[1]
Frémont, L. Biological effects of resveratrol. Antioxid. Redox Signal., 2001, 3, 1041-1064.
[2]
Charytoniuk, T.; Drygalski, K.; Konstantynowicz-Nowicka, K.; Berk, K.; Chabowski, A. Alternative treatment methods attenuate the development of NAFLD: A review of resveratrol molecular mechanisms and clinical trials. Nutrition, 2017, 34, 108-117.
[3]
Heebøll, S.; Thomsen, K.L.; Pedersen, S.B.; Vilstrup, H.; George, J.; Grønbæk, H. Effects of resveratrol in experimental and clinical non-alcoholic fatty liver disease. World J. Hepatol., 2014, 6, 188-198.
[4]
Faghihzadeh, F.; Adibi, P.; Hekmatdoost, A. The effects of resveratrol supplementation on cardiovascular risk factors in patients with non-alcoholic fatty liver disease: A randomised, double-blind, placebo-controlled study. Br. J. Nutr., 2015, 114, 796-803.
[5]
Choi, Y-J.; Suh, H-R.; Yoon, Y.; Lee, K-J.; Kim, D.G.; Kim, S.; Lee, B-H. Protective effect of resveratrol derivatives on high-fat diet induced fatty liver by activating AMP-activated protein kinase. Arch. Pharm. Res., 2014, 37, 1169-1176.
[6]
Gault, C.R.; Obeid, L.M.; Hannun, Y.A. An overview of sphingolipid metabolism: From synthesis to breakdown. Adv. Exp. Med. Biol., 2010, 688, 1-23.
[7]
Delgado, A.; Casas, J.; Llebaria, A.; Abad, J.L.; Fabrias, G. Inhibitors
of sphingolipid metabolism enzymes. Biochim. Biophys. Acta -
Biomembr, 2006, 1758, 1957-1977.
[8]
Meikle, P.J.; Summers, S.A. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat. Rev. Endocrinol., 2016, 13, 79-91.
[9]
Holland, W.L.; Summers, S.A. Sphingolipids, insulin resistance, and metabolic disease: New insights from in vivo manipulation of sphingolipid metabolism. Endocr. Rev., 2008, 29, 381-402.
[10]
Apostolopoulou, M.; Gordillo, R.; Koliaki, C.; Gancheva, S.; Jelenik, T.; De Filippo, E.; Herder, C.; Markgraf, D.; Jankowiak, F.; Esposito, I.; Schlensak, M.; Scherer, P.E.; Roden, M. Specific hepatic sphingolipids relate to insulin resistance, oxidative stress, and inflammation in nonalcoholic steato hepatitis. Diabetes Care, 2018, 41(6), 1235-1243.
[11]
Pagadala, M.; Kasumov, T.; McCullough, A.J.; Zein, N.N.; Kirwan, J.P. Role of ceramides in nonalcoholic fatty liver disease. Trends Endocrinol. Metab., 2012, 23(8), 365-371.
[12]
Lim, K.G.; Gray, A.I.; Anthony, N.G.; Mackay, S.P.; Pyne, S.; Pyne, N.J. Resveratrol and its oligomers: Modulation of sphingolipid metabolism and signaling in disease. Arch. Toxicol., 2014, 88, 2213-2232.
[13]
Konstantynowicz-Nowicka, K.; Harasim, E.; Baranowski, M.; Chabowski, A. New evidence for the role of ceramide in the development of hepatic insulin resistance. PLoS One, 2015, 10, e0116858.
[14]
Kimbrough, C.W.; Lakshmanan, J.; Matheson, P.J.; Woeste, M.; Gentile, A.; Benns, M.V.; Zhang, B.; Smith, J.W.; Harbrecht, B.G. Resveratrol decreases nitric oxide production by hepatocytes during inflammation. Surg. (United States), 2015, 158(4), 1095-1101.
[15]
Baranowski, M.; Zabielski, P.; Blachnio, A.; Gorski, J. Effect of exercise duration on ceramide metabolism in the rat heart. Acta Physiol., 2008, 192, 519-529.
[16]
Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 1957, 226, 497-509.
[17]
van der Vusse, G.J.; Roemen, T.H.M.; Reneman, R.S. Assessment of fatty acids in dog left ventricular myocardium. Biochim. Biophys. Acta (BBA). Lipids Lipid Metab., 1980, 617, 347-352.
[18]
Mikłosz, A.; Łukaszuk, B.; Chabowski, A.; Rogowski, F.; Kurek, K.; Zendzian-Piotrowska, M. Hyperthyroidism evokes myocardial ceramide accumulation. Cell. Physiol. Biochem., 2015, 35, 755-766.
[19]
Pan, Q-R.; Ren, Y-L.; Liu, W-X.; Hu, Y-J.; Zheng, J-S.; Xu, Y.; Wang, G. Resveratrol prevents hepatic steatosis and endoplasmic reticulum stress and regulates the expression of genes involved in lipid metabolism, insulin resistance, and inflammation in rats. Nutr. Res., 2015, 35, 576-584.
[20]
Kitatani, K.; Idkowiak-Baldys, J.; Hannun, Y.A. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell. Signal., 2008, 20, 1010-1018.
[21]
Lipina, C.; Hundal, H.S. Sphingolipids: Agents provocateurs in the pathogenesis of insulin resistance. Diabetologia, 2011, 54, 1596-1607.
[22]
Glatz, J.F.C.; Luiken, J.J.F.P.; Bonen, A. Membrane fatty acid transporters as regulators of lipid metabolism: Implications for metabolic disease. Physiol. Rev., 2010, 90, 367-417.
[23]
Ehehalt, R.; Füllekrug, J.; Pohl, J.; Ring, A.; Herrmann, T.; Stremmel, W. Translocation of long chain fatty acids across the plasma membrane - Lipid rafts and fatty acid transport proteins. Mol. Cell. Biochem., 2006, 284, 135-140.
[24]
Sharonov, A.; Bandichhor, R.; Burgess, K.; Petrescu, A.D.; Schroeder, F.; Kier, A.B.; Hochstrasser, R.M. Lipid diffusion from single molecules of a labeled protein undergoing dynamic association with giant unilamellar vesicles and supported bilayers. Langmuir, 2008, 24, 844-850.
[25]
Watt, M.J.; Barnett, A.C.; Bruce, C.R.; Schenk, S.; Horowitz, J.F.; Hoy, A.J. Regulation of plasma ceramide levels with fatty acid oversupply: Evidence that the liver detects and secretes de novo synthesised ceramide. Diabetologia, 2012, 55, 2741-2746.
[26]
Perry, D.K.; Carton, J.; Shah, A.K.; Meredith, F.; Uhlinger, D.J.; Hannun, Y.A. Serine palmitoyltransferase regulates de novo ceramide generation during etoposide-induced apoptosis. J. Biol. Chem., 2000, 275, 9078-9084.
[27]
Ahn, E.H.; Schroeder, J.J. Sphingoid bases and ceramide induce
apoptosis in HT-29 and HCT-116 human colon cancer cells. Exp.
Biol. Med., (Maywood), 2002, 227, 345-353.
[28]
Scarlatti, F.; Sala, G.; Somenzi, G.; Signorelli, P.; Sacchi, N.; Ghidoni, R. Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling. FASEB J., 2003, 17, 2339-2341.
[29]
Lavieu, G.; Scarlatti, F.; Sala, G.; Carpentier, S.; Levade, T.; Ghidoni, R.; Botti, J.; Codogno, P. Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J. Biol. Chem., 2006, 281, 8518-8527.
[30]
Brizuela, L.; Dayon, A.; Doumerc, N.; Ader, I.; Golzio, M.; Izard, J.C.; Hara, Y.; Malavaud, B.; Cuvillier, O. The sphingosine kinase-1 survival pathway is a molecular target for the tumor-suppressive tea and wine polyphenols in prostate cancer. FASEB J., 2010, 24, 3882-3894.
[31]
Park, K.; Elias, P.M.; Hupe, M.; Borkowski, A.W.; Gallo, R.L.; Shin, K-O.; Lee, Y-M.; Holleran, W.M.; Uchida, Y. Resveratrol stimulates sphingosine-1-phosphate signaling of cathelicidin production. J. Invest. Dermatol., 2013, 133, 1942-1949.
[32]
Vethakanraj, H.S.; Babu, T.A.; Sudarsanan, G.B.; Duraisamy, P.K.; Kumar, A.S. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines. Biochem. Biophys. Res. Commun., 2015, 464, 833-839.
[33]
Cheng, Y.; Tauschel, H.D.; Nilsson, A.; Duan, R.D. Ursodeoxycholic acid increases the activities of alkaline sphingomyelinase and caspase-3 in the rat colon. Scand. J. Gastroenterol., 1999, 34, 915-920.
[34]
Momchilova, A.; Petkova, D.; Staneva, G.; Markovska, T.; Pankov, R.; Skrobanska, R.; Nikolova-Karakashian, M.; Koumanov, K. Resveratrol alters the lipid composition, metabolism and peroxide level in senescent rat hepatocytes. Chem. Biol. Interact., 2014, 207, 74-80.
[35]
Xuan, L.; Shi, J.; Yao, C.; Bai, J.; Qu, F.; Zhang, J.; Hou, Q. Vam3, a resveratrol dimer, inhibits cigarette smoke-induced cell apoptosis in lungs by improving mitochondrial function. Acta Pharmacol. Sin., 2014, 35, 779-791.
[36]
Quazi, F.; Molday, R.S. Lipid transport by mammalian ABC proteins. Essays Biochem., 2011, 50, 265-290.
[37]
Berrougui, H.; Grenier, G.; Loued, S.; Drouin, G.; Khalil, A. A new insight into resveratrol as an atheroprotective compound: Inhibition of lipid peroxidation and enhancement of cholesterol efflux. Atherosclerosis, 2009, 207, 420-427.