[1]
Breast Cancer Facts & Figures 2015-2016, 2015.
[2]
Hurvitz, S.; Mead, M. Triple-Negative Breast Cancer. Curr. Opin. Obstet. Gynecol., 2016. 28(1), 59-69.
[3]
Rivera, E.; Gomez, H. Chemotherapy Resistance in Metastatic Breast Cancer: The Evolving Role of Ixabepilone. Breast Cancer Res., 2010, 12(Suppl. 2), S2.
[4]
Rakesh, K.P.; Shantharam, C.S.; Sridhara, M.B.; Manukumar, H.M.; Qin, H.L. Benzisoxazole: A Privileged Scaffold for Medicinal Chemistry. MedChemComm, 2017, 8(11), 2023-2039.
[5]
Shivaprasad, C.M.; Swamy, J.; Swaroop, T.R.; Dhananjaya, M.C.; Roopashree, R.; Kumar, S.S.K.; Subbegowda, R.K. Synthesis of New Benzisoxazole Derivatives and Their Antimicrobial, Antioxidant and Anti‐inflammatory Activities. Eur. J. Chem., 2014, 5(1), 91-95.
[6]
Suhas, R.; Chandrashekar, S.; Gowda, D.C. Synthesis of Elastin Based Peptides Conjugated to Benzisoxazole as a New Class of Potent Antimicrobials -A Novel Approach to Enhance Biocompatibility. Eur. J. Med. Chem., 2011, 46(2), 704-711.
[7]
Priya, B.S. Basappa; Swamy, S.N.; Rangappa, K.S. Synthesis and Characterization of Novel 6-Fluoro-4-Piperidinyl-1,2-Benzisoxazole Amides and 6-Fluoro-Chroman-2Carboxamides: Antimicrobial Studies. Bioorg. Med. Chem., 2005, 13(7), 2623-2628.
[8]
Pagadala, L.R.; Mukkara, L.D.; Singireddi, S.; Singh, A.; Thummaluru, V.R.; Jagarlamudi, P.S.; Guttala, R.S.; Perumal, Y.; Dharmarajan, S.; Upadhyayula, S.M.; Ummanni, R. Design, synthesis and anti-mycobacterial activity of 1, 2, 3, 5-tetrasubstituted pyrrolyl-N-acetic acid derivatives. Eur. J. Med. Chem., 2014, 84, 118-126.
[9]
Mahalakshmi, K.; Srinivasarao, S.; Agnieszka, N.; Murali, M.; Kumar, K.; Venkata, K.; Chandra, G. Seeking Potent Anti-Tubercular Agents: Design, Synthesis, Anti-Tubercular Activity and Docking Study of Various ((Triazoles / Indole) -Piperazin-1-Yl / 1, 4-Diazepan-1-Yl) Benzo [ d ] Isoxazole Derivatives. Bioorg. Med. Chem. Lett., 2016, 26, 2245-2250.
[10]
Orjales, A.; Mosquera, R.; Toledo, A.; Pumar, C.; Labeaga, L.; Innerárity, A. New 3Benzisothiazolyl and 3-Benzisoxazolylpiperazine Derivatives with Atypical Antipsychotic Binding Profile. Eur. J. Med. Chem., 2002, 37(9), 721-730.
[11]
Chen, Y. Songlin Wang, X.X.; Xin Liu, M.Y.; Song Zhao, S.L.; Qiu, Y.; Tan Zhang, B.-F.L.; Zhang, G. Synthesis and Biological Investigation of Coumarin Piperazine (Piperidine) Derivatives as Potential Multireceptor Atypical Antipsychotics. J. Med. Chem., 2013, 56, 4671-4690.
[12]
Malik, S.; Ahuja, P.; Sahu, K.; Khan, S.A. Design and Synthesis of New of 3-(Benzo [ d ] Isoxazol-3-Yl) -1-Substituted Pyrrolidine-2, 5-Dione derivatives as Anticonvulsants. Eur. J. Med. Chem., 2014, 84, 42-50.
[13]
Chen, X.; Zhan, P.; Pannecouque, C.; Balzarini, J.; De Clercq, E.; Liu, X. Synthesis and biological evaluation of Piperidine-substituted Triazine derivatives as HIV-1 non-nucleoside Reverse Transcriptase Inhibitors. Eur. J. Med. Chem., 2012, 51, 60-66.
[14]
Hu, S.; Gu, Q.; Wang, Z.; Weng, Z.; Cai, Y.; Dong, X.; Hu, Y.; Liu, T.; Xie, X. Design, Synthesis, and biological evaluation of novel Piperidine-4-Carboxamide Derivatives as Potent CCR5 Inhibitors. Eur. J. Med. Chem., 2014, 71, 259-266.
[15]
Lee, J.H.; Seo, S.H.; Lim, E.J.; Cho, N.C.; Nam, G.; Kang, S.B.; Pae, A.N.; Jeong, N.; Keum, G. Synthesis and Biological Evaluation of 1-(Isoxazol-5-Ylmethylaminoethyl)-4-Phenyl Tetrahydropyridine and Piperidine Derivatives as Potent T-Type Calcium Channel Blockers with Antinociceptive Effect in a Neuropathic Pain Model. Eur. J. Med. Chem., 2014, 74, 246-257.
[16]
Ashwini, N.; Garg, M.; Mohan, C.D.; Fuchs, J.E.; Rangappa, S.; Anusha, S.; Swaroop, T.R.; Rakesh, K.S.; Kanojia, D.; Madan, V. Synthesis of 1,2-benzisoxazole tethered 1,2,3triazoles that exhibit anticancer activity in acute myeloid leukemia cell lines by inhibiting histone deacetylases, and inducing P21 and tubulin acetylation. Bioorg. Med. Chem., 2015, 23(18), 6157-6165.
[17]
Byrappa, S.; Harsha Raj, M.; Kungyal, T.; Kudva, N.N.U.; Salimath, B.P.; Rai, L.K.M. Synthesis and Biological Evaluation of Novel Isoxazolines Linked via Piperazine to 2Benzoisothiazoles as Potent Apoptotic Agents. Eur. J. Med. Chem., 2017, 126, 218-224.
[18]
Prasad, B.S.B.; Vinaya, K.; Ananda Kumar, C.S.; Swarup, S.; Rangappa, K.S. Synthesis of novel 6-fluoro-3-(4-piperidinyl)-1,2-benzisoxazole derivatives as antiproliferative agents: A structure-activity relationship study. Invest. New Drugs, 2009, 27(6), 534-542.
[19]
Liu, X.H.; Li, J.; Shi, J.B.; Song, B.A.; Qi, X.B. Design and synthesis of novel 5-Phenyl-N-Piperidine Ethanone containing 4,5-Dihydropyrazole derivatives as potential antitumor agents. Eur. J. Med. Chem., 2012, 51, 294-299.
[20]
Wang, P.; Cai, J.; Chen, J.; Ji, M. Synthesis and anticancer activities of ceritinib analogs modified in the terminal piperidine ring. Eur. J. Med. Chem., 2015, 93, 1-8.
[21]
Jayashankara, B.; Rai, K.M.L. Synthesis and evaluation of antimicrobial activity of a new series of bis (isoxazoline) derivatives. ARKIVOC, 2008, 11, 75-85.
[22]
Musad, E.A.; Mohamed, R.; Ali Saeed, B.; Vishwanath, B.S.; Lokanatha Rai, K.M. Synthesis and evaluation of antioxidant and antibacterial activities of new substituted bis(1,3,4oxadiazoles), 3,5-bis(substituted) pyrazoles and isoxazoles. Bioorg. Med. Chem. Lett., 2011, 21(12), 3536-3540.
[23]
Xue, C.B.; Roderick, J.; Mousa, S.; Olson, R.E.; DeGrado, W.F. Synthesis and antiplatelet effects of an isoxazole series of glycoprotein IIb/IIIa antagonists. Bioorg. Med. Chem. Lett., 1998, 8(24), 3499-3504.
[24]
Gutiérrez, M.; Amigo, J.; Fuentes, E.; Palomo, I.; Astudillo, L. Synthetic Isoxazole as Antiplatelet Agent. Platelets, 2014, 25(4), 234-238.
[25]
Neelarapu, R.; Holzle, D.L.; Velaparthi, S.; Bai, H.; Brunsteiner, M.; Blond, S.Y.; Petukhov, P.A. Design, synthesis, docking, and biological evaluation of novel diazide-containing isoxazole-and pyrazole-based histone deacetylase probes. J. Med. Chem., 54(13), 4350-4364.
[26]
Shi, W.; Hu, J.; Bao, N.; Li, D.; Chen, L.; Sun, J. Design, synthesis and cytotoxic activities of scopoletin-isoxazole and scopoletin-pyrazole hybrids. Bioorg. Med. Chem. Lett., 2017, 27(2), 147-151.
[27]
Jian-Ping Yong, Can-Zhong Lu, and X. W. Potential Anticancer Agents. I. Synthesis of isoxazole moiety containing quinazoline derivatives and preliminarily in vitro anticancer activity. Anticancer. Agents Med. Chem., 2015, 15, 131-136.
[28]
Abu-Bakr, S.M.; Abd El-Karim, S.S.; Said, M.M.; Youns, M.M. Synthesis and anticancer evaluation of novel isoxazole/pyrazole derivatives. Res. Chem. Intermed., 2016, 42(2), 1387-1399.
[29]
Burra, S.; Voora, V.; Rao, C.P.; Vijay Kumar, P.; Kancha, R.K.; David Krupadanam, G.L. Synthesis of novel forskolin isoxazole derivatives with potent anti-cancer activity against breast cancer cell lines. Bioorg. Med. Chem. Lett., 2017, 27(18), 4314-4318.
[30]
Li, S.; Tian, H.; Yue, W.; Li, L.; Gao, C.; Si, L.; Li, W.; Hu, W.; Qi, L.; Lu, M. Down-regulation of MTA1 protein leads to the inhibition of migration, invasion, and angiogenesis of non-small-cell lung cancer cell line. Acta Biochim. Biophys, 2013, 45(2), 115-122.
[31]
Li, K.; Dias, S.J.; Rimando, A.M.; Dhar, S.; Mizuno, C.S.; Penman, A.D.; Lewin, J.R.; Levenson, A.S. Pterostilbene Acts through Metastasis-Associated Protein 1 to Inhibit Tumor Growth, Progression and Metastasis in Prostate Cancer. PLoS One, 2013, 8(3)
[32]
Lu, Y.; Wei, C.; Xi, Z. Curcumin Suppresses Proliferation and Invasion in Non-Small Cell Lung Cancer by Modulation of MTA1-Mediated Wnt/β-Catenin Pathway. Vitr. Cell. Dev. Biol., 2014, 50(9), 840-850.
[33]
Kai, L.; Samuel, S.K.; Levenson, A.S. Resveratrol enhances P53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. Int. J. Cancer, 2010, 126(7), 1538-1548.
[34]
Nagaraj, S.R.M.; Sheela, M.L.; Yashaswini, B.; Kumar, A.; Salimath, B.P. MTA1 Induced Angiogenesis, Migration and Tumor Growth Is Inhibited by Glycyrrhiza Glabra. IOSR J. Pharm., 2012, 2(4), 34-43.
[35]
Nagaraj, S.R.M.; Yashaswini, B.; Shetty, N.; Salimath, B.P. Metastatic events of MDA-MB-231 cells induced by angiogenic factors VEGF or MYA1 are inhibited by Tinospora cordifolia hexane fraction (Tchf). IOSR J. Pharm, 2012, 2(5), 24-30.
[36]
Raj, H.M.; Yashaswini, B.; Rössler, J.; Salimath, B.P. Combinatorial Treatment with Anacardic Acid Followed by TRAIL Augments Induction of Apoptosis in TRAIL Resistant Cancer Cells by the Regulation of P53, MAPK and NFκβ Pathways. Apoptosis, 2016, 21(5), 578-593.
[37]
Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Vogel’s Text Book of Practical Organic Chemistry; 5th edition.;
Longman group UK limited: England, 1989.
[38]
Wang, P.; Henning, S.M.; Heber, D. Limitations of MTT and MTS -Based Assays for Measurement of Antiproliferative Activity of Green Tea Polyphenols. PLoS One, 2010, 5(4), e10202.
[39]
Jang, K.S.; Paik, S.S.; Chung, H.; Oh, Y.H.; Kong, G. MTA1 Overexpression Correlates Significantly with Tumor Grade and Angiogenesis in Human Breast Cancers. Cancer Sci., 2006, 97(5), 374-379.
[40]
Kawasaki, G.; Yanamoto, S.; Yoshitomi, I.; Yamada, S.; Mizuno, A. Overexpression of Metastasis-Associated MTA1 in Oral Squamous Cell Carcinomas: Correlation with Metastasis and Invasion. Int. J. Oral Maxillofac. Surg., 2008, 37(11), 1039-1046.
[41]
Nagaraj, S.R.M.; Shilpa, P.; Rachaiah, K.; Salimath, B.P. Crosstalk between VEGF and MTA1 Signaling Pathways Contribute to Aggressiveness of Breast Carcinoma. Mol. Carcinog., 2015, 54(5)
[42]
Shapiro, G.I.; Harper, J.W. Anticancer Drug Targets: Cell Cycle and Checkpoint Control. J. Clin. Invest., 1999, 104(12), 1645-1653.
[43]
Ma, J.; Waxman, D.J. Combination of antiangiogenesis with chemotherapy
for more effective cancer treatment. Molecular cancer
therapeutics 2008. 7(12).3670-3684.
[44]
Keshet, E.; Ben-Sasson, S.A. Anticancer drug targets: Approaching angiogenesis. J. Clin. Invest., 1999, 104(11), 1497-1501.
[45]
Sheela, M.L.; Ramakrishna, M.K.; Salimath, B.P. Angiogenic and proliferative effects of the cytokine VEGF in ehrlich ascites tumor cells is inhibited by glycyrrhiza glabra. Int. Immunopharmacol., 2006, 6(3), 494-498.
[46]
Lingaraju, S.M.; Keshavaiah, K.; Salimath, B.P. Involves Repression of the Cytokine VEGF. Gene Expr., 2008, 2(4), 234-244.
[47]
Zamora, A.; Pérez, S.A.; Rodríguez, V.; Janiak, C.; Yellol, G.S.; Ruiz, J. Dual Antitumor and Antiangiogenic Activity of Organoplatinum(II) Complexes. J. Med. Chem., 2015, 58(3), 1320-1336.