[1]
M.A. Abien-Fred, "On breast cancer detection: an application of machine learning algorithms on the Wisconsin diagnostic dataset", In: Proceedings of the 2nd International Conference on Machine Learning and Soft Computing, ACM: New York, NY, USA 2018, pp. 5-9. [https://doi.org/10.1145/3184066.3184080]
[2]
S. Kharya, D. Dubey, and S. Soni, "Predictive machine learning techniques for breast cancer detection", Int. J. Comp. Sci. Inform. Tech., vol. 4, no. 6, pp. 1023-1028, 2013.
[3]
A. Ali, A. Tufail, U. Khan, and M. Kim, "A survey of prediction models for breast cancer survivability", In: Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, ACM: New York, NY, USA 2009, pp. 1259-1262. [http://dx.doi.org/10.1145/1655925.1656155]
[4]
A. Al-Khasawneh, "Diagnosis of breast cancer using intelligent information systems techniques", Int. J. E-Health Med. Commun., vol. 7, no. 1, pp. 65-75, 2016. [http://dx.doi.org/10.4018/IJEHMC.2016010104].
[5]
N.C. Yadav, and P. Gajbhiye, "Diagnosis of breast cancer using neural network approach", BMR Bioinfo. Cheminform. J., vol. 11, pp. 1-7, 2014.
[6]
M. Karabatak, and M. Cevdet Ince, "An expert system for detection of breast cancer based on association rules and neural network", Expert Syst. Appl., vol. 36, no. 2, pp. 3465-3469, 2009. [http://dx.doi.org/10.1016/j.eswa.2008.02.064].
[7]
P.C. Pendharkar, J.A. Rodger, G.J. Yaverbaum, N. Herman, and M. Benner, "Associations statistical mathematical and neural approaches for mining breast cancer patterns", Expert Syst. Appl., vol. 17, pp. 223-232, 1999. [http://dx.doi.org/10.1016/S0957-4174(99)00036-6].
[8]
S.S. Shajahaan, and S. Shanthi, "Application of data mining techniques to model breast cancer data", Int. J. Emerging. Tech. Adv. Eng., vol. 3, no. 11, pp. 1-10, 2013.
[9]
J. Thongkam, G. Xu, Y. Zhang, and F. Huang, "Breast cancer survivability via AdaBoost algorithms", In: Proceedings of the 2nd Australasian workshop on Health data and knowledge management, Darlinghurst, Australia Vol. 80, pp. 55-64. 2008
[10]
A. Mert, N. Kilic, and A. Akan, "Breast cancer classification by using support vector machines with reduced dimension", In: Proceedings ELMAR-2011, Zadar, Croatia, pp. 37-40. 2011
[11]
R.F. Arafi, and A. Bouroumi, "Breast cancer data analysis using support vector machines and particle swarm optimization", In: Second World Conference on Complex Systems (WCCS), Agadir, Morocco , pp. 1-6. 2014 [http://dx.doi.org/10.1109/ICoCS.2014.7060900]
[12]
B-Y. Sun, Z-H. Zhu, J. Li, and B. Linghu, "Combined feature selection and cancer prognosis using support vector machine regression", IEEE/ACM Trans. Comput. Biol. Bioinformatics, vol. 8, no. 6, pp. 1671-1677, 2011. [http://dx.doi.org/10.1109/TCBB.2010.119]. [PMID: 21116037].
[13]
K.U. Al-Salihy, and T. Ibrikci, "Classifying breast cancer by using decision tree algorithms", In: Proceedings of the 6th International Conference on Software and Computer Applications, New York, NY, USA, pp. 144-148. 2017. [https://doi.org/10.1145/ 3056662.3056716]
[14]
E. Murat, M.Z.B. Erkan, and Y.A. Ziya, "Early prostate cancer diagnosis by using artificial neural networks and support vector machines", Expert Syst. Appl., vol. 36, no. 3, pp. 6357-6361, 2009. [https://doi.org/10.1016/j.eswa.2008.08.010].
[15]
J. Ren, "ANN vs. SVM: which one performs better in classification of MCCs in mammogram imaging", Knowl. Base. Syst., vol. 26, pp. 144-153, 2012. [http://dx.doi.org/10.1016/j.knosys.2011.07.016].
[16]
P. Král, and L. Lenc, "LBP features for breast cancer detection", In: 2016 IEEE International Conference on Image Processing, Phoenix, AZ, pp. 2643-2647. 2016. [http://dx.doi.org/10.1109/ICIP.2016.7532838]
[17]
P-H. Tang, and M. Tseng, "Medical data mining using BGA and RGA for weighting of features in fuzzy k-NN classification", In: International Conference on Machine Learning and Cybernetics, Hebei, China, pp. 3070-3075. 2009. [http://dx.doi.org/10.1109/ ICMLC.2009.5212633]
[18]
S. Reis, P. Gazinska, J.H. Hipwell, T. Mertzanidou, K. Naidoo, N. Williams, S. Pinder, and D.J. Hawkes, "Automated classification of breast cancer stroma maturity from histological images", IEEE Trans. Biomed. Eng., vol. 64, no. 10, pp. 2344-2352, 2017. [http://dx.doi.org/10.1109/TBME.2017.2665602]. [PMID: 28186876].
[19]
W. H. Wolberg, W. N. Street, and O. L. Mangasarian, "Diagnostic Wisconsin Breast Cancer Database", Wisconsin breast cancer data set, August 2016. [Available from:, https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
[20]
V. Baskaran, A. Guergachi, R.K. Bali, and R.N.G. Naguib, "Predicting breast screening attendance using machine learning techniques", IEEE Trans. Inf. Technol. Biomed., vol. 15, no. 2, pp. 251-259, 2011. [http://dx.doi.org/10.1109/TITB.2010.2103954]. [PMID: 21216721].
[21]
E. Zafiropoulos, I. Maglogiannis and I. Anagnostopoulos, “A support vector machine approach to breast cancer diagnosis and prognosis., Artif. Intell. Appli. Innovat, pp. 500-507. 2006 [https://doi.org/10.1007/0-387-34224-9_58]
[22]
A.M. Khan, N. Rajpoot, D. Treanor, and D. Magee, "A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution", IEEE Trans. Biomed. Eng., vol. 61, no. 6, pp. 1729-1738, 2014. [http://dx.doi.org/10.1109/TBME.2014.2303294]. [PMID: 24845283]