[1]
Kovacs, G.G. Molecular pathological classification of neurodegenerative diseases: Turning towards precision medicine. Int. J. Mol. Sci., 2016, 17(2), 189.
[2]
Rahimi, J.; Kovacs, G.G. Prevalence of mixed pathologies in the aging brain. Alzheimers Res. Ther., 2014, 6(9), 82.
[3]
Kovacs, G.G.; Adle-Biassette, H.; Milenkovic, I.; Cipriani, S.; Van Scheppingen, J.; Aronica, E. Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience, 2014, 269, 152-172.
[4]
Kovacs, G.G. Concepts and classification of neurodegenerative diseases.In Handbook of Clinical Neurology., Kovacs, G.G.; Alafuzoff,I.; Eds. Elsevier: Amsterdam,. 2018, Vol. 145, 301-307.
[5]
Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol., 1991, 82(4), 239-259.
[6]
Thal, D.R.; Rub, U.; Orantes, M.; Braak, H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology, 2002, 58(12), 1791-1800.
[7]
Kim, W.S.; Kagedal, K.; Halliday, G.M. Alpha-synuclein biology in Lewy body diseases. Alzheimers Res. Ther., 2014, 6(5), 73.
[8]
Ping, L.; Duong, D.M.; Yin, L.; Gearing, M.; Lah, J.J.; Levey, A.I.; Seyfried, N.T. Global quantitative analysis of the human brain proteome in Alzheimer’s and Parkinson’s Disease. Sci. Data, 2018, 5, 180036.
[9]
Bereczki, E.; Branca, R.M.; Francis, P.T.; Pereira, J.B.; Baek, J.H.; Hortobagyi, T.; Winblad, B.; Ballard, C.; Lehtio, J.; Aarsland, D. Synaptic markers of cognitive decline in neurodegenerative diseases: A proteomic approach. Brain, 2018, 141(2), 582-595.
[10]
Zhang, Q.; Ma, C.; Gearing, M.; Wang, P.G.; Chin, L.S.; Li, L. Integrated proteomics and network analysis identifies protein hubs and network alterations in Alzheimer’s disease. Acta Neuropathol. Commun., 2018, 6, 19.
[11]
Caselli, R.J.; Reiman, E.M. Characterizing the preclinical stages of Alzheimer’s disease and the prospect of presymptomatic intervention. J. Alzheimers Dis., 2013, 33, S405-S416.
[12]
Boehm, J.; Fernandes, K.; Leclerc, N.; Robitaille, R. The neurobiology of aging and Alzheimer’s disease: walking down the same road? Eur. J. Neurosci., 2013, 37(12), 1885-1886.
[13]
Duyckaerts, C.; Delatour, B.; Potier, M.C. Classification and basic pathology of Alzheimer disease. Acta Neuropathol., 2009, 118(1), 5-36.
[14]
Castellani, R.J.; Rolston, R.K.; Smith, M.A. Alzheimer disease. Dis. Mon., 2010, 56(9), 484-546.
[15]
Drummond, E.; Nayak, S.; Pires, G.; Ueberheide, B.; Wisniewski, T. Isolation of amyloid plaques and neurofibrillary tangles from archived Alzheimer’s disease tissue using laser-capture microdissection for downstream proteomics. Methods Mol. Biol., 2018, 1723, 319-334.
[16]
Khachaturian, Z.S. Diagnosis of Alzheimers-disease. Arch. Neurol., 1985, 42(11), 1097-1104.
[17]
Mirra, S.S.; Heyman, A.; Mckeel, D.; Sumi, S.M.; Crain, B.J.; Brownlee, L.M.; Vogel, F.S.; Hughes, J.P.; Vanbelle, G.; Berg, L. The consortium to establish a registry for Alzheimers-disease (Cerad). 2. standardization of the neuropathologic assessment of Alzheimers-disease. Neurology, 1991, 41(4), 479-486.
[18]
Smith, M.A. Alzheimer disease. Int. Rev. Neurobiol., 1998, 42, 1-54.
[19]
Lacosta, A.M.; Insua, D.; Badi, H.; Pesini, P.; Sarasa, M. Neurofibrillary tangles of A beta(x-40) in Alzheimer’s disease brains. J. Alzheimers Dis., 2017, 58(3), 661-667.
[20]
Marks, S.M.; Lockhart, S.N.; Baker, S.L.; Jagust, W.J. Tau and beta-amyloid are associated with medial temporal lobe structure, function, and memory encoding in normal aging. J. Neurosci., 2017, 37(12), 3192-3201.
[21]
Bouras, C.; Hof, P.R.; Giannakopoulos, P.; Michel, J.P.; Morrison, J.H. Regional distribution of neurofibrillary tangles and senile plaques in the cerebral-cortex of elderly patients - a quantitative-evaluation of a one-year autopsy population from a geriatric hospital. Cereb. Cortex, 1994, 4(2), 138-150.
[22]
Bennett, D.A.; Cochran, E.J.; Saper, C.B.; Leverenz, J.B.; Gilley, D.W.; Wilson, R.S. Pathological changes in frontal cortex from biopsy to autopsy in Alzheimer’s disease. Neurobiol. Aging, 1993, 14(6), 589-596.
[23]
Masliah, E.; Terry, R.D.; Deteresa, R.M.; Hansen, L.A. Immunohistochemical quantification of the synapse-related protein synaptophysin in Alzheimer-disease. Neurosci. Lett., 1989, 103(2), 234-239.
[24]
Hardy, J.; Allsop, D. Amyloid deposition as the central event in the etiology of Alzheimers-disease. Trends Pharmacol. Sci., 1991, 12(10), 383-388.
[25]
Gray, E.G.; Paulabarbosa, M.; Roher, A. Alzheimers-disease - paired helical filaments and cytomembranes. Neuropathol. Appl. Neurobiol., 1987, 13(2), 91-110.
[26]
Nhan, H.S.; Chiang, K.; Koo, E.H. The multifaceted nature of amyloid precursor protein and its proteolytic fragments: Friends and foes. Acta Neuropathol., 2015, 129(1), 1-19.
[27]
van der Kant, R.; Goldstein, L.S. Cellular functions of the amyloid precursor protein from development to dementia. Dev. Cell, 2015, 32(4), 502-515.
[28]
Deyts, C.; Thinakaran, G.; Parent, A.T. APP receptor? To be or not to be. Trends Pharmacol. Sci., 2016, 37(5), 390-411.
[29]
Zheng, H.; Koo, E.H. Biology and pathophysiology of the amyloid precursor protein. Mol. Neurodegener., 2011, 6(1), 27.
[31]
Stahl, R.; Schilling, S.; Soba, P.; Rupp, C.; Hartmann, T.; Wagner, K.; Merdes, G.; Eggert, S.; Kins, S. Shedding of APP limits its synaptogenic activity and cell adhesion properties. Front. Cell. Neurosci., 2014, 8, 410.
[32]
Puzzo, D.; Piacentini, R.; Fa, M.; Gulisano, W.; Li, P. D.D.; Staniszewski, A.; Zhang, H.; Tropea, M.R.; Cocco, S.; Palmeri, A.; Fraser, P.; D’Adamio, L.; Grassi, C.; Arancio, O. LTP and memory impairment caused by extracellular A beta and Tau oligomers is APP-dependent. eLife, 2017, 6, 26991.
[33]
Wang, Z.M.; Jackson, R.J.; Hong, W.; Taylor, W.M.; Corbett, G.T.; Moreno, A.; Liu, W.; Li, S.M.; Frosch, M.P.; Slutsky, I.; Young-Pearse, T.L.; Spires-Jones, T.L.; Walsh, D.M. Human brain-derived a beta oligomers bind to synapses and disrupt synaptic activity in a manner that requires APP. J. Neurosci., 2017, 37(49), 11947-11966.
[34]
Grimm, M.O.W.; Mett, J.; Grimm, H.S.; Hartmann, T. APP function and lipids: A bidirectional link. Front. Mol. Neurosci., 2017, 10, 63.
[35]
Penke, B.; Bogar, F.; Fulop, L. β-amyloid and the pathomechanisms of Alzheimer’s disease: A comprehensive view. Molecules, 2017, 22(10), 1692.
[36]
Elliott, C.; Rojo, A.I.; Ribe, E.; Broadstock, M.; Xia, W.; Morin, P.; Semenov, M.; Baillie, G.; Cuadrado, A.; Al-Shawi, R.; Ballard, C.G.; Simons, P.; Killick, R. A role for APP in Wnt signalling links synapse loss with beta-amyloid production. Transl. Psychiatry, 2018, 8(1), 179.
[37]
Belaidi, A.A.; Gunn, A.P.; Wong, B.X.; Ayton, S.; Appukuttan, A.T.; Roberts, B.R.; Duce, J.A.; Bush, A.I. Marked age-related changes in brain iron homeostasis in amyloid protein precursor knockout mice. Neurotherapeutics, 2018, 15(4), 1055-1062.
[38]
Norstrom, E. Metabolic Processing of the amyloid precursor protein -- new pieces of the Alzheimer’s puzzle. Discov. Med., 2017, 23(127), 269-276.
[40]
Muller, T.; Meyer, H.E.; Egensperger, R.; Marcus, K. The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzheimer’s disease. Prog. Neurobiol., 2008, 85(4), 393-406.
[41]
Tam, J.H.K.; Seah, C.; Pasternak, S.H. The amyloid precursor protein is rapidly transported from the golgi apparatus to the lysosome and where it is processed into beta-amyloid. Mol. Brain, 2014, 7, 54.
[42]
Haass, C.; Schlossmacher, M.G.; Hung, A.Y.; Vigopelfrey, C.; Mellon, A.; Ostaszewski, B.L.; Lieberburg, I.; Koo, E.H.; Schenk, D.; Teplow, D.B.; Selkoe, D.J. Amyloid beta-peptide is produced by cultured-cells during normal metabolism. Nature, 1992, 359(6393), 322-325.
[43]
Wang, X.; Zhou, X.; Li, G.Y.; Zhang, Y.; Wu, Y.L.; Song, W.H. Modifications and trafficking of APP in the pathogenesis of Alzheimer’s disease. Front. Mol. Neurosci., 2017, 10, 294.
[44]
Lammich, S.; Kojro, E.; Postina, R.; Gilbert, S.; Pfeiffer, R.; Jasionowski, M.; Haass, C.; Fahrenholz, F. Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. USA, 1999, 96(7), 3922-3927.
[45]
Kuhn, P.H.; Wang, H.; Dislich, B.; Colombo, A.; Zeitschel, U.; Ellwart, J.W.; Kremmer, E.; Rossner, S.; Lichtenthaler, S.F. ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J., 2010, 29(17), 3020-3032.
[46]
Chasseigneaux, S.; Allinquant, B. Functions of Aβ, sAPPα and sAPPβ: Similarities and differences. J. Neurochem., 2012, 120, 99-108.
[47]
Haass, C.; Kaether, C.; Thinakaran, G.; Sisodia, S. Trafficking and proteolytic processing of APP. Cold Spring Harb. Perspect. Med., 2012, 2(5), 006270.
[48]
Haapasalo, A.; Kovacs, D.M. The many substrates of presenilin/gamma-secretase. J. Alzheimers Dis., 2011, 25(1), 3-28.
[49]
De Strooper, B.; Gutierrez, L.C. Learning by failing: Ideas and concepts to tackle gamma-secretases in Alzheimer’s disease and beyond. Annu. Rev. Pharmacol. Toxicol., 2015, 55, 419-437.
[50]
Willem, M.; Tahirovic, S.; Busche, M.A.; Ovsepian, S.V.; Chafai, M.; Kootar, S.; Hornburg, D.; Evans, L.D.B.; Moore, S.; Daria, A.; Hampel, H.; Muller, V.; Giudici, C.; Nuscher, B.; Wenninger-Weinzierl, A.; Kremmer, E.; Heneka, M.T.; Thal, D.R.; Giedraitis, V.; Lannfelt, L.; Muller, U.; Livesey, F.J.; Meissner, F.; Herms, J.; Konnerth, A.; Marie, H.; Haass, C. η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature, 2015, 526(7573), 443-447.
[51]
Simons, M.; DeStrooper, B.; Multhaup, G.; Tienari, P.J.; Dotti, C.G.; Beyreuther, K. Amyloidogenic processing of the human amyloid precursor protein in primary cultures of rat hippocampal neurons. J. Neurosci., 1996, 16(3), 899-908.
[52]
Zhang, Z.T.; Song, M.K.; Liu, X.; Kang, S.S.; Duong, D.M.; Seyfried, N.T.; Cao, X.B.; Cheng, L.M.; Sun, Y.E.; Yu, S.P.; Jia, J.P.; Levey, A.I.; Ye, K.Q. Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer’s disease. Nat. Commun., 2015, 6, 8762.
[53]
Bien, J.; Jefferson, T.; Causevic, M.; Jumpertz, T.; Munter, L.; Multhaup, G.; Weggen, S.; Becker-Pauly, C.; Pietrzik, C.U. The metalloprotease meprin beta generates amino terminal-truncated amyloid beta peptide species. J. Biol. Chem., 2012, 287(40), 33304-33313.
[54]
Salminen, A.; Kauppinen, M.; Kaamiranta, K. Hypoxia/ischemia activate processing of amyloid precursor protein: Impact of vascular dysfunction in the pathogenesis of Alzheimer’s disease. J. Neurochem., 2017, 140(4), 536-549.
[55]
Chong, F.P.; Ng, K.Y.; Koh, R.Y.; Chye, S.M. Tau proteins and tauopathies in Alzheimer’s disease. Cell. Mol. Neurobiol., 2018, 38(5), 965-980.
[56]
Goedert, M.; Clavaguera, F.; Tolnay, M. The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci., 2010, 33(7), 317-325.
[57]
Gotz, J.; Lim, Y.A.; Ke, Y.D.; Eckert, A.; Ittner, L.M. Dissecting toxicity of tau and beta-amyloid. Neurodegener. Dis., 2010, 7(1-3), 10-12.
[58]
Kovacs, G.G. Invited review: Neuropathology of tauopathies: Principles and practice. Neuropathol. Appl. Neurobiol., 2015, 41(1), 3-23.
[59]
Mandelkow, E.M.; Mandelkow, E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb. Perspect. Med., 2012, 2(7), 006247.
[60]
Mukrasch, M.D.; Bibow, S.; Korukottu, J.; Jeganathan, S.; Biernat, J.; Griesinger, C.; Mandelkow, E.; Zweckstetter, M. Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol., 2009, 7(2), 399-414.
[61]
Crowther, R.A. Straight and paired helical filaments in Alzheimer disease have a common structural unit. Proc. Natl. Acad. Sci. USA, 1991, 88(6), 2288-2292.
[62]
Fitzpatrick, A.W.P.; Falcon, B.; He, S.; Murzin, A.G.; Murshudov, G.; Garringer, H.J.; Crowther, R.A.; Ghetti, B.; Goedert, M.; Scheres, S.H.W. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature, 2017, 547(7662), 185-190.
[63]
Goedert, M.; Spillantini, M.G.; Jakes, R.; Rutherford, D.; Crowther, R.A. Multiple isoforms of human microtubule-associated protein-tau - sequences and localization in neurofibrillary tangles of Alzheimers-disease. Neuron, 1989, 3(4), 519-526.
[64]
Duan, A.R.; Jonasson, E.M.; Alberico, E.O.; Li, C.L.; Scripture, J.P.; Miller, R.A.; Alber, M.S.; Goodson, H.V. Interactions between tau and different conformations of tubulin: implications for tau function and mechanism. J. Mol. Biol., 2017, 429(9), 1424-1438.
[65]
Brady, S.T.; Sperry, A.O. Biochemical and functional diversity of microtubule motors in the nervous system. Curr. Opin. Neurobiol., 1995, 5(5), 551-558.
[66]
Moussaud, S.; Jones, D.R.; Moussaud-Lamodiere, E.L.; Delenclos, M.; Ross, O.A.; McLean, P.J. Alpha-synuclein and tau: Teammates in neurodegeneration? Mol. Neurodegener., 2014, 9, 43.
[67]
Zhang, Z.T.; Kang, S.S.; Liu, X.; Ahn, E.H.; Zhang, Z.H.; He, L.; Iuvone, P.M.; Duong, D.M.; Seyfried, N.T.; Benskey, M.J.; Manfredsson, F.P.; Jin, L.J.; Sun, Y.E.; Wang, J.Z.; Ye, K.Q. Asparagine endopeptidase cleaves alpha-synuclein and mediates pathologic activities in Parkinson’s disease. Nat. Struct. Mol. Biol., 2017, 24(8), 632-642.
