Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Multiple-line Chemotherapy and Tyrosine Kinase Inhibitor Treatment in Patients with Advanced Lung Cancer

Author(s): Hua Zhang, Jie Yang, Yan-ming Deng, Ning Zhao, Jian-miao Liang, Shuang Yang, Shun-da Zhang and Wei-neng Feng*

Volume 22, Issue 1, 2019

Page: [27 - 34] Pages: 8

DOI: 10.2174/1386207322666181231122030

Price: $65

conference banner
Abstract

Aim: To analyse the clinical outcomes of patients with lung cancer treated with first and multiple-line chemotherapy and tyrosine kinase inhibitor (TKI).

Patients & Methods: The present study included a total of 89 patients of whom lung cancer was histologically confirmed between July 2016 and September 2017. Patients’ demographics, chemotherapy/TKI treatment details and clinical outcomes were retrieved. The progression-free survivals (PFS) after first-line and multiple-line treatments were evaluated using Kaplan-Meier analysis with log-rank test. Risk factors for progressive disease (PD) were identified using Cox multivariate regression model.

Results: A total of 50 males and 39 females were enrolled. About 90% of the tumors were histologically classified as adenocarcinoma, and 77/89 cases (86.5%) were at TNM stage IV. The median PFS for the first-line treatment was 6.17 months. After first-line treatment, more favourable PFS was observed in patients who had prior surgery of lung cancer (P = 0.002). Multivariate analysis showed that patients who had received no prior surgical treatment for lung cancer were at higher risk of PD (OR, 4.311; 95% CI, 1.836 to 10.120; P = 0.0008). Besides, in patients with driver mutations, those who received no TKI treatment were under higher risk of PD compared to those who had been treated with TKI (OR, 4.876; 95% CI, 1.877 to 12.666; P = 0.0011). The median PFS for the multiple-line treatment was 24.67 months. After multiple-line treatments, favourable PFS was associated with tumor histological types of adenocarcinoma (P = 0.041), genetic lesions at exon 19 of EGFR (P = 0.001) and fourth-line treatment (P = 0.001). Risk factors for PD after multiple-line treatments were no prior surgery for lung cancer (OR, 3.335; 95% CI, 1.158 to 9.605; P = 0.0256), no TKI use in multiple-line treatment (OR, 10.095; 95% CI, 2.405 to 42.378; P = 0.0016), and being treated by first-line treatment alone (OR, 30.421; 95% CI, 4.813 to 192.269; P = 0.0003).

Conclusion: The present study demonstrated the benefits of TKI in patients with advanced lung cancer, providing insights into the refinement of the management strategy.

Keywords: Tyrosine kinase inhibitor (TKI), lung adenocarcinoma, progression-free survival, chemotherapy, risk factor, cancer management.

