Abstract
Aim: To analyse the clinical outcomes of patients with lung cancer treated with first and multiple-line chemotherapy and tyrosine kinase inhibitor (TKI).
Patients & Methods: The present study included a total of 89 patients of whom lung cancer was histologically confirmed between July 2016 and September 2017. Patients’ demographics, chemotherapy/TKI treatment details and clinical outcomes were retrieved. The progression-free survivals (PFS) after first-line and multiple-line treatments were evaluated using Kaplan-Meier analysis with log-rank test. Risk factors for progressive disease (PD) were identified using Cox multivariate regression model.
Results: A total of 50 males and 39 females were enrolled. About 90% of the tumors were histologically classified as adenocarcinoma, and 77/89 cases (86.5%) were at TNM stage IV. The median PFS for the first-line treatment was 6.17 months. After first-line treatment, more favourable PFS was observed in patients who had prior surgery of lung cancer (P = 0.002). Multivariate analysis showed that patients who had received no prior surgical treatment for lung cancer were at higher risk of PD (OR, 4.311; 95% CI, 1.836 to 10.120; P = 0.0008). Besides, in patients with driver mutations, those who received no TKI treatment were under higher risk of PD compared to those who had been treated with TKI (OR, 4.876; 95% CI, 1.877 to 12.666; P = 0.0011). The median PFS for the multiple-line treatment was 24.67 months. After multiple-line treatments, favourable PFS was associated with tumor histological types of adenocarcinoma (P = 0.041), genetic lesions at exon 19 of EGFR (P = 0.001) and fourth-line treatment (P = 0.001). Risk factors for PD after multiple-line treatments were no prior surgery for lung cancer (OR, 3.335; 95% CI, 1.158 to 9.605; P = 0.0256), no TKI use in multiple-line treatment (OR, 10.095; 95% CI, 2.405 to 42.378; P = 0.0016), and being treated by first-line treatment alone (OR, 30.421; 95% CI, 4.813 to 192.269; P = 0.0003).
Conclusion: The present study demonstrated the benefits of TKI in patients with advanced lung cancer, providing insights into the refinement of the management strategy.
Keywords: Tyrosine kinase inhibitor (TKI), lung adenocarcinoma, progression-free survival, chemotherapy, risk factor, cancer management.
(b)Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
(c)Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; Geisinger, K.; Hirsch, F.R.; Ishikawa, Y.; Kerr, K.M.; Noguchi, M.; Pelosi, G.; Powell, C.A.; Tsao, M.S.; Wistuba, I.; Panel, W.H.O. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J. Thorac. Oncol., 2015, 10(9), 1243-1260.
(b)Ruano-Ravina, A.; Fernandez-Villar, A.; Barros-Dios, J.M. Residential radon and risk of lung cancer in never-smokers. Arch. Bronconeumol., 2017, 53(9), 475-476.
(b)Kwak, E.L.; Bang, Y.J.; Camidge, D.R.; Shaw, A.T.; Solomon, B.; Maki, R.G.; Ou, S.H.; Dezube, B.J.; Janne, P.A.; Costa, D.B.; Varella-Garcia, M.; Kim, W.H.; Lynch, T.J.; Fidias, P.; Stubbs, H.; Engelman, J.A.; Sequist, L.V.; Tan, W.; Gandhi, L.; Mino-Kenudson, M.; Wei, G.C.; Shreeve, S.M.; Ratain, M.J.; Settleman, J.; Christensen, J.G.; Haber, D.A.; Wilner, K.; Salgia, R.; Shapiro, G.I.; Clark, J.W.; Iafrate, A.J. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med., 2010, 363(18), 1693-1703.
(c)Drilon, A.; Wang, L.; Hasanovic, A.; Suehara, Y.; Lipson, D.; Stephens, P.; Ross, J.; Miller, V.; Ginsberg, M.; Zakowski, M.F.; Kris, M.G.; Ladanyi, M.; Rizvi, N. Response to cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov., 2013, 3(6), 630-635.
(b)Soejima, K.; Yasuda, H.; Hirano, T. Osimertinib for EGFR T790M mutation-positive non-small cell lung cancer. Expert Rev. Clin. Pharmacol., 2017, 10(1), 31-38.
(b)Greenhalgh, J.; Dwan, K.; Boland, A.; Bates, V.; Vecchio, F.; Dundar, Y.; Jain, P.; Green, J.A. First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer. Cochrane Database Syst. Rev., 2016, 2016(5), CD010383.
(c)Solomon, B.J.; Mok, T.; Kim, D.W.; Wu, Y.L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; Iyer, S.; Reisman, A.; Wilner, K.D.; Tursi, J.; Blackhall, F.; Investigators, P. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med., 2014, 371(23), 2167-2177.
(b)Lee, C.K.; Davies, L.; Wu, Y.L.; Mitsudomi, T.; Inoue, A.; Rosell, R.; Zhou, C.; Nakagawa, K.; Thongprasert, S.; Fukuoka, M.; Lord, S.; Marschner, I.; Tu, Y.K.; Gralla, R.J.; Gebski, V.; Mok, T.; Yang, J.C. Gefitinib or erlotinib vs chemotherapy for EGFR mutation-positive lung cancer: Individual patient data meta-analysis of overall survival. J. Natl. Cancer Inst., 2017, 109(6)
[http://dx.doi.org/10.1093/jnci/djw279]