[68]
Larson, M.E.; Sherman, M.A.; Greimel, S.; Kuskowski, M.; Schneider, J.A.; Bennett, D.A.; Lesne, S.E. Soluble alpha-synuclein is a novel modulator of Alzheimer’s disease pathophysiology. J. Neurosci., 2012, 32(30), 10253-10266.
[69]
Yokota, O.; Terada, S.; Ishizu, H.; Tsuchiya, K.; Kitamura, Y.; Ikeda, K.; Ueda, K.; Kuroda, S. NACP/alpha-synuclein immunoreactivity in diffuse neurofibrillary tangles with calcification (DNTC). Acta Neuropathol., 2002, 104(4), 333-341.
[70]
Diao, J.J.; Burre, J.; Vivona, S.; Cipriano, D.J.; Sharma, M.; Kyoung, M.; Sudhof, T.C.; Brunger, A.T. Native alpha-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. eLife, 2013, 2, 00592.
[71]
Alim, M.A.; Hossain, M.S.; Arima, K.; Takeda, K.; Izumiyama, Y.; Nakamura, M.; Kaji, H.; Shinoda, T.; Hisanaga, S.; Ueda, K. Tubulin seeds alpha-synuclein fibril formation. J. Biol. Chem., 2002, 277(3), 2112-2117.
[72]
Bartels, T.; Choi, J.G.; Selkoe, D.J. Alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature, 2011, 477(7362), 107-110.
[73]
Spillantini, M.G.; Schmidt, M.L.; Lee, V.M.Y.; Trojanowski, J.Q.; Jakes, R.; Goedert, M. Alpha-synuclein in Lewy bodies. Nature, 1997, 388(6645), 839-840.
[74]
Sadigh-Eteghad, S.; Talebi, M.; Farhoudi, M. Association of apolipoprotein E epsilon 4 allele with sporadic late onset Alzheimer’s disease A meta-analysis. Neurosciences, 2012, 17(3), 321-326.
[75]
Sepehrnia, B.; Kamboh, M.I.; Adamscampbell, L.L.; Bunker, C.H.; Nwankwo, M.; Majumder, P.P.; Ferrell, R.E. Genetic-studies of human apolipoproteins. 10. the effect of the apolipoprotein-e polymorphism on quantitative levels of lipoproteins in nigerian blacks. Am. J. Hum. Genet., 1989, 45(4), 586-591.
[76]
Notkola, I.L.; Sulkava, R.; Pekkanen, J.; Erkinjuntti, T.; Ehnholm, C.; Kivinen, P.; Tuomilehto, A.; Nissinen, A. Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer’s disease. Neuroepidemiology, 1998, 17(1), 14-20.
[77]
Hauser, P.S.; Ryan, R.O. Impact of apolipoprotein E on Alzheimer’s disease. Curr. Alzheimer Res., 2013, 10(8), 809-817.
[78]
Stocker, H.; Mollers, T.; Perna, L.; Brenner, H. The genetic risk of Alzheimer’s disease beyond APOE epsilon 4: Systematic review of Alzheimer’s genetic risk scores. Transl. Psychiatry, 2018, 8, 166.
[79]
Yu, J.T.; Tan, L.; Hardy, J. Apolipoprotein E in Alzheimer’s disease: An update. Annu. Rev. Neurosci., 2014, 37, 79-100.
[80]
Han, S.H.; Park, J.C.; Mook-Jung, I. Amyloid beta-interacting partners in Alzheimer’s disease: From accomplices to possible therapeutic targets. Prog. Neurobiol., 2016, 137, 17-38.
[81]
Brandon, J.A.; Farmer, B.C.; Williams, H.C.; Johnson, L.A. APOE and Alzheimer’s disease: Neuroimaging of metabolic and cerebrovascular dysfunction. Front. Aging Neurosci., 2018, 10, 180.
[82]
Wolf, A.B.; Caselli, R.J.; Reiman, E.M.; Valla, J. APOE and neuroenergetics: An emerging paradigm in Alzheimer’s disease. Neurobiol. Aging, 2013, 34(4), 1007-1017.
[83]
Alata, W.; Ye, Y.; St-Amour, I.; Vandal, M.; Calon, F. Human apolipoprotein E epsilon 4 expression impairs cerebral vascularization and blood-brain barrier function in mice. J. Cereb. Blood Flow Metab., 2015, 35(1), 86-94.
[84]
Bell, R.D.; Winkler, E.A.; Singh, I.; Sagare, A.P.; Deane, R.; Wu, Z.H.; Holtzman, D.M.; Betsholtz, C.; Armulik, A.; Sallstrom, J.; Berk, B.C.; Zlokovic, B.V. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature, 2012, 485(7399), 512-516.
[85]
Nielsen, H.M.; Chen, K.W.; Lee, W.; Chen, Y.H.; Bauer, R.J.; Reiman, E.; Caselli, R.; Bu, G.J. Peripheral apoE isoform levels in cognitively normal APOE epsilon 3/epsilon 4 individuals are associated with regional gray matter volume and cerebral glucose metabolism. Alzheimers Res. Ther., 2017, 9(1), 5.
[86]
Huynh, T.V.; Davis, A.A.; Ulrich, J.D.; Holtzman, D.M. Apolipoprotein E and Alzheimer’s disease: the influence of apolipoprotein E on amyloid-beta and other amyloidogenic proteins. J. Lipid Res., 2017, 58(5), 824-836.
[87]
Holtzman, D.M.; Bales, K.R.; Tenkova, T.; Fagan, A.M.; Parsadanian, M.; Sartorius, L.J.; Mackey, B.; Olney, J.; McKeel, D.; Wozniak, D.; Paul, S.M. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2000, 97(6), 2892-2897.
[88]
Buttini, M.; Yu, G.Q.; Shockley, K.; Huang, Y.D.; Jones, B.; Masliah, E.; Mallory, M.; Yeo, T.; Longo, F.M.; Mucke, L. Modulation of Alzheimer-like synaptic and cholinergic deficits in transgenic mice by human apolipoprotein E depends on isoform, aging, and overexpression of amyloid beta peptides but not on plaque formation. J. Neurosci., 2002, 22(24), 10539-10548.
[89]
Fagan, A.M.; Watson, M.; Parsadanian, M.; Bales, K.R.; Paul, S.M.; Holtzman, D.M. Human and murine ApoE markedly alters A beta metabolism before and after plaque formation in a mouse model of Alzheimer’s disease. Neurobiol. Dis., 2002, 9(3), 305-318.
[90]
Kim, J.; Basak, J.M.; Holtzman, D.M. The role of apolipoprotein E in Alzheimer’s disease. Neuron, 2009, 63(3), 287-303.
[91]
Kuszczyk, M.A.; Sanchez, S.; Pankiewicz, J.; Kim, J.; Duszczyk, M.; Guridi, M.; Asuni, A.A.; Sullivan, P.M.; Holtzman, D.M.; Sadowski, M.J. Blocking the interaction between apolipoprotein E and A beta reduces intraneuronal accumulation of A beta and inhibits synaptic degeneration. Am. J. Pathol., 2013, 182(5), 1750-1768.
[92]
Berridge, M.J. Calcium regulation of neural rhythms, memory and Alzheimer’s disease. J. Physiol., 2014, 592(2), 281-293.
[93]
Ferreira, A. Calpain dysregulation in Alzheimer’s disease. ISRN Biochem., 2012, 2012, 728571.
[94]
McBrayer, M.; Nixon, R.A. Lysosome and calcium dysregulation in Alzheimer’s disease: Partners in crime. Biochem. Soc. Trans., 2013, 41, 1495-1502.
[95]
Kurbatskaya, K.; Phillips, E.C.; Croft, C.L.; Dentoni, G.; Hughes, M.M.; Wade, M.A.; Al-Sarraj, S.; Troakes, C.; O’Neill, M.J.; Perez-Nievas, B.G.; Hanger, D.P.; Noble, W. Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer’s disease brain. Acta Neuropathol. Commun., 2016, 4, 34.
[96]
Yamashima, T. Reconsider Alzheimer’s disease by the ‘calpain-cathepsin hypothesis’-A perspective review. Prog. Neurobiol., 2013, 105, 1-23.
[97]
Ahmad, F.; Das, D.; Kommaddi, R.P.; Diwakar, L.; Gowaikar, R.; Rupanagudi, K.V.; Bennett, D.A.; Ravindranath, V. Isoform-specific hyperactivation of calpain-2 occurs presymptomatically at the synapse in Alzheimer’s disease mice and correlates with memory deficits in human subjects. Sci. Rep., 2018, 8, 13119.
[98]
Ashraf, J.; Ahmad, J.; Ali, A.; Ul-Haq, Z. Analyzing the behavior of neuronal pathways in Alzheimer’s disease using petri net modeling approach. Front. Neuroinform., 2018, 12, 26.
[99]
Ittner, A.; Chua, S.W.; Bertz, J.; Volkerling, A.; van der Hoven, J.; Gladbach, A.; Przybyla, M.; Bi, M.; van Hummel, A.; Stevens, C.H.; Ippati, S.; Suh, L.S.; Macmillan, A.; Sutherland, G.; Kril, J.J.; Silva, A.P.G.; Mackay, J.; Poljak, A.; Delerue, F.; Ke, Y.D.; Ittner, L.M. Site-specific phosphorylation of tau inhibits amyloid-beta toxicity in Alzheimer’s mice. Science, 2016, 354(6314), 904-908.
[100]
Nygaard, H.B. Targeting fyn kinase in Alzheimer’s disease. Biol. Psychiatry, 2018, 83(4), 369-376.
[101]
Tharp, W.G.; Sarkar, I.N. Origins of amyloid-beta. BMC Genomics, 2013, 14, 290.
[102]
Brothers, H.M.; Gosztyla, M.L.; Robinson, S.R. The physiological roles of amyloid-beta peptide hint at new ways to treat Alzheimer’s disease. Front. Aging Neurosci., 2018, 10, 118.
[103]
Soscia, S.J.; Kirby, J.E.; Washicosky, K.J.; Tucker, S.M.; Ingelsson, M.; Hyman, B.; Burton, M.A.; Goldstein, L.E.; Duong, S.; Tanzi, R.E.; Moir, R.D. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One, 2010, 5(3), 9505.
[104]
Wildburger, N.C.; Esparza, T.J.; LeDuc, R.D.; Fellers, R.T.; Thomas, P.M.; Cairns, N.J.; Kelleher, N.L.; Bateman, R.J.; Brody, D.L. Diversity of amyloid-beta proteoforms in the Alzheimer’s disease brain. Sci. Rep., 2017, 7(1), 9520.
[105]
Masters, C.L.; Simms, G.; Weinman, N.A.; Multhaup, G.; Mcdonald, B.L.; Beyreuther, K. Amyloid plaque core protein in Alzheimer-disease and down syndrome. Proc. Natl. Acad. Sci. USA, 1985, 82(12), 4245-4249.
[106]
Roche, J.; Shen, Y.; Lee, J.H.; Ying, J.; Bax, A. Monomeric Abeta(1-40) and Abeta(1-42) peptides in solution adopt very similar ramachandran map distributions that closely resemble random coil. Biochemistry, 2016, 55(5), 762-775.
[107]
Wei, G.H.; Shea, J.E. Effects of solvent on the structure of the Alzheimer amyloid-beta(25-35) peptide. Biophys. J., 2006, 91(5), 1638-1647.
[108]
Zheng, W.H.; Tsai, M.Y.; Wolynes, P.G. Comparing the aggregation free energy landscapes of amyloid beta(1-42) and amyloid beta(1-40). J. Am. Chem. Soc., 2017, 139(46), 16666-16676.
[109]
Condello, C.; Stoehr, J. Abeta propagation and strains: Implications for the phenotypic diversity in Alzheimer's disease. Neurobiol.Dis 2018. 109(Pt B), 191-200.
[110]
Chiti, F.; Dobson, C.M. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annu. Rev. Biochem., 2017, 86, 27-68.
[111]
Viola, K.L.; Klein, W.L. Amyloid beta oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol., 2015, 129(2), 183-206.
[112]
Klein, W.L.; Krafft, G.A.; Finch, C.E. Targeting small A beta oligomers: The solution to an Alzheimer’s disease conundrum? Trends Neurosci., 2001, 24(4), 219-224.
[113]
Lambert, M.P.; Barlow, A.K.; Chromy, B.A.; Edwards, C.; Freed, R.; Liosatos, M.; Morgan, T.E.; Rozovsky, I.; Trommer, B.; Viola, K.L.; Wals, P.; Zhang, C.; Finch, C.E.; Krafft, G.A.; Klein, W.L. Diffusible, nonfibrillar ligands derived from A beta(1-42) are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA, 1998, 95(11), 6448-6453.
[114]
Hayden, E.Y.; Teplow, D.B. Amyloid beta-protein oligomers and Alzheimer’s disease. Alzheimers Res. Ther., 2013, 5(6), 60.
[115]
Mucke, L.; Selkoe, D.J. Neurotoxicity of amyloid beta-protein: Synaptic and network dysfunction. Cold Spring Harb. Perspect. Med., 2012, 2(7), 006338.
[116]
Ferreira, S.T.; Klein, W.L. The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol. Learn. Mem., 2011, 96(4), 529-543.
[117]
Kayed, R.; Head, E.; Thompson, J.L.; McIntire, T.M.; Milton, S.C.; Cotman, C.W.; Glabe, C.G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 2003, 300(5618), 486-489.
[118]
Gong, Y.; Chang, L.; Viola, K.L.; Lacor, P.N.; Lambert, M.P.; Finch, C.E.; Krafft, G.A.; Klein, W.L. Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl. Acad. Sci. USA, 2003, 100(18), 10417-10422.
[119]
Walsh, D.M.; Klyubin, I.; Fadeeva, J.V.; Cullen, W.K.; Anwyl, R.; Wolfe, M.S.; Rowan, M.J.; Selkoe, D.J. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 2002, 416(6880), 535-539.
[120]
Ladiwala, A.R.A.; Litt, J.; Kane, R.S.; Aucoin, D.S.; Smith, S.O.; Ranjan, S.; Davis, J.; Van Nostrand, W.E.; Tessier, P.M. Conformational differences between two amyloid beta oligomers of similar size and dissimilar toxicity. J. Biol. Chem., 2012, 287(29), 24765-24773.
[121]
Klyubin, I.; Cullen, W.K.; Hu, N.W.; Rowan, M.J. Alzheimer’s disease A beta assemblies mediating rapid disruption of synaptic plasticity and memory. Mol. Brain, 2012, 5, 25.
[122]
Choi, M.L.; Gandhi, S. Crucial role of protein oligomerization in the pathogenesis of Alzheimer’s and Parkinson’s diseases. FEBS J., 2018, 285(19), 3631-3644.
[123]
Pickett, E.K.; Koffie, R.M.; Wegmann, S.; Henstridge, C.M.; Herrmann, A.G.; Colom-Cadena, M.; Lleo, A.; Kay, K.R.; Vaught, M.; Soberman, R.; Walsh, D.M.; Hyman, B.T.; Spires-Jones, T.L. Non-fibrillar oligomeric amyloid-beta within synapses. J. Alzheimers Dis., 2016, 53(3), 787-800.
[124]
Gouras, G.K.; Tampellini, D.; Takahashi, R.H.; Capetillo-Zarate, E. Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathol., 2010, 119(5), 523-541.
[125]
Georganopoulou, D.G.; Chang, L.; Nam, J.M.; Thaxton, C.S.; Mufson, E.J.; Klein, W.L.; Mirkin, C.A. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2005, 102(7), 2273-2276.
[126]
Oddo, S.; Caccamo, A.; Tran, L.; Lambert, M.P.; Glabe, C.G.; Klein, W.L.; LaFerla, F.M. Temporal profile of amyloid-beta (A beta) oligomerization in an in vivo model of Alzheimer disease - A link between A beta and tau pathology. J. Biol. Chem., 2006, 281(3), 1599-1604.
[127]
Campioni, S.; Mannini, B.; Zampagni, M.; Pensalfini, A.; Parrini, C.; Evangelisti, E.; Relini, A.; Stefani, M.; Dobson, C.M.; Cecchi, C.; Chiti, F. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat. Chem. Biol., 2010, 6(2), 140-147.
[128]
Hamdan, N.; Kritsiligkou, P.; Grant, C.M. ER stress causes widespread protein aggregation and prion formation. J. Cell Biol., 2017, 216(8), 2295-2304.
[129]
Horrocks, M.H.; Lee, S.F.; Gandhi, S.; Magdalinou, N.K.; Chen, S.W.; Devine, M.J.; Tosatto, L.; Kjaergaard, M.; Beckwith, J.S.; Zetterberg, H.; Iljina, M.; Cremades, N.; Dobson, C.M.; Wood, N.W.; Klenerman, D. Single-molecule imaging of individual amyloid protein aggregates in human biofluids. ACS Chem. Neurosci., 2016, 7(3), 399-406.
[130]
Lesne, S.; Koh, M.T.; Kotilinek, L.; Kayed, R.; Glabe, C.G.; Yang, A.; Gallagher, M.; Ashe, K.H. A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 2006, 440(7082), 352-357.
[131]
Wolff, M.; Zhang-Haagen, B.; Decker, C.; Barz, B.; Schneider, M.; Biehl, R.; Radulescu, A.; Strodel, B.; Willbold, D.; Nagel-Steger, L. Abeta42 pentamers/hexamers are the smallest detectable oligomers in solution. Sci. Rep., 2017, 7(1), 2493.
[132]
Ahmed, M.; Davis, J.; Aucoin, D.; Sato, T.; Ahuja, S.; Aimoto, S.; Elliott, J.I.; Van Nostrand, W.E.; Smith, S.O. Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat. Struct. Mol. Biol., 2010, 17(5), 561-567.
[133]
Shigemitsu, Y.; Iwaya, N.; Goda, N.; Matsuzaki, M.; Tenno, T.; Narita, A.; Hoshi, M.; Hiroaki, H. Nuclear magnetic resonance evidence for the dimer formation of beta amyloid peptide 1-42 in 1,1,1,3,3,3-hexafluoro-2-propanol. Anal. Biochem., 2016, 498, 59-67.
[134]
Brinet, D.; Gaie-Levrel, F.; Delatour, V.; Kaffy, J.; Ongeri, S.; Taverna, M. In vitro monitoring of amyloid beta-peptide oligomerization by Electrospray differential mobility analysis: An alternative tool to evaluate Alzheimer’s disease drug candidates. Talanta, 2017, 165, 84-91.
[135]
Acosta, D.M.A.V.; Vega, B.C.; Basurto, J.C.; Morales, L.G.F.; Hernandez, M.C.R. Recent advances by in silico and in vitro studies of amyloid-β 1-42 fibril depicted a s-shape conformation. Int. J. Mol. Sci., 2018, 19(8), E2415.
[136]
Tycko, R. Amyloid polymorphism: Structural basis and neurobiological relevance. Neuron, 2015, 86(3), 632-645.
[137]
Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem., 2006, 75, 333-366.
[138]
Galzitskaya, O.V.; Selivanova, O.M. Rosetta stone for amyloid fibrils: The key role of ring-like oligomers in amyloidogenesis. J. Alzheimers Dis., 2017, 59(3), 785-795.
[139]
Cohen, S.I.; Linse, S.; Luheshi, L.M.; Hellstrand, E.; White, D.A.; Rajah, L.; Otzen, D.E.; Vendruscolo, M.; Dobson, C.M.; Knowles, T.P. Proliferation of amyloid-beta42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. USA, 2013, 110(24), 9758-9763.
[140]
Kovacs, G.G.; Lutz, M.I.; Ricken, G.; Strobel, T.; Hoftberger, R.; Preusser, M.; Regelsberger, G.; Honigschnabl, S.; Reiner, A.; Fischer, P.; Budka, H.; Hainfellner, J.A. Dura mater is a potential source of A beta seeds. Acta Neuropathol., 2016, 131(6), 911-923.
[141]
Dovidchenko, N.V.; Glyakina, A.V.; Selivanova, O.M.; Grigorashvili, E.I.; Suvorina, M.Y.; Dzhus, U.F.; Mikhailina, A.O.; Shiliaev, N.G.; Marchenkov, V.V.; Surin, A.K.; Galzitskaya, O.V. One of the possible mechanisms of amyloid fibrils formation based on the sizes of primary and secondary folding nuclei of Abeta40 and Abeta42. J. Struct. Biol., 2016, 194(3), 404-414.
[142]
Nielsen, E.H.; Nybo, M.; Svehag, S.E. Electron microscopy of prefibrillar structures and amyloid fibrils. Methods Enzymol., 1999, 309, 491-496.
[143]
Barz, B.; Strodel, B. Understanding amyloid-beta oligomerization at the molecular level: The role of the fibril surface. Chemistry, 2016, 22(26), 8768-8772.
[144]
Linse, S. Monomer-dependent secondary nucleation in amyloid formation. Biophys. Rev., 2017, 9(4), 329-338.
[145]
Tornquist, M.; Michaels, T.C.T.; Sanagavarapu, K.; Yang, X.; Meisl, G.; Cohen, S.I.A.; Knowles, T.P.J.; Linse, S. Secondary nucleation in amyloid formation. Chem. Commun. (Camb.), 2018, 54(63), 8667-8684.
[146]
Qiang, W.; Kelley, K.; Tycko, R. Polymorph-specific kinetics and thermodynamics of beta-amyloid fibril growth. J. Am. Chem. Soc., 2013, 135(18), 6860-6871.
[147]
Sunde, M.; Blake, C. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv. Protein Chem., 1997, 50, 123-159.
[148]
Ruggeri, F.S.; Habchi, J.; Cerreta, A.; Dietler, G. AFM-based single molecule techniques: unraveling the amyloid pathogenic species. Curr. Pharm. Des., 2016, 22(26), 3950-3970.
[149]
Lomont, J.P.; Rich, K.L.; Maj, M.; Ho, J.J.; Ostrander, J.S.; Zanni, M.T. Spectroscopic signature for stable beta-amyloid fibrils versus beta-sheet-rich oligomers. J. Phys. Chem. B, 2018, 122(1), 144-153.
[150]
Colvin, M.T.; Silvers, R.; Ni, Q.Z.; Can, T.V.; Sergeyev, I.; Rosay, M.; Donovan, K.J.; Michael, B.; Wall, J.; Linse, S.; Griffin, R.G. Atomic resolution structure of monomorphic a beta(42) amyloid fibrils. J. Am. Chem. Soc., 2016, 138(30), 9663-9674.
[151]
Lu, J.X.; Qiang, W.; Yau, W.M.; Schwieters, C.D.; Meredith, S.C.; Tycko, R. Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue. Cell, 2013, 154(6), 1257-1268.
[152]
Walti, M.A.; Ravotti, F.; Arai, H.; Glabe, C.G.; Wall, J.S.; Bockmann, A.; Guntert, P.; Meier, B.H.; Riek, R. Atomic-resolution structure of a disease-relevant A beta(1-42) amyloid fibril. Proc. Natl. Acad. Sci. USA, 2016, 113(34), 4976-4984.
[153]
Luhrs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Doeli, H.; Schubert, D.; Riek, R. 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc. Natl. Acad. Sci. USA, 2005, 102(48), 17342-17347.
[154]
Grasso, G.; Rebella, M.; Muscat, S.; Morbiducci, U.; Tuszynski, J.; Danani, A.; Deriu, M.A. Conformational dynamics and stability of U-shaped and s-shaped amyloid beta assemblies. Int. J. Mol. Sci., 2018, 19(2), 571.
[155]
Qiang, W.; Yau, W.M.; Lu, J.X.; Collinge, J.; Tycko, R. Structural variation in amyloid-beta fibrils from Alzheimer’s disease clinical subtypes. Nature, 2017, 541(7636), 217-221.
[156]
Watanabe-Nakayama, T.; Ono, K.; Itami, M.; Takahashi, R.; Teplow, D.B.; Yamada, M. High-speed atomic force microscopy reveals structural dynamics of amyloid beta1-42 aggregates. Proc. Natl. Acad. Sci. USA, 2016, 113(21), 5835-5840.
[157]
Cohen, M.L.; Kim, C.; Haldiman, T.; ElHag, M.; Mehndiratta, P.; Pichet, T.; Lissemore, F.; Shea, M.; Cohen, Y.; Chen, W.; Blevins, J.; Appleby, B.S.; Surewicz, K.; Surewicz, W.K.; Sajatovic, M.; Tatsuoka, C.; Zhang, S.L.; Mayo, P.; Butkiewicz, M.; Haines, J.L.; Lerner, A.J.; Safar, J.G. Rapidly progressive Alzheimer’s disease features distinct structures of amyloid-beta. Brain, 2015, 138, 1009-1022.
[158]
Treusch, S.; Cyr, D.M.; Lindquist, S. Amyloid deposits: Protection against toxic protein species? Cell Cycle, 2009, 8(11), 1668-1674.
[159]
Stroo, E.; Koopman, M.; Nollen, E.A.; Mata-Cabana, A. Cellular regulation of amyloid formation in aging and disease. Front. Neurosci., 2017, 11, 64.
[160]
Liu, P.; Reed, M.N.; Kotilinek, L.A.; Grant, M.K.; Forster, C.L.; Qiang, W.; Shapiro, S.L.; Reichl, J.H.; Chiang, A.C.; Jankowsky, J.L.; Wilmot, C.M.; Cleary, J.P.; Zahs, K.R.; Ashe, K.H. Quaternary structure defines a large class of amyloid-beta oligomers neutralized by sequestration. Cell Reports, 2015, 11(11), 1760-1771.
[161]
Yang, X.; Meisl, G.; Frohm, B.; Thulin, E.; Knowles, T.P.J.; Linse, S. On the role of sidechain size and charge in the aggregation of A beta 42 with familial mutations. Proc. Natl. Acad. Sci. USA, 2018, 115(26), 5849-5858.
[162]
Hatami, A.; Monjazeb, S.; Milton, S.; Glabe, C.G. Familial Alzheimer’s disease mutations within the amyloid precursor protein alter the aggregation and conformation of the amyloid-beta peptide. J. Biol. Chem., 2017, 292(8), 3172-3185.
[163]
Di Fede, G.; Catania, M.; Morbin, M.; Rossi, G.; Suardi, S.; Mazzoleni, G.; Merlin, M.; Giovagnoli, A.R.; Prioni, S.; Erbetta, A.; Falcone, C.; Gobbi, M.; Colombo, L.; Bastone, A.; Beeg, M.; Manzoni, C.; Francescucci, B.; Spagnoli, A.; Cantu, L.; Del Favero, E.; Levy, E.; Salmona, M.; Tagliavini, F. A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science, 2009, 323(5920), 1473-1477.
[164]
Janssen, J.C.; Beck, J.A.; Campbell, T.A.; Dickinson, A.; Fox, N.C.; Harvey, R.J.; Houlden, H.; Rossor, M.N.; Collinge, J. Early onset familial Alzheimer’s disease - Mutation frequency in 31 families. Neurology, 2003, 60(2), 235-239.
[165]
Ono, K.; Condron, M.M.; Teplow, D.B. Effects of the English (H6R) and Tottori (D7N) familial Alzheimer disease mutations on amyloid beta-protein assembly and toxicity. J. Biol. Chem., 2010, 285(30), 23184-23195.
[166]
Wakutani, Y.; Watanabe, K.; Adachi, Y.; Wada-Isoe, K.; Urakami, K.; Ninomiya, H.; Saido, T.C.; Hashimoto, T.; Iwatsubo, T.; Nakashima, K. Novel amyloid precursor protein gene missense mutation (D678N) in probable familial Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry, 2004, 75(7), 1039-1042.
[167]
Chen, W.T.; Hong, C.J.; Lin, Y.T.; Chang, W.H.; Huang, H.T.; Liao, J.Y.; Chang, Y.J.; Hsieh, Y.F.; Cheng, C.Y.; Liu, H.C.; Chen, Y.R.; Cheng, I.H. Amyloid-beta (A beta) D7H mutation increases oligomeric A beta 42 and alters properties of a beta-zinc/copper assemblies. PLoS One, 2012, 7(4), e35807.
[168]
Zhou, L.; Brouwers, N.; Benilova, I.; Vandersteen, A.; Mercken, M.; Van Laere, K.; Van Damme, P.; Demedts, D.; Van Leuven, F.; Sleegers, K.; Broersen, K.; Van Broeckhoven, C.; Vandenberghe, R.; De Strooper, B. Amyloid precursor protein mutation E682K at the alternative beta-secretase cleavage beta '-site increases A beta generation. EMBO Mol. Med., 2011, 3(5), 291-302.
[169]
Hendriks, L.; van Duijn, C.M.; Cras, P.; Cruts, M.; Van Hul, W.; van Harskamp, F.; Warren, A.; McInnis, M.G.; Antonarakis, S.E.; Martin, J.J. et al.Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. Nat. Genet., 1992, 1(3), 218-221.
[170]
Nilsberth, C.; Westlind-Danielsson, A.; Eckman, C.B.; Condron, M.M.; Axelman, K.; Forsell, C.; Stenh, C.; Luthman, J.; Teplow, D.B.; Younkin, S.G.; Naslund, J.; Lannfelt, L. The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat. Neurosci., 2001, 4(9), 887-893.
[171]
Levy, E.; Carman, M.D.; Fernandez-Madrid, I.J.; Power, M.D.; Lieberburg, I.; van Duinen, S.G.; Bots, G.T.; Luyendijk, W.; Frangione, B. Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science, 1990, 248(4959), 1124-1126.
[172]
Miravalle, L.; Tokuda, T.; Chiarle, R.; Giaccone, G.; Bugiani, O.; Tagliavini, F.; Frangione, B.; Ghiso, J. Substitutions at codon 22 of Alzheimer’s A beta peptide induce diverse conformational changes and apoptotic effects in human cerebral endothelial cells. J. Biol. Chem., 2000, 275(35), 27110-27116.
[173]
Grabowski, T.J.; Cho, H.S.; Vonsattel, J.P.G.; Rebeck, G.W.; Greenberg, S.M. Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann. Neurol., 2001, 49(6), 697-705.
[174]
Kumar-Singh, S.; Cras, P.; Wang, R.; Kros, J.M.; van Swieten, J.; Lubke, U.; Ceuterick, C.; Serneels, S.; Vennekens, K.; Timmermans, J.P.; Van Marck, E.; Martin, J.J.; van Duijn, C.M.; Van Broeckhoven, C. Dense-core senile plaques in the Flemish variant of Alzheimer’s disease are vasocentric. Am. J. Pathol., 2002, 161(2), 507-520.
[175]
Roks, G.; Van Harskamp, F.; De Koning, I.; Cruts, M.; De Jonghe, C.; Kumar-Singh, S.; Tibben, A.; Tanghe, H.; Niermeijer, M.F.; Hofman, A.; Van Swieten, J.C.; Van Broeckhoven, C.; Van Duijn, C.M. Presentation of amyloidosis in carriers of the codon 692 mutation in the amyloid precursor protein gene (APP692). Brain, 2000, 123, 2130-2140.
[176]
Yagi-Utsumi, M.; Dobson, C.M. Conformational effects of the A21G flemish mutation on the aggregation of amyloid beta peptide. Biol. Pharm. Bull., 2015, 38(10), 1668-1672.
[177]
Tomiyama, T.; Nagata, T.; Shimada, H.; Teraoka, R.; Fukushima, A.; Kanemitsu, H.; Takuma, H.; Kuwano, R.; Imagawa, M.; Ataka, S.; Wada, Y.; Yoshioka, E.; Nishizaki, T.; Watanabe, Y.; Mori, H. A new amyloid mu variant favoring oligomerization in Alzheimer’s-type dementia. Ann. Neurol., 2008, 63(3), 377-387.
[178]
Obici, L.; Demarchi, A.; de Rosa, G.; Bellotti, V.; Marciano, S.; Donadei, S.; Arbustini, E.; Palladini, G.; Diegoli, M.; Genovese, E.; Ferrari, G.; Coverlizza, S.; Merlini, G. A novel A beta PP mutation exclusively associated with cerebral amyloid angiopathy. Ann. Neurol., 2005, 58(4), 639-644.
[179]
De Strooper, B.; Karran, E. The cellular phase of Alzheimer’s disease. Cell, 2016, 164(4), 603-615.