[1]
(a)Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends--an update. Cancer Epidemiol. Biomarkers Prev., 2016, 25(1), 16-27.
(b)Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
(c)Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; Geisinger, K.; Hirsch, F.R.; Ishikawa, Y.; Kerr, K.M.; Noguchi, M.; Pelosi, G.; Powell, C.A.; Tsao, M.S.; Wistuba, I.; Panel, W.H.O. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J. Thorac. Oncol., 2015, 10(9), 1243-1260.
[2]
Jemal, A.; Thun, M.J.; Ries, L.A.; Howe, H.L.; Weir, H.K.; Center, M.M.; Ward, E.; Wu, X.C.; Eheman, C.; Anderson, R.; Ajani, U.A.; Kohler, B.; Edwards, B.K. Annual report to the nation on the status of cancer, 1975-2005, featuring trends in lung cancer, tobacco use, and tobacco control. J. Natl. Cancer Inst., 2008, 100(23), 1672-1694.
[3]
Chalela, R.; Curull, V.; Enriquez, C.; Pijuan, L.; Bellosillo, B.; Gea, J. Lung adenocarcinoma: From molecular basis to genome-guided therapy and immunotherapy. J. Thorac. Dis., 2017, 9(7), 2142-2158.
[4]
(a)Gibelin, C.; Couraud, S. Somatic alterations in lung cancer: Do environmental factors matter? Lung Cancer, 2016, 100, 45-52.
(b)Ruano-Ravina, A.; Fernandez-Villar, A.; Barros-Dios, J.M. Residential radon and risk of lung cancer in never-smokers. Arch. Bronconeumol., 2017, 53(9), 475-476.
[5]
Datta, D.; Lahiri, B. Preoperative evaluation of patients undergoing lung resection surgery. Chest, 2003, 123(6), 2096-2103.
[6]
Schiller, J.H.; Harrington, D.; Belani, C.P.; Langer, C.; Sandler, A.; Krook, J.; Zhu, J.; Johnson, D.H. Eastern Cooperative Oncology Group.Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med., 2002, 346(2), 92-98.
[7]
(a)Bergethon, K.; Shaw, A.T.; Ou, S.H.; Katayama, R.; Lovly, C.M.; McDonald, N.T.; Massion, P.P.; Siwak-Tapp, C.; Gonzalez, A.; Fang, R.; Mark, E.J.; Batten, J.M.; Chen, H.; Wilner, K.D.; Kwak, E.L.; Clark, J.W.; Carbone, D.P.; Ji, H.; Engelman, J.A.; Mino-Kenudson, M.; Pao, W.; Iafrate, A.J. ROS1 rearrangements define a unique molecular class of lung cancers. J. Clin. Oncol., 2012, 30(8), 863-870.
(b)Kwak, E.L.; Bang, Y.J.; Camidge, D.R.; Shaw, A.T.; Solomon, B.; Maki, R.G.; Ou, S.H.; Dezube, B.J.; Janne, P.A.; Costa, D.B.; Varella-Garcia, M.; Kim, W.H.; Lynch, T.J.; Fidias, P.; Stubbs, H.; Engelman, J.A.; Sequist, L.V.; Tan, W.; Gandhi, L.; Mino-Kenudson, M.; Wei, G.C.; Shreeve, S.M.; Ratain, M.J.; Settleman, J.; Christensen, J.G.; Haber, D.A.; Wilner, K.; Salgia, R.; Shapiro, G.I.; Clark, J.W.; Iafrate, A.J. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med., 2010, 363(18), 1693-1703.
(c)Drilon, A.; Wang, L.; Hasanovic, A.; Suehara, Y.; Lipson, D.; Stephens, P.; Ross, J.; Miller, V.; Ginsberg, M.; Zakowski, M.F.; Kris, M.G.; Ladanyi, M.; Rizvi, N. Response to cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov., 2013, 3(6), 630-635.
[8]
Paez, J.G.; Janne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M.J.; Sellers, W.R.; Johnson, B.E.; Meyerson, M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004, 304(5676), 1497-1500.
[9]
Gridelli, C.; Ardizzoni, A.; Ciardiello, F.; Hanna, N.; Heymach, J.V.; Perrone, F.; Rosell, R.; Shepherd, F.A.; Thatcher, N.; Vansteenkiste, J.; De Petris, L.; Di Maio, M.; De Marinis, F. Second-line treatment of advanced non-small cell lung cancer. J. Thorac. Oncol., 2008, 3(4), 430-440.
[10]
(a)Russo, A.; Franchina, T.; Ricciardi, G.R.R.; Smiroldo, V.; Picciotto, M.; Zanghi, M.; Rolfo, C.; Adamo, V. Third generation EGFR TKIs in EGFR-mutated NSCLC: Where are we now and where are we going. Crit. Rev. Oncol. Hematol., 2017, 117, 38-47.
(b)Soejima, K.; Yasuda, H.; Hirano, T. Osimertinib for EGFR T790M mutation-positive non-small cell lung cancer. Expert Rev. Clin. Pharmacol., 2017, 10(1), 31-38.
[11]
(a)Kazandjian, D.; Blumenthal, G.M.; Yuan, W.; He, K.; Keegan, P.; Pazdur, R. FDA approval of gefitinib for the treatment of patients with metastatic EGFR mutation-positive non-small cell lung cancer. Clin. Cancer Res., 2016, 22(6), 1307-1312.
(b)Greenhalgh, J.; Dwan, K.; Boland, A.; Bates, V.; Vecchio, F.; Dundar, Y.; Jain, P.; Green, J.A. First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer. Cochrane Database Syst. Rev., 2016, 2016(5), CD010383.
(c)Solomon, B.J.; Mok, T.; Kim, D.W.; Wu, Y.L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; Iyer, S.; Reisman, A.; Wilner, K.D.; Tursi, J.; Blackhall, F.; Investigators, P. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med., 2014, 371(23), 2167-2177.
[12]
(a)Koyama, N.; Watanabe, Y.; Iwai, Y.; Kawamura, R.; Miwa, C.; Nagai, Y.; Hagiwara, K.; Koyama, S. Distinct benefit of overall survival between patients with non-small-cell lung cancer harboring EGFR exon 19 deletion and exon 21 L858R substitution. Chemotherapy, 2017, 62(3), 151-158.
(b)Lee, C.K.; Davies, L.; Wu, Y.L.; Mitsudomi, T.; Inoue, A.; Rosell, R.; Zhou, C.; Nakagawa, K.; Thongprasert, S.; Fukuoka, M.; Lord, S.; Marschner, I.; Tu, Y.K.; Gralla, R.J.; Gebski, V.; Mok, T.; Yang, J.C. Gefitinib or erlotinib vs chemotherapy for EGFR mutation-positive lung cancer: Individual patient data meta-analysis of overall survival. J. Natl. Cancer Inst., 2017, 109(6)
[http://dx.doi.org/10.1093/jnci/djw279]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy