toxicol. In Vitro, 2009, 23, 242-250.
[76]
Mohammad, R.M.; Muqbil, I.; Lowe, L.; Yedjou, C.; Hsu, H.Y.; Lin, L.T.; Siegelin, M.D.; Fimognari, C.; Kumar, N.B.; Dou, Q.P.; Yang, H.; Samadi, A.K.; Russo, G.L.; Spagnuolo, C.; Ray, S.K.; Chakrabarti, M.; Morre, J.D.; Coley, H.M.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, W.G.; Yang, X.; Boosani, C.S.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Mohammed, S.I.; Keith, W.N.; Bilsland, A.; Halicka, D.; Nowsheen, S.; Azmi, A.S. Broad targeting of resistance to apoptosis in cancer. Semin. Cancer Biol., 2015, 35, S78-S103.
[77]
Noble, R.L. The discovery of the vinca alkaloids--chemotherapeutic agents against cancer. Biochem. Cell Biol., 1990, 68, 1344-1351.
[78]
Simizu, S.; Takada, M.; Umezawa, K.; Imoto, M. Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J. Biol. Chem., 1998, 273, 26900-26907.
[79]
Yui, S.; Mikami, M.; Kitahara, M.; Yamazaki, M. The inhibitory effect of lycorine on tumor cell apoptosis induced by polymorphonuclear leukocyte-derived calprotectin. Immunopharmacology, 1998, 40, 151-162.
[80]
Liu, J.; Hu, W.X.; He, L.F.; Ye, M.; Li, Y. Effects of lycorine on HL-60 cells via arresting cell cycle and inducing apoptosis. FEBS Lett., 2004, 578, 245-250.
[81]
Nicholson, D.W.; Ali, A.; Thornberry, N.A.; Vaillancourt, J.P.; Ding, C.K.; Gallant, M.; Gareau, Y.; Griffin, P.R.; Labelle, M.; Lazebnik, Y.A.; Munday, N.A.; Raju, S.M.; Smulson, M.E.; Yamin, T-T.; Yu, V.L.; Miller, D.K. Identification and inhibition of the ICE/CED-3protease necessary for mammalian apoptosis. Nature, 1995, 376, 37-43.
[82]
Sutheesophon, K.; Nishimura, N.; Kobayashi, Y.; Furukawa, Y.; Kawano, M.; Itoh, K.; Kano, Y.; Ishii, H.; Furukawa, Y. Involvement of the Tumor Necrosis Factor (TNF)/TNF receptor system in leukemic cell apoptosis induced by histone deacetylase inhibitor depsipeptide (FK228). J. Cell. Physiol., 2005, 203, 387-397.
[83]
Wu, C.C.; Lee, S.; Malladi, S.; Chen, M.D.; Mastrandrea, N.J.; Zhang, Z.; Bratton, S.B. The Apaf-1 apoptosome induces formation of caspase-9 homo- and heterodimers with distinct activities. Nat. Commun., 2016, 7, 1-14.