[180]
Penke, B.; Toth, A.M.; Foldi, I.; Szucs, M.; Janaky, T. Intraneuronal beta-amyloid and its interactions with proteins and subcellular organelles. Electrophoresis, 2012, 33(24), 3608-3616.
[181]
Amadoro, G.; Corsetti, V.; Atlante, A.; Florenzano, F.; Capsoni, S.; Bussani, R.; Mercanti, D.; Calissano, P. Interaction between NH2-tau fragment and A beta in Alzheimer's disease mitochondria contributes to the synaptic deterioration.Neurobiol. Aging, 2012. 33(4), 833.el-833.e25
[182]
Schneider, A.; Biernat, J.; von Bergen, M.; Mandelkow, E.; Mandelkow, E.M. Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry, 1999, 38(12), 3549-3558.
[183]
Tanimukai, H.; Grundke-Iqbal, I.; Iqbal, K. Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer’s disease. Am. J. Pathol., 2005, 166(6), 1761-1771.
[184]
Wang, Y.P.; Martinez-Vicente, M.; Kruger, U.; Kaushik, S.; Wong, E.; Mandelkow, E.M.; Cuervo, A.M.; Mandelkow, E. Tau fragmentation, aggregation and clearance: The dual role of lysosomal processing. Hum. Mol. Genet., 2009, 18(21), 4153-4170.
[185]
Mukrasch, M.D.; Biernat, J.; von Bergen, M.; Griesinger, C.; Mandelkow, E.; Zweckstetter, M. Sites of tau important for aggregation populate beta-structure and bind to microtubules and polyanions. J. Biol. Chem., 2005, 280(26), 24978-24986.
[186]
Wegmann, S.; Jung, Y.J.; Chinnathambi, S.; Mandelkow, E.M.; Mandelkow, E.; Muller, D.J. Human tau isoforms assemble into ribbon-like fibrils that display polymorphic structure and stability. J. Biol. Chem., 2010, 285(35), 27302-27313.
[187]
Perez, M.J.; Jara, C.; Quintanilla, R.A. Contribution of tau pathology to mitochondrial impairment in neurodegeneration. Front. Neurosci., 2018, 12, 441.
[188]
Chang, H.Y.; Sang, T.K.; Chiang, A.S. Untangling the Tauopathy for Alzheimer’s disease and parkinsonism. J. Biomed. Sci., 2018, 25(1), 54.
[189]
Cieri, D.; Vicario, M.; Vallese, F.; D’Orsi, B.; Berto, P.; Grinzato, A.; Catoni, C.; De Stefani, D.; Rizzuto, R.; Brini, M.; Cali, T. Tau localises within mitochondrial sub-compartments and its caspase cleavage affects ER-mitochondria interactions and cellular Ca2+ handling. BBA-Mol. Basis. Dis., 2018, 1864(10), 3247-3256.
[190]
Ittner, A.; Ittner, L.M. Dendritic tau in Alzheimer’s disease. Neuron, 2018, 99(1), 13-27.
[191]
Ittner, L.M.; Ke, Y.D.; Delerue, F.; Bi, M.A.; Gladbach, A.; van Eersel, J.; Wolfing, H.; Chieng, B.C.; Christie, M.J.; Napier, I.A.; Eckert, A.; Staufenbiel, M.; Hardeman, E.; Gotz, J. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell, 2010, 142(3), 387-397.
[192]
Lam, B.; Masellis, M.; Freedman, M.; Stuss, D.T.; Black, S.E. Clinical, imaging, and pathological heterogeneity of the Alzheimer’s disease syndrome. Alzheimers Res. Ther., 2013, 5(1), 1.
[193]
Reiman, E.M.; Langbaum, J.B.S.; Tariot, P.N. Alzheimer’s prevention initiative: A proposal to evaluate presymptomatic treatments as quickly as possible. Biomarkers Med., 2010, 4(1), 3-14.
[194]
Villemagne, V.L.; Dore, V.; Burnham, S.C.; Masters, C.L.; Rowe, C.C. Imaging tau and amyloid-beta proteinopathies in Alzheimer disease and other conditions. Nat. Rev. Neurol., 2018, 14(4), 225-236.
[195]
Kantarci, K.; Lowe, V.J.; Boeve, B.F.; Senjem, M.L.; Tosakulwong, N.; Lesnick, T.G.; Spychalla, A.J.; Gunter, J.L.; Fields, J.A.; Graff-Radford, J.; Ferman, T.J.; Jones, D.T.; Murray, M.E.; Knopman, D.S.; Jack, C.R., Jr; Petersen, R.C. AV-1451 tau and beta-amyloid positron emission tomography imaging in dementia with Lewy bodies. Ann. Neurol., 2017, 81(1), 58-67.
[196]
Fagan, A.M.; Mintun, M.A.; Mach, R.H.; Lee, S.Y.; Dence, C.S.; Shah, A.R.; LaRossa, G.N.; Spinner, M.L.; Klunk, W.E.; Mathis, C.A.; DeKosky, S.T.; Morris, J.C.; Holtzman, D.M. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann. Neurol., 2006, 59(3), 512-519.
[197]
Morris, J.C.; Roe, C.M.; Xiong, C.; Fagan, A.M.; Goate, A.M.; Holtzman, D.M.; Mintun, M.A. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann. Neurol., 2010, 67(1), 122-131.
[198]
Jack, C.R., Jr; Wiste, H.J.; Vemuri, P.; Weigand, S.D.; Senjem, M.L.; Zeng, G.; Bernstein, M.A.; Gunter, J.L.; Pankratz, V.S.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Shaw, L.M.; Trojanowski, J.Q.; Knopman, D.S. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease. Brain, 2010, 133(11), 3336-3348.
[199]
Nakamura, A.; Kaneko, N.; Villemagne, V.L.; Kato, T.; Doecke, J.; Dore, V.; Fowler, C.; Li, Q.X.; Martins, R.; Rowe, C.; Tomita, T.; Matsuzaki, K.; Ishii, K.; Ishii, K.; Arahata, Y.; Iwamoto, S.; Ito, K.; Tanaka, K.; Masters, C.L.; Yanagisawa, K. High performance plasma amyloid-beta biomarkers for Alzheimer’s disease. Nature, 2018, 554(7691), 249-254.
[200]
Nabers, A.; Perna, L.; Lange, J.; Mons, U.; Schartner, J.; Guldenhaupt, J.; Saum, K.U.; Janelidze, S.; Holleczek, B.; Rujescu, D.; Hansson, O.; Gerwert, K.; Brenner, H. Amyloid blood biomarker detects Alzheimer’s disease. EMBO Mol. Med., 2018, 10(5), 8763.
[201]
Teich, A.F.; Arancio, O. Is the amyloid hypothesis of Alzheimer’s disease therapeutically relevant? Biochem. J., 2012, 446, 165-177.
[202]
Luo, J.H.; Warmlander, S.K.T.S.; Graslund, A.; Abrahams, J.P. Cross-interactions between the Alzheimer disease amyloid-beta peptide and other amyloid proteins: A further aspect of the amyloid cascade hypothesis. J. Biol. Chem., 2016, 291(32), 16485-16493.
[203]
Salazar, S.V.; Strittmatter, S.M. Cellular prion protein as a receptor for amyloid-beta oligomers in Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2017, 483(4), 1143-1147.
[204]
Jembrek, M.J.; Slade, N.; Hof, P.R.; Simic, G. The interactions of p53 with tau and A beta as potential therapeutic targets for Alzheimer’s disease. Prog. Neurobiol., 2018, 168, 104-127.
[205]
Mesulam, M.M. Neuroplasticity failure in Alzheimer’s disease: Bridging the gap between plaques and tangles. Neuron, 1999, 24(3), 521-529.
[206]
Kuperstein, I.; Broersen, K.; Benilova, I.; Rozenski, J.; Jonekheere, W.; Debulpaep, M.; Vandersteen, A.; Segers-Nolten, I.; Van der Werf, K.; Subramaniam, V.; Braeken, D.; Callewaert, G.; Bartic, C.; D’Hooge, R.; Martins, I.C.; Rousseau, F.; Schymkowitz, J.; De Strooper, B. Neurotoxicity of Alzheimer’s disease A beta peptides is induced by small changes in the A beta(42) to A beta(40) ratio. EMBO J., 2010, 29(19), 3408-3420.
[207]
Szaruga, M.; Veugelen, S.; Benurwar, M.; Lismont, S.; Sepulveda-Falla, D.; Lleo, A.; Ryan, N.S.; Lashley, T.; Fox, N.C.; Murayama, S.; Gijsen, H.; De Strooper, B.; Chavez-Gutierrez, L. Qualitative changes in human gamma-secretase underlie familial Alzheimer’s disease. J. Exp. Med., 2015, 212(12), 2003-2013.
[208]
Labbadia, J.; Morimoto, R.I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem., 2015, 84, 435-464.
[209]
Crary, J.F.; Trojanowski, J.Q.; Schneider, J.A.; Abisambra, J.F.; Abner, E.L.; Alafuzoff, I.; Arnold, S.E.; Attems, J.; Beach, T.G.; Bigio, E.H.; Cairns, N.J.; Dickson, D.W.; Gearing, M.; Grinberg, L.T.; Hof, P.R.; Hyman, B.T.; Jellinger, K.; Jicha, G.A.; Kovacs, G.G.; Knopman, D.S.; Kofler, J.; Kukull, W.A.; Mackenzie, I.R.; Masliah, E.; McKee, A.; Montine, T.J.; Murray, M.E.; Neltner, J.H.; Santa-Maria, I.; Seeley, W.W.; Serrano-Pozo, A.; Shelanski, M.L.; Stein, T.; Takao, M.; Thal, D.R.; Toledo, J.B.; Troncoso, J.C.; Vonsattel, J.P.; White, C.L.; Wisniewski, T.; Woltjer, R.L.; Yamada, M.; Nelson, P.T. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol., 2014, 128(6), 755-766.
[210]
Khan, U.A.; Liu, L.; Provenzano, F.A.; Berman, D.E.; Profaci, C.P.; Sloan, R.; Mayeux, R.; Duff, K.E.; Small, S.A. Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease. Nat. Neurosci., 2014, 17(2), 304-311.
[211]
Karran, E.; Mercken, M.; De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat. Rev. Drug Discov., 2011, 10(9), 698-712.
[212]
Pignataro, A.; Middei, S. Trans-synaptic spread of amyloid-beta in Alzheimer’s disease: Paths to beta-amyloidosis. Neural Plast., 2017, 2017, 5281829.
[213]
Perea, J.R.; Llorens-Martin, M.; Avila, J.; Bolos, M. The role of microglia in the spread of tau: relevance for tauopathies. Front. Cell. Neurosci., 2018, 12, 172.
[214]
Iaccarino, L.; Tammewar, G.; Ayakta, N.; Baker, S.L.; Bejanin, A.; Boxer, A.L.; Gorno-Tempini, M.L.; Janabi, M.; Kramer, J.H.; Lazaris, A.; Lockhart, S.N.; Miller, B.L.; Miller, Z.A.; O’Neil, J.P.; Ossenkoppele, R.; Rosen, H.J.; Schonhaut, D.R.; Jagust, W.J.; Rabinovici, G.D. Local and distant relationships between amyloid, tau and neurodegeneration in Alzheimer’s Disease. Neuroimage Clin., 2018, 17, 452-464.
[215]
Scannevin, R.H. Therapeutic strategies for targeting neurodegenerative protein misfolding disorders. Curr. Opin. Chem. Biol., 2018, 44, 66-74.
[216]
Mullard, A. Alzheimer amyloid hypothesis lives on. Nat. Rev. Drug Discov., 2017, 16(1), 3-5.
[217]
Cummings, J.; Lee, G.; Mortsdorf, T.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement. (N. Y.), 2017, 3(3), 367-384.
[218]
Cummings, J.; Lee, G.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement. (N. Y.), 2018, 4, 195-214.
[219]
Kumar, D.; Ganeshpurkar, A.; Kumar, D.; Modi, G.; Gupta, S.K.; Singh, S.K. Secretase inhibitors for the treatment of Alzheimer’s disease: Long road ahead. Eur. J. Med. Chem., 2018, 148, 436-452.
[220]
Peron, R.; Vatanabe, I.P.; Manzine, P.R.; Camins, A.; Cominetti, M.R. Alpha-secretase ADAM10 regulation: Insights into Alzheimer’s disease treatment. Pharmaceuticals, 2018, 11(1), 12.
[221]
van Dyck, C.H. Anti-amyloid-beta monoclonal antibodies for Alzheimer’s disease: Pitfalls and promise. Biol. Psychiatry, 2018, 83(4), 311-319.
[222]
Lannfelt, L.; Moller, C.; Basun, H.; Osswald, G.; Sehlin, D.; Satlin, A.; Logovinsky, V.; Gellerfors, P. Perspectives on future Alzheimer therapies: Amyloid-beta protofibrils - a new target for immunotherapy with BAN2401 in Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(2), 16.
[223]
Vounatsos, M.; Naito, H. Recent developments in Therapeutics. Alzheimer’s Association International Conference, 2018, pp. (20-26 Jul), Presentation number:DT-01-07.
[224]
Parsons, C.G.; Rammes, G. Preclinical to phase II amyloid beta (A) peptide modulators under investigation for Alzheimer’s disease. Expert Opin. Investig. Drugs, 2017, 26(5), 579-591.
[225]
Congdon, E.E.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol., 2018, 14(7), 399-415.
[226]
Khan, R.I.; Nirzhor, S.S.R.; Rashid, B. A closer look into the role of protein Tau in the identification of promising therapeutic targets for Alzheimer’s disease. Brain Sci., 2018, 8(9), 162.
[227]
Medina, M. An overview on the clinical development of tau-based therapeutics. Int. J. Mol. Sci., 2018, 19(4), 1160.
[228]
Sahoo, A.K.; Dandapat, J.; Dash, U.C.; Kanhar, S. Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer’s disease. J. Ethnopharmacol., 2018, 6(215), 42-73.
[229]
Zhang, Z.; Nie, S.; Chen, L. Targeting prion-like protein spreading in neurodegenerative diseases. Neural Regen. Res., 2018, 13(11), 1875-1878.
[230]
Kasza, A.; Hunya, A.; Frank, Z.; Fulop, F.; Torok, Z.; Balogh, G.; Santha, M.; Bernath, S.; Blundell, K.L.I.M.; Prodromou, C.; Horvath, I.; Zeiler, H.J.; Hooper, P.L.; Vigh, L.; Penke, B. Dihydropyridine derivatives modulate heat shock responses and have a neuroprotective effect in a transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2016, 53(2), 557-571.
[231]
Carrillo, M.C.; Dean, R.A.; Nicolas, F.; Miller, D.S.; Berman, R.; Khachaturian, Z.; Bain, L.J.; Schindler, R.; Knopman, D. Revisiting the framework of the National Institute on Aging-Alzheimer’s Association diagnostic criteria. Alzheimers Dement., 2013, 9(5), 594-601.
[232]
Hickman, R.A.; Faustin, A.; Wisniewski, T. Alzheimer disease and its growing epidemic risk factors, biomarkers, and the urgent need for therapeutics. Neurol. Clin., 2016, 34(4), 941-953.
[233]
Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150.
[234]
Peacock, M.L.; Warren, J.T.; Roses, A.D.; Fink, J.K. Novel polymorphism in the a4-region of the amyloid precursor protein gene in a patient without Alzheimers-disease. Neurology, 1993, 43(6), 1254-1256.
[235]
Petersen, A.J.; Wassarman, D.A. Drosophila innate immune response pathways moonlight in neurodegeneration. Fly , 2012, 6(3), 169-172.
[236]
Kamino, K.; Orr, H.T.; Payami, H.; Wijsman, E.M.; Alonso, M.E.; Pulst, S.M.; Anderson, L.; Odahl, S.; Nemens, E.; White, J.A.; Sadovnick, A.D.; Ball, M.J.; Kaye, J.; Warren, A.; Mcinnis, M.; Antonarakis, S.E.; Korenberg, J.R.; Sharma, V.; Kukull, W.; Larson, E.; Heston, L.L.; Martin, G.M.; Bird, T.D.; Schellenberg, G.D. Linkage and mutational analysis of familial Alzheimer-disease kindreds for the APP gene region. Am. J. Hum. Genet., 1992, 51(5), 998-1014.